浮阀精馏塔设计

化工原理课程设计

题 目: 浮阀精馏塔的设计

教 学 院: 化学与材料工程学院 专 业:化学工程与工艺(精细化工方向) 学 号: 学生姓名: 指导教师:

年 月 日

《化工原理课程设计》任务书

2010~2011 学年第2学期

学生姓名: 专业班级: 指导教师: 工作部门:

一、课程设计题目:浮阀精馏塔的设计

二、课程设计内容(含技术指标) 1. 工艺条件与数据

原料液量1600kg/h,含苯48%(质量分数,下同),乙苯52%;馏出液含苯99%,残液含苯2%;泡点进料;料液可视为理想溶液。 2. 操作条件

常压操作;回流液温度为塔顶蒸汽的露点;间接蒸汽加热,加热蒸汽压力为5kgf/cm²(绝对压力);冷却水进口温度30℃,出口温度为45℃;设备热损失为加热蒸汽供热量的5%。 3. 设计内容

① 物料衡算、热量衡算;

② 塔板数、塔径计算; ③ 溢流装置、塔盘设计;、

④ 流体力学计算、负荷性能图。 三、进度安排

1.5月19日:分配任务;

2.5月19日-5月25日:查询资料、初步设计; 3.5月26日-6月01日:设计计算,完成报告。

四、基本要求

1. 设计计算书1份:设计说明书是将本设计进行综合介绍和说明。设计说明书应根据设计指导思想阐明设计特点,列出设计主要技术数据,对有关工艺流程和设备选型作出技术上和经济上的论证和评价。应按设计程序列出计算公式和计算结果,对所选用的物性数据和使用的经验公式、图表应注明来历。

设计说明书应附有带控制点的工艺流程图,塔结构简图。

设计说明书具体包括以下内容:封面;目录;绪论;工艺流程、设备及操作条件;塔工艺和设备设计计算;塔机械结构和塔体附件及附属设备选型和计算;设计结果概览;附录;参考文献等。

2. 图纸1套:包括工艺流程图(3号图纸) 和精馏塔装配总图(1号图纸) 。

教研室主任签名:

年 月 日

2

序言·············································································································································································5 1 工艺流程 ·······························································································································································5 2 主要物性数据 ······················································································································································6 3 工艺计算 ·······························································································································································7 3.1 精馏塔的物料衡算······································································································································7 3.2 相对挥发度α的计算 ·································································································································8 3.3 平衡线,q 线,精馏段操作线,提馏段操作线方程的确定 ···························································9 3.4 塔的工艺条件及相关物性数据计算·····································································································10 3.4.1 物性数据 ·············································································································································10 3.4.2 精馏段工艺条件 ································································································································10 3.4.3 提馏段工艺条件 ································································································································10 3.5 塔板数的计算·············································································································································11 3.5.1 塔板设计选用数据····························································································································11 3.5.2 理论塔板数的计算····························································································································11 3.5.3 实际塔板数的计算····························································································································12 3.6 浮阀塔板工艺尺寸的确定与计算 ·········································································································13 3.6.1 塔高的计算 ·········································································································································13 3.6.2 塔径D ··················································································································································13 3.6.3 降液管及溢流堰尺寸 ·······················································································································15 3.6.4 浮阀数及排列方式····························································································································16 3.7 塔板流动性能的校核 ·······························································································································18 3.7.1 液沫夹带量校核 ································································································································18 3.7.2 塔板阻力h f 计算 ······························································································································19 3.7.3 降液管液阀校核 ································································································································19 3.7.4 液体在降液管内停留时间校核 ·····································································································20 3.7.5 严重液漏校核·····································································································································20 3.8 塔板负荷性能图 ········································································································································20 3.8.1 过量液沫夹带线关系图···················································································································20 3.8.2 液相下限线关系式····························································································································20 3.8.3 严重漏液线关系式····························································································································21 3.8.4 液相上限线关系式····························································································································21 3.8.5 降液管液泛线关系式 ·······················································································································22 4 辅助设备设计 ····················································································································································23 4.1 塔的主要接管·············································································································································23 4.1.1塔顶蒸汽出口管径·····························································································································24 4.1.2 回流液管径 ·········································································································································24 4.1.3 进料管 ··················································································································································24

