■责任编辑_杨晓红视觉编辑_李敏
生态环保
2015年7月4日星期六
随着全球能源需求的日益增长,
任何一种新型能源的发现和探索都成为关注的焦点。可燃冰就是其中之一。这种学名甲烷水合物或天然气水合物的能源,是水和甲烷在高压、低温条件下混合而成的一种固态晶体物质,外貌极像冰雪或固体酒精,广泛分布于海床深处和陆地永久冻土地带。
国际咨询机构欧亚集团负责全球能源和自然资源研究的主管皮尔森曾乐观地声称,可燃冰储量上比页岩油气等非常规能源更可观,如能实现商业化开采,未来有望成为传统能源的最佳替代品,甚至将彻底改变世界能源贸易格局。
日本最为积极
国际能源署首席经济学家:
中国成减少碳排放榜样
□新华记者韩冰孙天舒
6月28日,国际能源署首席经济学家法提赫·比罗尔日前在接受记者专访时说,2014年中国在保证经济增长约7%的情况下成功减少碳排放量,为国际社会树立了榜样。
国际能源署今年6月份发布的一份特别报告显示,中国2014年与能源有关的碳排放量减少约1.3亿吨,比2013年减少1.5%。比罗尔说,这是自1999年以来,中国碳排放量首次减少,为全球减排
工作作出了重要贡献。
据比罗尔介绍,2014年一个积极的信号是,近40年来全球碳排放量首次在经济整体增长的背景下减少,其中的重要原因之一就在于中国成功减排。
比罗尔对中国在应对气候变化方面传来好消息表示赞赏。“我们已注意到,尽管中国的经济增长保持在7%左右,但中
国的碳排放却在减少,”比罗尔说,“我希望中国继续寻找环境问题的解决方案。”
比罗尔还称赞说,中国在节能减排方面采取了一系列扎实举措,一方面利用能源的效率越来越高,另一方面在投资方面也作出很大努力,比如在可再生能源方面的投资就已经超过美国和欧洲的总和。国际能源署的特别报告也显示,2014年中国低碳发电的规模已达当年总发电量的四分之一,而2013年这一比例为五分之一。
比罗尔说,国际能源署将很乐意了解中国的减排经验,并和中国分享其他国家的环保技术和管理经验。他认为,中国在未来将是应对气候变化的关键之一。
中国能源报记者
日本作为全球最主要的能源消李
费大国,自然也对可燃冰格外关注,慧并在研究开发领域走在了世界前列。
今年初,日本产经省公布了最新的可燃冰调查报告,结果显示日本目前可确定的可燃冰储藏点已经达到971个。日本产经省宣布,随着可燃冰储量调查规模不断推进,今年将全面展开对可燃冰的调查工作,除了海底表面外,还将在海底深处确认可燃冰层的存在,通过实施重点采样调查,将最终计算出日本近海的可燃冰储藏量。
事实上,日本由于长期以来一直受到能源匮乏的困扰,自上世纪80年代就已展开了对可燃冰的研究。据《朝日新闻》报道,2000年至今,日本政府已经投入了大约588亿日元,用于推进可燃冰的开发研究。2008年,日本在“海洋基本计划”中提出,希望能够在2018年完善海底可燃冰的商业化开采技术。另据《日本经济新闻》报道,日本政府还预定把海底甲烷开发商业化写入2013至2017年的“海洋基本计划”中,在5年内开发出低价的回收储藏技术,到2023年培育出能够靠挖掘海底甲烷创收的新产业。
2013年,日本石油天然气和金属国家公司(JOG-MEC)从距日本海岸约80公里处的海上,成功将天然气从可燃冰中提取出来。2014年10月,日本JAPEX公司联合10家企业成立合资公司,在日本政府的协助下,试水可燃冰海上生产。今年5月,东京燃气顾问茂村木甚至在第三届俄日商业、科技、文化合作论坛上表示,日本计划在可燃冰实现商业化开发后,向欧洲出口产品。
可
燃冰离我们还有多远
□
