有限差分法求解偏微分方程

有限差分法求解偏微分方程

摘要:本文主要使用有限差分法求解计算力学中的系统数学模型,推导了有限差分法的理论基础,并在此基础上给出了部分有限差分法求解偏微分方程的算例验证了推导的正确性及操作可行性。

关键词:计算力学,偏微分方程,有限差分法

Abstract:This dissertation mainly focuses on solving the mathematic model of computation mechanics with finite-difference method. The theoretical basis of finite-difference is derived in the second part of the dissertation, and then I use MATLAB to program the algorithms to solve some partial differential equations to confirm the correctness of the derivation and the feasibility of the method.

Key words:Computation Mechanics, Partial Differential Equations, Finite-Difference Method

1 引言

机械系统设计常常需要从力学观点进行结构设计以及结构分析,而这些分析的前提就是建立工程问题的数学模型。通过对机械系统应用自然的基本定律和原理得到带有相关边界条件和初始条件的微分积分方程,这些微分积分方程构成了系统的数学模型。

求解这些数学模型的方法大致分为解析法和数值法两种,而解析法的局限性众所周知,当系统的边界条件和受载情况复杂一点,往往求不出问题的解析解或近似解。另一方面,计算机技术的发展使得计算更精确、更迅速。因此,对于绝大多数工程问题,研究其数值解法更具有实用价值。对于微分方程而言,主要分为差分法和积分法两种,本论文主要讨论差分法。

2 有限差分法理论基础

2.1 有限差分法的基本思想

当系统的数学模型建立后,我们面对的主要问题就是微分积分方程的求解。基本思想是用离散的只含有限个未知量的差分方程组去近似地代替连续变量的微分方程和定解条件,并把差分方程组的解作为微分方程定解问题的近似解。将原方程及边界条件中的微分用差分来近似,对于方程中的积分用求和或及机械求积公式来近似代替,从而把原微分积分方程和边界条件转化成差分方程组。有限差分法求解偏微分方程的步骤主要有以下几步:

 区域离散,即把所给偏微分方程的求解区域细分成由有限个格点组成的网格,这些离散点称作网格的节点;

 近似替代,即采用有限差分公式替代每一个格点的导数;

 逼近求解,换而言之,这一过程可以看作是用一个插值多项式及其微分来代替偏微分方程的解的过程。

从原则上说,这种方法仍然可以达到任意满意的计算精度。因为方程的连续数值解可以通过减小独立变量离散取值的间格,或者通过离散点上的函数值进行插值计算来近似得到。理论上,当网格步长趋近于零时,差分方程组的解应该收敛于精确解,但由于机器字节的限制,网格步长不可能也没有必要取得无限小,

那么差分法的收敛性或者说算法的稳定性就显得至关重要。因此,在运用有限差分法时,除了要保证精度外,还必须要保证其收敛性。

2.2 系统微分方程的一般形式

由于大多数工程问题都是二维问题,所以得到的微分方程一般都是偏微分方程,对于一维问题得到的是常微分方程,解法与偏微分方程类似,故为了不是一般性,这里只讨论偏微分方程。由于工程中高阶偏微分较少出现,所以本文仅仅给出二阶偏微分方程的一般形式,对于高阶的偏微分,可进行类似地推广。二阶偏微分方程的一般形式如下:

有限差分法求解偏微分方程

摘要:本文主要使用有限差分法求解计算力学中的系统数学模型,推导了有限差分法的理论基础,并在此基础上给出了部分有限差分法求解偏微分方程的算例验证了推导的正确性及操作可行性。

关键词:计算力学,偏微分方程,有限差分法

Abstract:This dissertation mainly focuses on solving the mathematic model of computation mechanics with finite-difference method. The theoretical basis of finite-difference is derived in the second part of the dissertation, and then I use MATLAB to program the algorithms to solve some partial differential equations to confirm the correctness of the derivation and the feasibility of the method.

Key words:Computation Mechanics, Partial Differential Equations, Finite-Difference Method

1 引言

机械系统设计常常需要从力学观点进行结构设计以及结构分析,而这些分析的前提就是建立工程问题的数学模型。通过对机械系统应用自然的基本定律和原理得到带有相关边界条件和初始条件的微分积分方程,这些微分积分方程构成了系统的数学模型。

求解这些数学模型的方法大致分为解析法和数值法两种,而解析法的局限性众所周知,当系统的边界条件和受载情况复杂一点,往往求不出问题的解析解或近似解。另一方面,计算机技术的发展使得计算更精确、更迅速。因此,对于绝大多数工程问题,研究其数值解法更具有实用价值。对于微分方程而言,主要分为差分法和积分法两种,本论文主要讨论差分法。

2 有限差分法理论基础

2.1 有限差分法的基本思想

当系统的数学模型建立后,我们面对的主要问题就是微分积分方程的求解。基本思想是用离散的只含有限个未知量的差分方程组去近似地代替连续变量的微分方程和定解条件,并把差分方程组的解作为微分方程定解问题的近似解。将原方程及边界条件中的微分用差分来近似,对于方程中的积分用求和或及机械求积公式来近似代替,从而把原微分积分方程和边界条件转化成差分方程组。有限差分法求解偏微分方程的步骤主要有以下几步:

 区域离散,即把所给偏微分方程的求解区域细分成由有限个格点组成的网格,这些离散点称作网格的节点;

 近似替代,即采用有限差分公式替代每一个格点的导数;

 逼近求解,换而言之,这一过程可以看作是用一个插值多项式及其微分来代替偏微分方程的解的过程。

从原则上说,这种方法仍然可以达到任意满意的计算精度。因为方程的连续数值解可以通过减小独立变量离散取值的间格,或者通过离散点上的函数值进行插值计算来近似得到。理论上,当网格步长趋近于零时,差分方程组的解应该收敛于精确解,但由于机器字节的限制,网格步长不可能也没有必要取得无限小,

那么差分法的收敛性或者说算法的稳定性就显得至关重要。因此,在运用有限差分法时,除了要保证精度外,还必须要保证其收敛性。

2.2 系统微分方程的一般形式

由于大多数工程问题都是二维问题,所以得到的微分方程一般都是偏微分方程,对于一维问题得到的是常微分方程,解法与偏微分方程类似,故为了不是一般性,这里只讨论偏微分方程。由于工程中高阶偏微分较少出现,所以本文仅仅给出二阶偏微分方程的一般形式,对于高阶的偏微分,可进行类似地推广。二阶偏微分方程的一般形式如下:


相关内容

  • 有限元分析离散方法
  • 离散化方法:有限差分法,有限元法,有限体积法 所谓区域离散化, 实质上就是用一组有限个离散的点来代替原来连续的空间.实施过程是;把所计算的区域划分成许多互不重迭的子区域,确定每个子区域的节点位置及该节点所代表的控制容积.节点:需要求解的未知物理量的几何位置:控制容积: 应用控制方程或守恒定律的最小几 ...

  • MATLAB在有限差分法中的应用
  • 第!"卷第!期 !(("年)月 桂林工学院学报 *+,-'./+01,2/2'2'3424,45+04567'+/+18#$%&!"'$&!.9:&!((" !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ...

  • 求解定态薛定谔方程的有限差分法_林洽武
  • 第33卷 第3期2013年6月 广东第二师范学院学报 JournalofGuandonUniversitofEducation ggy Vol.33 No.3 Jun.2013 求解定态薛定谔方程的有限差分法 林洽武 ()广东第二师范学院物理系,广东广州510303 特殊的定态薛定谔方程存在解析解, ...

  • 有限差分法
  • 有限差分法 有限差分法 finite difference method 微分方程和积分微分方程数值解的方法.基本思想是把连续的定解区域用有限个离散点构成的网格来代替, 这些离散点称作网格的节点:把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似:把原方程和定解条件中的微商用差商来近 ...

  • 有限差分法.有限单元和有限体积法简介
  • 有限差分法.有限单元法和有限体积法的简介 1. 有限差分方法 有限差分方法(Finite Difference Method,FDM) 是计算机数值模拟最早采用的方法,至今仍被广泛运用.该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域.有限差分法以Taylor 级数展开等方法,把控制方 ...

  • 材料成型计算机模拟(纯手工打造)
  • 一.名词解释 1计算机模拟的概念:根据实际体系在计算机上进行模拟实验,通过将模拟结果与实际体系的实验数据进行比较,可以检验模型的准确性,也可以检验由模型导出的解析理论作为所作的简化近似是否成功.1 2材料设计是指(主要包含三个方面的含义):理论计算→预报→组分.结构和性能:理论设计→订做→新材料:按 ...

  • 对流扩散方程的求解
  • 对流扩散方程的求解 对流扩散问题的有效数值解法一直是计算数学中重要的研究内容,求解对流扩散方程的数值方法主要是有限差分法(FDM).有限元法(FEM).有限体积法(FVM).有限解析法(FAM).边界元法(BEM).谱方法(SM) 等多种方法.但是对于对流占优问题,用通常的差分法或有限元法进行求解将 ...

  • 计算电磁学
  • 计算电磁学 摘 要:作为一门交叉学科,计算电磁学结合了计算机技术.数值计算学和电磁学等相关学科的知识,正经历着日新月异的发展.各种各样的计算方法层出不穷,由此诞生的各种商业DEA 软件如HFSS .CST .FECO .ADS 等在工程领域中得到了广泛的应用,为解决各种复杂的工程问题提供了有力的帮助 ...

  • 电磁学的应用
  • 电磁学的应用 摘 要:介绍了电磁学计算方法的研究进展和状态,对几种富有代表性的算法做了介绍,并比较了各自的优势和不足,包括矩量法.有限元法.时域有限差分方法以及复射线方法等. 关键词:矩量法:有限元法:时域有限差分方法:复射线方法 1 引 言 1864年Maxwell在前人的理论(高斯定律.安培定律 ...