3

4.1.4 出料管 ··················································································································································25 4.1.5 饱和水蒸汽管径 ································································································································25 4.1.6 仪表接管 ·············································································································································25 4.2 辅助设备的选择 ········································································································································26 4.2.1 冷凝器 ··················································································································································26 4.2.2 再沸器 ··················································································································································26 4.2.3 泵···························································································································································26 4.3 热量衡算 ·····················································································································································27 4.3.1 塔顶冷凝器的热量衡算···················································································································27 4.3.2 塔底再沸器的热量衡算···················································································································28 5 浮阀塔工艺设计计算结果汇总 ·····················································································································28 6 设计评述 ·····························································································································································29 7 参考文献 ·····························································································································································30

4

序言

课程设计是化工原理的一个总结性环节,是培养学生综合运用本门课程及有关选修课程的基本知识来解决某一设计任务的一次训练,在整个教学中它起着培养学生独立工作能力的重要作用。

精馏是分类里液体混合物(含可液化的气体混合物)最常用的一种单元操作,精馏过程在能量剂驱动下,使气液两相多次直接接触和分离,利用液相混合物中各组份的挥发度不同,使易挥发组分由液相向气相转移,难挥发组分由气相向液相转移,实现原料混合液中各组份的分离。根据生产上的不同要求,精馏操作可以是连续的或者间歇的,有些特殊的物系还可以采用衡沸精馏或萃取精馏等特殊方法进行分离。本设计选用浮阀精馏塔分离提纯苯和乙苯。

浮阀塔因具有优异的综合性能,在设计和选用塔型时常被首选的板式塔。优点:①生产能力大,比泡罩塔提高20%——40%;②操作弹性大,在较宽的气相负荷范围内,塔板效率变化较小,其操作弹性较筛板塔有较大的改善;③塔板效率较高,因为它的气液接触状态较好,且气体沿水平方向吹入液层,雾沫夹带较小;④塔板结构及安装较泡罩塔简单,重量较轻,制造费用低,仅为泡罩塔的60%——80%左右。其缺点:①在气速较低时,仍有塔板漏液,故低气速时板效率有所下降;②浮阀阀片有卡死吹脱的可能,这会导致操作运转及检修的困难;③塔板压力降较大,妨碍了它在高气相负荷及真空塔中的应用。

1 工艺流程

冷凝器→塔顶产品冷却器→苯的储罐→乙苯

↑↓回流

原料→原料罐→原料预热器→精馏塔

↑回流↓

再沸器← → 塔底产品冷却器→苯的储罐→乙苯

5

图1-1 流程示意图

2 主要物性数据

表2-1 苯和乙苯的物理性质【1】

项目 苯A 乙苯B

分子式 C 6H 6 C H

分子量 78.11 106.16

沸点(℃) 80.1 136.2

临界温度T C (℃)

289.2 345.2

【2】

临界压P C (kPa)

4910 3677

表2-2 苯和乙苯在某些温度下的表面张力 mN/m)

t /℃ σm N/m σ乙苯

表2-3 苯和乙苯在某些温度下的粘度(mPa·s) 【3】

t /℃ μL 苯 μL 乙苯

0 0.742 0.874

20 0.638 0.666

40 0.485 0.525

60 0.381 0.426

80 0.308 0.354

100 0.255 0.300

120 0.215 0.259

140 0.184 0.226

20 28.80 29.30

40 26.25 27.14

60 23.74 25.01

80 21.27 22.92

100 18.85 20.85

120 16.49 18.81

140 14.17 16.82

6

【4】

表2-4苯和乙苯的液相密度ρL (kg/m3)

t /℃ ρL 苯

20 877.4 867.7

40 857.3 849.8

60 836.6 831.8

80 815.0 813.6

100 792.5 795.2

120 768.9 776.2

140 744.1 756.7

ρL 乙苯

【5】

表2-5 液体气化热r (kJ/kg)

t /℃

Γ苯

20 431.1 399.6

40 420.0 390.1

60 407.7 380.3

80 394.1 370.0

100 379.3 359.3

120 363.2 347.9

140 345.5 335.9

Γ乙苯

3 工艺计算

3.1 精馏塔的物料衡算

F =D+W

F xF =D xD +W xW

苯的摩尔质量[1]:M A =78.11㎏·kmol -1 乙苯的摩尔质量[1]:M B =106.16㎏·kmol -1

0. 48

78. 11

=0.5565

0. 480. 52

+

78. 11106. 16

0. 9978. 11

=.9926

0. 990. 01

+

78. 11106. 16

0. 02

x F =

x D =

x W =

78. 11

=0.02699

0. 020. 98

+

78. 11106. 16

其中,x F x D x W 分别为原料、塔顶、塔底中的苯的摩尔分数。 原料液及塔顶液、塔底液的平均摩尔质量:

7

M F =55.65%×78.11+44.35%×106.16=90.55kg·kmol -1 M D =99%×78.11+1%×106.16=78.3905kg·kmol -1 M W =2%×78.11+98%×106.16=105.599kg·kmol -1 F =D =

1600⨯0. 48

78. 11

+

1600⨯0. 52106. 16

=17.6695kg·kmol -1

=9.6945kg·kmol -1

F (x F -x W ) x D -x W

=

17. 6695(0. 5565-0. 02699)

0. 9926-0. 02699

W=F-D=17.6695-9.6945=7.975kg·kmol -1 挥发组分回收率η=

D ⨯x D F ⨯x F

⨯100%=

9. 6945⨯0. 992617. 6695⨯0. 5565

⨯100%

=97.86%

3.2 相对挥发度α的计算

苯和乙苯在某些温度t 下的蒸汽压P A 0, P B 0及所对应的α, 对于理想溶液有α= P A 0/ PB 0,计算结果见表3-1。

表3-1苯和乙苯相对挥发度α的计算结果

t (K) 357.15 361.15 365.15 369.15 373.15 377.15 381.15 383.75 388.15 393.15 398.15 403.15 408.15 409.35

P A 0/(kPa)

101.3 114.05 128.39 144.11 161.28 179.99 200.33 222.39 237.69 265.40 299.79 337.44 378.55 423.29 434.59

P B 0/ (kPa)

16.83 19.49 22.56 26.02 29.90 34.24 39.07 44.44 48.24 55.26 64.19 74.25 85.52 98.09 101.32

α

6.02 5.85 5.69 5.54 5.39 5.26 5.13 5.00 4.93 4.80 4.67 4.54 4.43 4.32 4.29

x 1 0.865 0.744 0.637 0.543 0.460 0.386 0.320 0.280 0.219 0.158 0.103 0.054 0.010 0

y 1 0.974 0.943 0.906 0.865 0.817 0.763 0.703 0.657 0.574 0.468 0.343 0.202 0.042 0

相对挥发度可去表中x =0苯(α1=4.29)和x =1(αW =6.02)的几何平均值

α=4. 29⨯6. 02=5.082

-

8

3.3 平衡线,q 线,精馏段操作线,提馏段操作线方程的确定

y =

q 线方程

x =0.5565,q =1,q 线方程即为x=xF , 所以q 线方程为 x =0.5565 而

R min =

1

αx 1-(α-1) x

=

5. 082x 1-4. 082x

α-1

[

x D x F

-

α(1-x D ) 1-x F

] =

1

5.. 082-10. 5565

[

0. 9926

-

5. 082(1-0. 9926)

1-0. 5565

]=0.417

取R min =1.5R min =1.5×0.417=0.626

精馏段操作线方程 精馏段摩尔流量:

液相L (s ) =RD =0.626×9.685=6.063(kmol/h)

气相V (s ) =L+D=(1+R)D=1.626×9.685=15.748(kmol/h) 精馏段操作线方程:

y =

R R +1

x +

x D R +1

=

0. 6260. 626+1

+

0. 9930. 626+1

=0. 385x +0. 611

提馏段操作线方程 提馏段摩尔流量:

液相L ' =L+qF=6.063+1×17.669=23.732(kmol/h) 气相V ' =V=L+D=15.748kmol/h 由于提馏段操作线方程为:y =则提馏段操作线方程为:

y =

23. 73215. 748

x -

7. 984⨯0. 02699

15. 748

=1. 507x -0. 014

L V

' '

x -

Wx V

'

3.4 塔的工艺条件及相关物性数据计算

3.4.1 物性数据

由公式ρ=A+BT +CT 2+D3+ET 4 其中T 单位为K ,其中常数为

9

表3-2常数列表

苯 乙苯

A 1114.71 1166.29

-1.35889

B

-2.46925×10-5

C -5.75335×10-3 1.81018×10-3

D 1.41802×10-5 -2.24496×10-6

——

E -1.33393×10-8

3.4.2 精馏段工艺条件

精馏段液体的平均密度

ρL =x 0ρA + (1- x

)ρB =813.681×0.993+812.821×0.007=813.68(kg/m3)