日内获悉,由日本京瓷株式会社和东京盛世利租赁株式会社共同投资建造的日本兵库县1.7兆瓦、1.2兆瓦大型水上光伏电站于2015年3月底投入运行;另有大阪府岸和田市的储水池“傍示池”上功率约为1.044兆瓦的光伏电站“DREAMSolarFloat1号@神于山”于4月14日开工建设,并于今年10月开始向关西电力公司全量售电。此前,英国、美国亦有浮动式太阳能电站的先例。而国内尚未获得有关水面浮动光伏电站的信息。
京瓷大型水上光伏电站优点
1、浮体架台为中空结构,便于导线通过,减少地面光伏电站中电缆沟等带来的基建、土地成本;
2、水面浮动式光伏电站具有整体性,方便太阳能跟踪系统的安装和运行,减少了地面光伏电站因每块电池板均需安装双轴跟踪系统而造成的成本的极大提高;
3、光伏面板依托于浮体架台漂浮在水面上,由于水的冷却效果,水面光伏电站可比大型地面电站和屋顶分布式光伏电站获得更多发电量;
4、水面浮动式光伏电站可以遮蔽大量的水体,减少水库水的蒸发,同时由于对太阳光的遮挡,形成较大的投影面,一定程度上抑制藻类成长,有利于水污染防治,但并不会影响养殖业;
5、浮体架台100%可回收,所利用高密度聚乙烯,可抗紫外线、抗腐蚀;
6、水面电站依附于水体,台风来临时可随水体浮动避免折损,抵御台风的侵袭;
7、水面浮动式光伏电站依托水体表面,减少对耕地、林地、草地等土地的占用;
8、可通过岸边组装,水路运输、安装便利;
9、水面光伏电站处在水环境中,杜绝了灰尘等固体吸附,实现了真正意义上的免清洗,减少了因光伏面板清洗而造成的成本及电量损失。
水面浮动式光伏电站的工程造价
水平相比高达3倍。但由于中国与日本的国土资源使用价格、人力成本等相差较大,故此对比仅供参考。
高密度聚乙烯国内成本单价为6500元/吨,地面光伏电站所用镀Zn钢支架国内成本单价为3400元/吨,抗腐蚀的聚乙烯材料价格较高,但考虑到高密度聚乙烯的密度为0.965*103千克/立方米,钢的密度为7.85*103千克/立方米,大约是高密度聚乙烯密度的8倍,所以若只考虑体积因素,则使用聚乙烯的重量为钢重量的1/8,再考虑单价,则使用聚乙烯作为浮体架台的总成本约为用钢支架成本的1/4。
2002年1月1日实施的《全国土地分类(试行)》规定,全国土地分为三大类,即“农用地”、“建设用地”、“未利用地”。依据《中华人民共和国耕地占用税暂行条例》,对“农用地”和“建设用地”作出征税规定,而未涉及对“未利用地”的征税。
综上,水面光伏电站的硬件组成部分主要为光伏面板(成本占地面光伏电站的45%)、汇流箱(成本占地面光伏电站的1%)、逆变设备(成本占地面光伏电站的6%)、变压器(成本占地面光伏电站的2.3%)、集电线路(成本占地面光伏电站的2.5%)、聚乙烯浮体架台等。相同情况下,光伏面板、逆变器等价格一定,使用聚乙烯浮体架台成本约为钢支架成本的1/4(钢支架成本约占地面光伏电站总成本的5%-6%),免税水面比征税地面成本要小的多(土地成本占地面光伏电站3%左右),因此,水面光伏电站的整体成本比地面光伏电站的成本要低。安装、人力等成本,由于目前国内尚未有水面光伏电站的先例,再加上地面电站大量土石方工程和交通工程等基建费用往往很高,总之,笔者估算:水面浮动式光伏电站造价一定会低于地面光伏电站。
中国发展水面浮动式光伏电站优势
以岸和田市储水池上光伏电站为例,储水池面积约为2万平方米,将在其中1万平方米上铺设4016张太阳能电池板,发电规模为1.044兆瓦,投资额约为5亿日元,折合成人民币约为0.258亿,平均千瓦造价为2.47万元,与中国目前地面光伏电站单位千瓦造价8000元的平均