PM RT

101. 3⨯78. 38. 314⨯355. 65

精馏段气体的密度

ρ=

=

=2. 682

(kg/m3)

精馏段气体的体积流量

V V =

VM 3600ρ

=

15. 748⨯78. 33600⨯2. 694

=0. 127

(m3/s)

精馏段液体的体积流量

V L =

LM 3600ρ

=

3. 063⨯78. 33600⨯813. 68

=1. 621⨯10

-4

(m3/s)

3.4.3 提馏段工艺条件

液相平均摩尔质量:M ' =0.02×78.11+0.98×106.16=105.60(kg·kmol -1) 塔底温度t m ’=129.5℃ 查得[4]ρA =754.545kg/m3, ρB =764.07 (kg/m3) 0.02699+764.07×(1-0.2699)=763.81( kg/m3) ρL =ρA x w + (1-x w ) ρB =754.545×

'

ρV =

'

PM RT

'

=

101. 3⨯105. 608. 314⨯(129. 5+273. 15)

=

23. 732⨯105. 603600⨯763. 81

=3.195 (kg/m3)

V L =

L M 3600ρL

'

'

=9. 114⨯10

-4

(m3/s)

V V =

V M 3600ρ

=

15. 748⨯105. 603600⨯3. 195

=0. 145(m/s)

3

10

3.5 塔板数的计算

3.5.1 塔板设计选用数据

表3-3 塔板设计选用数据

由上述计算可得以下结果 汽塔的平均蒸汽流量

V VS

=(VVS +VVS )/2=(0.127+0.145)/2=0.136(m3/s)

'

汽塔的平均液相流量

V LS =

(V LS +VLS ' )/2=(1.621+9.114)×10-4/2=5.368×10-4(m3/s)

气相平均密度

3

ρV =(ρV 1+ρV 2) =(2.682+3.195)/2=2.938(kg/m)

液相平均密度

ρL =(ρL 1+ρL 2) =(813.68+763.81)/2=788.745(kg/m)

3

3.5.2 理论塔板数的计算

最少理论板数

lg[

N min =

x D (1-x D )

⨯1-x W

x W

]=lg(

0. 993

1-0. 027

) =5. 25

lg α

1-0. 9930. 027

lg 5. 082

应用吉利兰关联求理论板数N

X =

R -R min R +1

0. 567

=

0. 0626-0. 4170. 626+1

=0. 129

Y =0. 75(1-x ) =0. 75⨯(1-0. 129

0. 567

) =0. 515

N -N min

N +1

=Y 得:

N =

N min +Y 1-Y

=

5. 25+0. 5151-0. 515

=11. 89(块)

先求精馏段最少理论塔板数N min, 1

lg(

N min, 1=

x D 1-x D

⨯1-x F

x F

) =lg(

0. 993

1-0. 5565

) =3. 608

lg 1

-lg 4. 669

3. 608⨯11. 89

5. 25

N 1=

N min, 1⨯N N min

==6. 95

其中1=

4. 29⨯5. 082=4. 669

故提馏段理论板数N 2=N -N 1=11. 89-6. 95=4. 94 3.5.3 实际塔板数的计算

查得塔顶温度t D =82. 5 C , 塔底温度t W =129. 5 C , 进料温度t F =94. 5 C 全塔平均温度t m =

t D +t F +t W

3

=

82. 5+129. 5+94. 5

3

=102. 2C

在温度t m 下查液体黏度共线图的[3]μ苯=0. 235mPa ·s ,μ乙苯=0. 310mPa ·s 又μL =

∑x

i

μi

所以μL =0. 5565⨯0. 235(-1-0. 5565)⨯0. 31=0. 268(mPa·s)

μL m =

0. 268+0. 235+0. 310

3

=0. 271

(mPa·s)

全塔效率

E 0=0. 49(αμL m )

-0. 245

=0. 49⨯(5. 195⨯0. 271)

-. 0245

=0. 451

其中α=5.195

对于浮阀塔,总板效率相对值在1.1到1.2之间,本设计取1.1. 因此E 0=0. 451⨯1. 1=0. 496

实际塔板数:N 1p =

6. 950. 496

=14. 00

取14块

N 2P =

4. 940. 496

9. 97

取10块(含塔釜)

故实际塔板数N 实=14+10=24

进料板在第15块。

3.6 浮阀塔板工艺尺寸的确定与计算

3.6.1 塔高的计算

塔高Z =H D +(N-2-S )H T +SHT ’+HF +HW

已知实际塔板数为N =24块,取板间距H T =0.3(m)

由于料液清洁无须经常清洗,可取每隔7块板设一个手孔,则手孔数目S =24/7-1=2个

取手孔两板之间的距离H T ' =0.6m,取塔两端间上封头留H D =1.5m,下封头留H W =1.2 m,进料处板空间高度H F =0.6(m)

所以,全塔高度

Z =1.5+(24-2-2)×0.3+2×0.6+0.6+1.2=10.5(m)

3.6.2 塔径D

由于液体流量和塔径都不太大, 故选用单溢流弓形降液管, 不设进口堰. 因精馏段和提馏段气相流量相差不大,为便于制造,取两端塔径相等。

液汽流动参数:

F LV =

V LS V VS

ρL ρS

5. 368⨯10

0. 136

-4

788. 7452. 938

=0.0647

表5-4塔板间距H T 与塔径的经验关系

塔径(m) 塔板间距H T (m)

0.30.5 0.20.3

0.50.8 0.30.35

0.81.6 0.350.45

1.62.0 0.450.6

2.02.4 0.50.8

2.4 0.6

由表可知,取板间距H T =0.3(m),取清液层高度h L =0.06(m) 液滴高沉降高度:H T -h L =0.3-0.06=0.24(m)

由液汽流动参数F LV 及液滴高沉降高度(H T -h L ) ,查Smith 关联图可得液相表面张力20 mN/m时的气相负荷因子:C20 =0.051

全塔的平均温度为102.2℃, 在102.2℃时液体表面张力[2]:

δ苯(mN/m)=18.0(mN/m) δ乙苯(mN/m)=20.17(6mN/m)

平均液体表面张力经计算当t =102.2℃时, x 苯=0.4879

δ=

δa ⨯δb

20. 176

x δa +(1-x ) δ=

18. 0⨯b

0. 4879⨯18. 0+(1-0. 4879) ⨯20. 176

=19. 000(mN/m)

根据公式校正得:

C=Cδ

20 [(

220

) 0. ]=0.051[(

19. 000. 220

) 0]=0.0505

液泛气速:

μρS

F =C

ρL -ρ=0.0505

788. 745-2. 938

S

2. 938

=0.826(m/s)

取设计泛点率为0.7 计算空塔气速u

u =0.7μF =0.7×0.826=0.5782(m/s)

气相通过时塔截面积

A =

V VS

. 136μ

=

005782

=0. 2352

(m2)

塔截面积为气相流通截面积A 与降液管面积A 之和, 取

l W d D

=0.7

A D =[sin

-1

(l W A ) -l W -(l W T

D

D

D

) 2

]/π

=[sin

-1

(0. 7) -0. 7-0. 7

2

]/π

=0.0877

A D

A 计算塔径D

T

A T =

A =

0. 23521-A D 1-0. 0877

=0. 26(m2)

A T

D =

4A T

4⨯0. 26π

=

3. 14

=0. 576(m)

按标准塔径圆整为D=0.6m 实际塔截面积

A T =

π

D

2

=

3. 14⨯0. 6

2

=0. 2826

(m2)

4

4

实际气相流通面积

A =A A D 2

T (1-

A ) =0. 286⨯(1-0. 0877) =0. 2578(m)

T

实际空塔气速

u =

V VS . 136A

=

00. 2578

=0. 528(m/s)

设计点的泛点率

u u =0. 528=0. 639

f

0. 826

3.6.3 降液管及溢流堰尺寸

1. 降液管尺寸

由以上设计结果得弓形降液管所占面积A D

A 2

D =A T -A =0.2826-0.2578=0.0248(m)

b D =[1-1-(

l W 2D

D

) ]/2.0 即b D =[1--0. 7

2

]×0.6/2.0=0.0858(m)

选平形受液盘, 考虑降液管底部阻力和液封, 取底隙h b =03(m) 2. 溢流堰尺寸 由以上数据确定堰长

l l W W =D

D

=0. 6⨯0. 7=0.42(m)

堰上方液头高度

h h 2

0W

=2.84⨯10-3E(

V L l ) 3, 因为V L 不大,E 可近似取为1,(V L 的单位为m 3/s)

W

-4

故h 0W =2.84⨯10-3⨯(

5. 368⨯10⨯3600

2

3

0. 42

) =0.0079(m)