2014年中国大陆光伏发电累计装机容量2805万千瓦,累计发电量250亿千瓦时。其中,光伏电站2338万千瓦,分布式467万千瓦,新增装机容量1060万千瓦,约占全球新增装机的五分之一,实现了《国务院关于促进光伏产业健康发展的若干意见》中提出的平均年增1000万千瓦目标。中东部地区新增装机容量达到560万千瓦,占全国的53%,其中,江苏省新增152万千瓦,仅次于内蒙古自治区;河北省新增97万千瓦,居全国前列;西部省份中,
内蒙古、青海、甘肃和宁夏均较大。
新增并网电站以大型光伏电站为主要增长动力,未来随着光伏发电应用模式不断创新,分布式规模有望稳步增长。根据国家能源局规划,2015年度全国光伏年度计划新增并网规模15吉瓦,其中集中式电站8吉瓦,分布式7吉瓦(其中屋顶分布式不低于3.15吉瓦),特别提出北京、天津、上海、重庆及西藏地区在不发生弃光的前提下,不设发展规模上限。
1、中国人多地少,发展水面光伏电站可节约使用土地。光伏电站的缺点之一是能量分散,占地面积大。光伏电站为永久性占地,大型地面光伏电站需占用较大的土地面积,根据书籍《太阳能光伏发电系统施工设计与维护》,理论上每10千瓦光伏发电系统占地100平方米,相当于单位千瓦占地10平方米。但为了减少阴影效应,减少发电量的损失,电池板之间需要存在一定的间隔距离,从而进一步加大了占地面积。整个光伏电站平均千瓦占地20—30平方米。
2、中国北方蒸发量大于降雨量,发展水面光伏电站可以减少水面蒸发量。近40年我国干旱半干旱区降水量与蒸发量均在减小,但降水量的减小速度大于蒸发量,水分的收支不平衡造成气候的干燥化程度日甚。水面光伏电站由于遮盖大量的水体表面,可以减少水分蒸发。
3、中国有3.2万公里长海岸线,有极大发展水面光伏电站的地形优势。中国拥有近300万平方公里的海域,海岸线分为大陆岸线与海岛岸线,其中大陆岸线为18000公里。其北部起始点为鸭绿江口,南方终点为北仑河口。沿线发展水面光伏电站,不仅操作难度系数较低,还可全面为沿线经济发达地带提供电力支持。
4、中国有8.6万座水库(截至2012年底),总库容6924*108立方米,全国水库水面总面积25619千公顷,即3842.9万亩(截至1996年10月31日),具备大规模发展水面光伏电站的先决条件。水库表面主要用于蓄水、发电、灌溉、养殖、风景旅游和生态保护。现有水库水面90%以上可供养殖,实际养殖面积仅占可利用总面积的78%,而且单位面积产量普遍较低,但水面光伏电站并不会影响养殖业的发展。
5、中国湖泊众多,总面积9.1万km2,面积1千平方米以上的有2700多个,发展水面光伏电站条件充裕。
6、水面光伏电站对环境十分友好,
浮体架台等设备可100%回收,且太阳能发电效率高。
综上所述,中国应大力发展水面光伏电站,在提升经济效益的同时,保持环境的健康、和谐发展。我国若开展此领域研发须考虑的问题
1、作为水面光伏电站的重要支撑平台,浮体架台是关系到整个光伏电站能否正常运行发电的重要环节。目前光伏电站的全生命周期为25年,浮体架台必须相应具有良好的抗腐蚀性能、低密度、抗冻胀、抗风浪等特性,来与之匹配。
日本兵库县大型水上光伏电站选用了高密度的聚乙烯作为浮体架台,聚乙烯无臭,无毒,具有优良的耐低温性能,能耐大多数酸碱侵蚀。常温下不溶于一般溶剂,吸水性小,电绝缘性优良,耐冲击性好。但硝酸和硫酸对聚乙烯有较强的破坏作用,易燃烧且离火后继续燃烧,易发生光氧化、热氧化、臭氧分解,在紫外线作用下容易发生降解。因此可尝试比聚乙烯更加耐光氧化、热氧化、抗紫外线的型材,或是通过在型材外镀层等方式增强上述防御性能,使浮体架台更耐用、使用寿命更长。