堰高h W 由选取清液层h L 确定

h W

=h L -h 0W =0.06-0.0079=0.0521(m)

堰流强度

u L =

V LS l W

=

5. 368⨯10

-4

⨯3600

0. 42

=4.601m /(m.h)

3

降液管底隙液体流速

u b =

V LS l W h b

=

5. 368⨯10

-4

0. 42⨯0. 03

=0.043(m/s)

验算液体在降液管中停留时间

τ=

A D H T V LS

=

0. 0248⨯0. 35. 368⨯10

-4

=13.860(s)

故降液管可用。 3.6.4 浮阀数及排列方式

(1). 浮阀数

选取F 1型浮阀, 重型, 阀孔直径d 0=0.039m,初选阀孔动能因子F 0=10,计算阀孔气速

u 0=

F 0

=

102. 938

=5.834(m/s)

ρV

浮阀个数

n =

V VS

π4

=

0. 136⨯43. 14⨯0. 039

2

d 0u 0

2

⨯5. 834

=19.52420(个)

(2)浮阀排列方式

取塔板上液体进出口安定区宽度b S =b S =50mm,取边缘区宽b C =50mm,

x =

D 2

-(b S +b D ) =

'

0. 620. 62

-(0.05+0.0858)=0.1642(m) -0.005=0.295(m)

r =

有效传质区面积

A a =2[x r

2

D 2

-b C

=

-x

2

+r sin

2-1

x ()] r

2

=2[0.16420. 2952-0. 1642开孔所占面积

+0. 295

2

sin

-1

(

0. 16420. 295

)

]=0.183(m2)

A 0=n

π

4

d 0

2

=20⨯

3. 144

⨯0. 039

2

=0. 0239

(m2)

采用等边三角形错排方式,其孔心距t 用下式计算

t =

0. 907A 0A a

⨯d 0=

0. 9070. 02390183

⨯0. 039=0. 103(m)

根据估算提供孔心距进行布孔,并按实际可能的情况进行调整来确定浮阀的实际个数n, 按n=100mm进行布孔,实际安排浮阀个数n=18个,并重新计算塔板的个参数,

阀孔气速

u 0=

n V VS

π4

=

2

0. 136

18⨯

3. 144

⨯0. 039

2

=6. 328(m/s)

d 0

动能因子

F 0=u 0

ρV =6. 328⨯

2. 938=10. 847

塔板开孔率

A 0A T

18⨯=

3. 144

0. 2826

⨯0. 039

2

ϕ==0. 076

3.7 塔板流动性能的校核

3.7.1 液沫夹带量校核

为控制液沫夹带量e v 过大,应使泛点F 1

V VS

F 1=

ρV ρL -ρV

KC

F

+1. 36V LS Z L A b

V s

F 1=

V L -V

F

0. 78KC

A T

式中,由塔板上气液密度ρV 及塔板间距H T 查图泛点负荷因数得系数C F =0.10,根据表3-5,本物系K 值可选取1。

表3-5物性系数K

系统

K 系统

K 无泡沫,正常系统 1.0 多泡沫系统 0.73 氟化物 0.90 严重起泡点 0.60 中等起泡点

0.85

形成稳定泡沫系统

0.30

塔板上液体流道长

Z L =D -2b d =0. 6-2⨯0. 0858=0. 428

(m)

液流面积

A b =A T -2A d =0. 2826-2⨯0. 0248=0. 233

(m)

故得

0. 136⨯2. 9381. 36⨯5. 368⨯10

-4

⨯0. 428

F 788. 748-2. 938

+1=

1⨯0. 10⨯0. 233

=0. 369

0. 136

2. 938

或 F 788. 745-2. 938

1

0. 78⨯0. 10⨯0. 2826

=0. 377

所得泛点率F 1低于0.8,故不会产生过量的泡沫夹带。 3.7.2 塔板阻力h f 计算

(1)干板阻力h 0 临界孔速

1

u 0c =(

73

1

ρ) 1. 825=(

73. 825V

2. 938

) 1=5. 814

因孔阀气速u 0大于其临界阀孔气速u 0c ,故应在浮阀全开计算干板阻力,h u 2

6. 328

2

0=5. 34

ρV ρ5. 34

2. 938L ⨯2g

=788. 745

2⨯9. 81

=0. 0406(m)

(2)塔板清液层阻力h 1 取充气系数ε=0. 5

h 1=0. 5h L =0. 5⨯0. 06=0. 03(m)