中国是世界上竹资源最丰富、竹林面积最大、竹产量最大的国家,素有“竹子王国”之称。全国约有竹林330万公项,占世界的30%以上,竹材产量约占世界总产量的1/3,这是建造水面浮动式光伏电站的日本所不具备的。在追求绿色低碳的今天,竹子不仅低成本(粗加工后的竹子1000元/吨,价格约为聚乙烯的1/6)、低能耗,其做成的竹筏更具有吃水浅、浮力大等特点。但未经处理的竹筏平均使用寿命仅有2、3年,如对竹产品进行处理,使其在水中具有更良好的耐腐蚀性,将使水面光伏电站造价大幅降低。
2、合适的选址是保证试验成功的关键,可考虑在大陆内气候静风区的湖泊和水库进行试验。如金沙江,具有径流丰沛且较稳定、风速低、光照条件较好、开发条件较好等特点。
3、水面光伏电站既可实现产能并网,又可作为分布式储能光伏电站,为水面的养殖、风景旅游、生态等提供电力支持。作为分布式离网储能电站,储能设备的选择是关键,选择较低成本较高性能的蓄电池将显得尤为重要。
新西兰开始探索
除了日本,新西兰如今也开始探索可燃冰的开发利用。去年5月,新西兰水和大气国家研究所(NIWA)宣布,其与德国相关机构组成的研究小组,已经在新西兰北岛东海岸附近海域的海底发现了大面积的甲烷水合物。
据了解,这支由16名新西兰和德国的科研人员组成的研究小组,使用最新的3D和2D地震及回声测距技术,在19平方公里的海底,探测到大约99处可能的储藏点。研究小组成员蒙乔伊博士指出,种种迹象表明,该海域海床底下还存在大规模的可燃冰,而且与新西兰其他地方发现的非常不同。“过去,所有的天然气井都位于深水区,而且与大规模地震断裂带有关。”蒙乔伊说,“这次在新西兰东海岸发现的可燃冰处于相对的浅水区,天然气在大规模的海底滑坡面下产生,沿着滑坡的边缘释放出来。”
NIWA表示,研究小组的工作将持续至2016年,预计新西兰的可燃冰储量将相当可观。新西兰地球科学研究公司GNS科技公司也指出,即使最终研究表明新西兰的可燃冰储量只有一小部分是经济上可开采,也将足够满足该国几十年的天然气需求。
北极也有潜力
与此同时,对北极地区可燃冰储量的探寻也已经开始。美国新罕布什尔州大学的地质学家近日宣称,在北冰洋海域也发现了可燃冰的踪迹。科研人员表示,在北冰洋发现的甲烷水合物很可能来自非生物形成的气体,主要集中在该区域大洋中脊系统内。这些非生物甲烷水合物十分稳定,位于深水区域,形成年代大约可以追溯至200多万年前。
此外,日本JOGMEC近日还同美国能源部下属的国家能源技术实验室签署了一项合作谅解备忘录,旨在联合开发美国阿拉斯加海域的可燃冰。根据该谅解备忘录,从现在起至2019年,JOGMEC将和美国家能源技术实验室在阿拉斯加对可燃冰开展联合研究,以推动相关技术的商业化进程。
前路依然漫长
鉴于上述诸多研究项目的开展,日本经贸工业大臣利光茂木乐观预计,可燃冰最早可在2023年实现商业化利用。不过,美国地质调查局则认为,可燃冰的商业化利用进程也许不会太快,最早也要到2025年才能看到成效。
事实上,美国地质调查局的态度也不无道理,除了商业化进程推动速度慢之外,可燃冰的开发目前还有不少困难需要克服。首先,开采可燃冰被认为会引发环境危机。可燃冰的主要成分甲烷是公认的温室气体,其温室效应是二氧化碳的21倍,开采可燃冰可能导致甲烷泄漏到大气中,从而污染环境。此外,据保守估计,全球可燃冰资源中含有的碳是全球石油、天然气以及煤炭三种主要化石能源中碳含量总和的两倍。如果这些可燃冰全部燃烧掉,无疑会排放巨量的二氧化碳。
其次,可燃冰还有一个致命的弱点:就是缺乏稳定性。这种特殊晶体只有在低温和高压情况下才能够保持稳定。大致在5500万年以前的远古时代,地球曾因大气中温室气体浓度大幅提高而引发剧烈的气候变化,导致大量海洋生物灭绝。部分科学家认为,可燃冰融化是造成上述灾难的罪魁祸首。
■责任编辑_杨晓红视觉编辑_李敏
生态环保
2015年7月4日星期六
随着全球能源需求的日益增长,
任何一种新型能源的发现和探索都成为关注的焦点。可燃冰就是其中之一。这种学名甲烷水合物或天然气水合物的能源,是水和甲烷在高压、低温条件下混合而成的一种固态晶体物质,外貌极像冰雪或固体酒精,广泛分布于海床深处和陆地永久冻土地带。
国际咨询机构欧亚集团负责全球能源和自然资源研究的主管皮尔森曾乐观地声称,可燃冰储量上比页岩油气等非常规能源更可观,如能实现商业化开采,未来有望成为传统能源的最佳替代品,甚至将彻底改变世界能源贸易格局。
日本最为积极
国际能源署首席经济学家:
中国成减少碳排放榜样
□新华记者韩冰孙天舒
6月28日,国际能源署首席经济学家法提赫·比罗尔日前在接受记者专访时说,2014年中国在保证经济增长约7%的情况下成功减少碳排放量,为国际社会树立了榜样。
国际能源署今年6月份发布的一份特别报告显示,中国2014年与能源有关的碳排放量减少约1.3亿吨,比2013年减少1.5%。比罗尔说,这是自1999年以来,中国碳排放量首次减少,为全球减排
工作作出了重要贡献。
据比罗尔介绍,2014年一个积极的信号是,近40年来全球碳排放量首次在经济整体增长的背景下减少,其中的重要原因之一就在于中国成功减排。
比罗尔对中国在应对气候变化方面传来好消息表示赞赏。“我们已注意到,尽管中国的经济增长保持在7%左右,但中
国的碳排放却在减少,”比罗尔说,“我希望中国继续寻找环境问题的解决方案。”
比罗尔还称赞说,中国在节能减排方面采取了一系列扎实举措,一方面利用能源的效率越来越高,另一方面在投资方面也作出很大努力,比如在可再生能源方面的投资就已经超过美国和欧洲的总和。国际能源署的特别报告也显示,2014年中国低碳发电的规模已达当年总发电量的四分之一,而2013年这一比例为五分之一。
比罗尔说,国际能源署将很乐意了解中国的减排经验,并和中国分享其他国家的环保技术和管理经验。他认为,中国在未来将是应对气候变化的关键之一。
中国能源报记者
日本作为全球最主要的能源消李
费大国,自然也对可燃冰格外关注,慧并在研究开发领域走在了世界前列。
今年初,日本产经省公布了最新的可燃冰调查报告,结果显示日本目前可确定的可燃冰储藏点已经达到971个。日本产经省宣布,随着可燃冰储量调查规模不断推进,今年将全面展开对可燃冰的调查工作,除了海底表面外,还将在海底深处确认可燃冰层的存在,通过实施重点采样调查,将最终计算出日本近海的可燃冰储藏量。
事实上,日本由于长期以来一直受到能源匮乏的困扰,自上世纪80年代就已展开了对可燃冰的研究。据《朝日新闻》报道,2000年至今,日本政府已经投入了大约588亿日元,用于推进可燃冰的开发研究。2008年,日本在“海洋基本计划”中提出,希望能够在2018年完善海底可燃冰的商业化开采技术。另据《日本经济新闻》报道,日本政府还预定把海底甲烷开发商业化写入2013至2017年的“海洋基本计划”中,在5年内开发出低价的回收储藏技术,到2023年培育出能够靠挖掘海底甲烷创收的新产业。
2013年,日本石油天然气和金属国家公司(JOG-MEC)从距日本海岸约80公里处的海上,成功将天然气从可燃冰中提取出来。2014年10月,日本JAPEX公司联合10家企业成立合资公司,在日本政府的协助下,试水可燃冰海上生产。今年5月,东京燃气顾问茂村木甚至在第三届俄日商业、科技、文化合作论坛上表示,日本计划在可燃冰实现商业化开发后,向欧洲出口产品。
可
燃冰离我们还有多远
□
日内获悉,由日本京瓷株式会社和东京盛世利租赁株式会社共同投资建造的日本兵库县1.7兆瓦、1.2兆瓦大型水上光伏电站于2015年3月底投入运行;另有大阪府岸和田市的储水池“傍示池”上功率约为1.044兆瓦的光伏电站“DREAMSolarFloat1号@神于山”于4月14日开工建设,并于今年10月开始向关西电力公司全量售电。此前,英国、美国亦有浮动式太阳能电站的先例。而国内尚未获得有关水面浮动光伏电站的信息。
京瓷大型水上光伏电站优点
1、浮体架台为中空结构,便于导线通过,减少地面光伏电站中电缆沟等带来的基建、土地成本;
2、水面浮动式光伏电站具有整体性,方便太阳能跟踪系统的安装和运行,减少了地面光伏电站因每块电池板均需安装双轴跟踪系统而造成的成本的极大提高;
3、光伏面板依托于浮体架台漂浮在水面上,由于水的冷却效果,水面光伏电站可比大型地面电站和屋顶分布式光伏电站获得更多发电量;
4、水面浮动式光伏电站可以遮蔽大量的水体,减少水库水的蒸发,同时由于对太阳光的遮挡,形成较大的投影面,一定程度上抑制藻类成长,有利于水污染防治,但并不会影响养殖业;
5、浮体架台100%可回收,所利用高密度聚乙烯,可抗紫外线、抗腐蚀;
6、水面电站依附于水体,台风来临时可随水体浮动避免折损,抵御台风的侵袭;
7、水面浮动式光伏电站依托水体表面,减少对耕地、林地、草地等土地的占用;
8、可通过岸边组装,水路运输、安装便利;
9、水面光伏电站处在水环境中,杜绝了灰尘等固体吸附,实现了真正意义上的免清洗,减少了因光伏面板清洗而造成的成本及电量损失。
水面浮动式光伏电站的工程造价
水平相比高达3倍。但由于中国与日本的国土资源使用价格、人力成本等相差较大,故此对比仅供参考。
高密度聚乙烯国内成本单价为6500元/吨,地面光伏电站所用镀Zn钢支架国内成本单价为3400元/吨,抗腐蚀的聚乙烯材料价格较高,但考虑到高密度聚乙烯的密度为0.965*103千克/立方米,钢的密度为7.85*103千克/立方米,大约是高密度聚乙烯密度的8倍,所以若只考虑体积因素,则使用聚乙烯的重量为钢重量的1/8,再考虑单价,则使用聚乙烯作为浮体架台的总成本约为用钢支架成本的1/4。
2002年1月1日实施的《全国土地分类(试行)》规定,全国土地分为三大类,即“农用地”、“建设用地”、“未利用地”。依据《中华人民共和国耕地占用税暂行条例》,对“农用地”和“建设用地”作出征税规定,而未涉及对“未利用地”的征税。
综上,水面光伏电站的硬件组成部分主要为光伏面板(成本占地面光伏电站的45%)、汇流箱(成本占地面光伏电站的1%)、逆变设备(成本占地面光伏电站的6%)、变压器(成本占地面光伏电站的2.3%)、集电线路(成本占地面光伏电站的2.5%)、聚乙烯浮体架台等。相同情况下,光伏面板、逆变器等价格一定,使用聚乙烯浮体架台成本约为钢支架成本的1/4(钢支架成本约占地面光伏电站总成本的5%-6%),免税水面比征税地面成本要小的多(土地成本占地面光伏电站3%左右),因此,水面光伏电站的整体成本比地面光伏电站的成本要低。安装、人力等成本,由于目前国内尚未有水面光伏电站的先例,再加上地面电站大量土石方工程和交通工程等基建费用往往很高,总之,笔者估算:水面浮动式光伏电站造价一定会低于地面光伏电站。
中国发展水面浮动式光伏电站优势
以岸和田市储水池上光伏电站为例,储水池面积约为2万平方米,将在其中1万平方米上铺设4016张太阳能电池板,发电规模为1.044兆瓦,投资额约为5亿日元,折合成人民币约为0.258亿,平均千瓦造价为2.47万元,与中国目前地面光伏电站单位千瓦造价8000元的平均
2014年中国大陆光伏发电累计装机容量2805万千瓦,累计发电量250亿千瓦时。其中,光伏电站2338万千瓦,分布式467万千瓦,新增装机容量1060万千瓦,约占全球新增装机的五分之一,实现了《国务院关于促进光伏产业健康发展的若干意见》中提出的平均年增1000万千瓦目标。中东部地区新增装机容量达到560万千瓦,占全国的53%,其中,江苏省新增152万千瓦,仅次于内蒙古自治区;河北省新增97万千瓦,居全国前列;西部省份中,
内蒙古、青海、甘肃和宁夏均较大。
新增并网电站以大型光伏电站为主要增长动力,未来随着光伏发电应用模式不断创新,分布式规模有望稳步增长。根据国家能源局规划,2015年度全国光伏年度计划新增并网规模15吉瓦,其中集中式电站8吉瓦,分布式7吉瓦(其中屋顶分布式不低于3.15吉瓦),特别提出北京、天津、上海、重庆及西藏地区在不发生弃光的前提下,不设发展规模上限。
1、中国人多地少,发展水面光伏电站可节约使用土地。光伏电站的缺点之一是能量分散,占地面积大。光伏电站为永久性占地,大型地面光伏电站需占用较大的土地面积,根据书籍《太阳能光伏发电系统施工设计与维护》,理论上每10千瓦光伏发电系统占地100平方米,相当于单位千瓦占地10平方米。但为了减少阴影效应,减少发电量的损失,电池板之间需要存在一定的间隔距离,从而进一步加大了占地面积。整个光伏电站平均千瓦占地20—30平方米。
2、中国北方蒸发量大于降雨量,发展水面光伏电站可以减少水面蒸发量。近40年我国干旱半干旱区降水量与蒸发量均在减小,但降水量的减小速度大于蒸发量,水分的收支不平衡造成气候的干燥化程度日甚。水面光伏电站由于遮盖大量的水体表面,可以减少水分蒸发。
3、中国有3.2万公里长海岸线,有极大发展水面光伏电站的地形优势。中国拥有近300万平方公里的海域,海岸线分为大陆岸线与海岛岸线,其中大陆岸线为18000公里。其北部起始点为鸭绿江口,南方终点为北仑河口。沿线发展水面光伏电站,不仅操作难度系数较低,还可全面为沿线经济发达地带提供电力支持。
4、中国有8.6万座水库(截至2012年底),总库容6924*108立方米,全国水库水面总面积25619千公顷,即3842.9万亩(截至1996年10月31日),具备大规模发展水面光伏电站的先决条件。水库表面主要用于蓄水、发电、灌溉、养殖、风景旅游和生态保护。现有水库水面90%以上可供养殖,实际养殖面积仅占可利用总面积的78%,而且单位面积产量普遍较低,但水面光伏电站并不会影响养殖业的发展。
5、中国湖泊众多,总面积9.1万km2,面积1千平方米以上的有2700多个,发展水面光伏电站条件充裕。
6、水面光伏电站对环境十分友好,
浮体架台等设备可100%回收,且太阳能发电效率高。
综上所述,中国应大力发展水面光伏电站,在提升经济效益的同时,保持环境的健康、和谐发展。我国若开展此领域研发须考虑的问题
1、作为水面光伏电站的重要支撑平台,浮体架台是关系到整个光伏电站能否正常运行发电的重要环节。目前光伏电站的全生命周期为25年,浮体架台必须相应具有良好的抗腐蚀性能、低密度、抗冻胀、抗风浪等特性,来与之匹配。
日本兵库县大型水上光伏电站选用了高密度的聚乙烯作为浮体架台,聚乙烯无臭,无毒,具有优良的耐低温性能,能耐大多数酸碱侵蚀。常温下不溶于一般溶剂,吸水性小,电绝缘性优良,耐冲击性好。但硝酸和硫酸对聚乙烯有较强的破坏作用,易燃烧且离火后继续燃烧,易发生光氧化、热氧化、臭氧分解,在紫外线作用下容易发生降解。因此可尝试比聚乙烯更加耐光氧化、热氧化、抗紫外线的型材,或是通过在型材外镀层等方式增强上述防御性能,使浮体架台更耐用、使用寿命更长。
中国是世界上竹资源最丰富、竹林面积最大、竹产量最大的国家,素有“竹子王国”之称。全国约有竹林330万公项,占世界的30%以上,竹材产量约占世界总产量的1/3,这是建造水面浮动式光伏电站的日本所不具备的。在追求绿色低碳的今天,竹子不仅低成本(粗加工后的竹子1000元/吨,价格约为聚乙烯的1/6)、低能耗,其做成的竹筏更具有吃水浅、浮力大等特点。但未经处理的竹筏平均使用寿命仅有2、3年,如对竹产品进行处理,使其在水中具有更良好的耐腐蚀性,将使水面光伏电站造价大幅降低。
2、合适的选址是保证试验成功的关键,可考虑在大陆内气候静风区的湖泊和水库进行试验。如金沙江,具有径流丰沛且较稳定、风速低、光照条件较好、开发条件较好等特点。
3、水面光伏电站既可实现产能并网,又可作为分布式储能光伏电站,为水面的养殖、风景旅游、生态等提供电力支持。作为分布式离网储能电站,储能设备的选择是关键,选择较低成本较高性能的蓄电池将显得尤为重要。
新西兰开始探索
除了日本,新西兰如今也开始探索可燃冰的开发利用。去年5月,新西兰水和大气国家研究所(NIWA)宣布,其与德国相关机构组成的研究小组,已经在新西兰北岛东海岸附近海域的海底发现了大面积的甲烷水合物。
据了解,这支由16名新西兰和德国的科研人员组成的研究小组,使用最新的3D和2D地震及回声测距技术,在19平方公里的海底,探测到大约99处可能的储藏点。研究小组成员蒙乔伊博士指出,种种迹象表明,该海域海床底下还存在大规模的可燃冰,而且与新西兰其他地方发现的非常不同。“过去,所有的天然气井都位于深水区,而且与大规模地震断裂带有关。”蒙乔伊说,“这次在新西兰东海岸发现的可燃冰处于相对的浅水区,天然气在大规模的海底滑坡面下产生,沿着滑坡的边缘释放出来。”
NIWA表示,研究小组的工作将持续至2016年,预计新西兰的可燃冰储量将相当可观。新西兰地球科学研究公司GNS科技公司也指出,即使最终研究表明新西兰的可燃冰储量只有一小部分是经济上可开采,也将足够满足该国几十年的天然气需求。
北极也有潜力
与此同时,对北极地区可燃冰储量的探寻也已经开始。美国新罕布什尔州大学的地质学家近日宣称,在北冰洋海域也发现了可燃冰的踪迹。科研人员表示,在北冰洋发现的甲烷水合物很可能来自非生物形成的气体,主要集中在该区域大洋中脊系统内。这些非生物甲烷水合物十分稳定,位于深水区域,形成年代大约可以追溯至200多万年前。
此外,日本JOGMEC近日还同美国能源部下属的国家能源技术实验室签署了一项合作谅解备忘录,旨在联合开发美国阿拉斯加海域的可燃冰。根据该谅解备忘录,从现在起至2019年,JOGMEC将和美国家能源技术实验室在阿拉斯加对可燃冰开展联合研究,以推动相关技术的商业化进程。
前路依然漫长
鉴于上述诸多研究项目的开展,日本经贸工业大臣利光茂木乐观预计,可燃冰最早可在2023年实现商业化利用。不过,美国地质调查局则认为,可燃冰的商业化利用进程也许不会太快,最早也要到2025年才能看到成效。
事实上,美国地质调查局的态度也不无道理,除了商业化进程推动速度慢之外,可燃冰的开发目前还有不少困难需要克服。首先,开采可燃冰被认为会引发环境危机。可燃冰的主要成分甲烷是公认的温室气体,其温室效应是二氧化碳的21倍,开采可燃冰可能导致甲烷泄漏到大气中,从而污染环境。此外,据保守估计,全球可燃冰资源中含有的碳是全球石油、天然气以及煤炭三种主要化石能源中碳含量总和的两倍。如果这些可燃冰全部燃烧掉,无疑会排放巨量的二氧化碳。
其次,可燃冰还有一个致命的弱点:就是缺乏稳定性。这种特殊晶体只有在低温和高压情况下才能够保持稳定。大致在5500万年以前的远古时代,地球曾因大气中温室气体浓度大幅提高而引发剧烈的气候变化,导致大量海洋生物灭绝。部分科学家认为,可燃冰融化是造成上述灾难的罪魁祸首。