(3)克服表面张力h [2]

σ

h σ=

4⨯10

-3

δ

ρL gd 0

=

4⨯10

-3

⨯19. 000

788. 745⨯9. 81⨯0. 039

=2. 519⨯10

-4

(m)

由以上三项阻力之和求得塔板阻力h f

h f =h 0+h 1+h σ=0. 0406+0. 03+2. 519⨯10

-4

=0. 0709(m)

3.7.3 降液管液阀校核

降液管中清液层高度由

H d =H W +H 0W +∆+

P 2-P 1

ρL g

+h d =H W +H 0W +∆+h f +h d

式中h d 为液体流过降液管隙的阻力,其阻力h d 由式

h d =ζ

u d

2

2g

=0. 153(

V LS l W h b

) =1. 18⨯10

2-8

⨯(

V Lh l w h b

2

) (m 液柱)

计算得:

h d =1. 18⨯10

-8

⨯(

V LS l W h b

) =1. 18⨯10

2-8

⨯(

5. 368⨯10

-4

⨯3600

0. 42⨯0. 03

) =2. 776⨯10

2-4

(m)

浮阀塔板上液面落差∆一般较少可以忽略,于是由得其他各项之和求得降液管内清液层高度H d

H d =0. 0521+0. 0079+0. 0709+2. 776⨯10

-4

=0. 1312

(m)

取降液管中泡沫层相对密度φ=0. 5,则可求降液管中泡沫层的高度H d ’

H d =

'

H d

φ

=0. 2624

而H T +h W =0. 3+0. 0521=0. 3521>H d ,故不会发生降液管液泛。 3.7.4 液体在降液管内停留时间校核

应保证液体在降液管内的停留时间大于3到5s ,才能保证液体所夹带气体的释出。

τ=

A d H T V LS

=

0. 0248⨯0. 35. 368⨯⨯10

-4

'

=13. 9(s)>5(s)

故所夹带气体可以释出。

3.7.5 严重液漏校核

当阀孔的动能因子F 0低于5时将会发生严重液漏,故液漏点的孔速u 0可取

F 0=5的相应孔流气速

u 0=

'

5

ρV

=

52. 938

=2. 915

(m/s)

稳定系数

K =

u 0u 0

'

=

6. 3282. 917

=2. 619>1. 5~2. 0

,故不会发生严重液漏。

3.8 塔板负荷性能图

3.8.1 过量液沫夹带线关系图

已知物系性质及塔盘结构尺寸,同时给定泛点率等于F 1时,即可表示出气, 液相流量之间的关系

V VS

F 1=

ρV ρb -ρV

KC

F

+1. 36V LS Z L A b

对于直径在0.9m 以下的塔,F 1

V VS

0. 7=

2. 938788. 745-2. 938

+1. 36V LS ⨯0. 428

1⨯0. 10⨯0. 233

得: V VS =0. 267-9. 527V LS

为一次线性方程,由两点即可确定,当V LS =0时,V VS =0. 267m 3/s,取

V LS =0. 01m

3

/s时,有V VS =0. 172m 3/s,

由此两点作过量液沫夹带线①。 3.8.2 液相下限线关系式

对于平直堰,其堰上液头高度h 0W 必须大于0.006m ,取h 0W =0. 006m ,即可确定液相流量的下限线,

h 0W =2. 84⨯10

-3

E (

V Lh l W

2

) 3=0. 006

取E=1.0,代人l W =0. 42, 求得V Lh =1. 2897(m3/h), 则V LS =

1. 28973600

=3. 583⨯10

-4

(m3/s)

可见该线为垂直轴的直线V VS , 该线记为② 3.8.3 严重漏液线关系式

因为动能因子F 0

V VS =A 0u 0

式中A 0=n

π

4

5

π

4

d 0

2

, u 0=

3. 144

5

ρV

2

52. 938

∴ V VS =n

d 0⨯

2

ρ

=18⨯

V

⨯0. 039⨯

(m=0. 0627

2

/s)

此为以平行V VS 轴的直线,为漏液线,也称之为气相下限线,该线记为③ 。 3.8.4 液相上限线关系式

为了使降液管中液体所夹带的气泡有足够时间分离出,液体降液管中的停留时间不应小于3.5s ,取τ=5s为液体在降液管中停留时间下限,则降液的最大流量为

V LS =

A d H T

5

=

0. 0248⨯0. 3

5

=1. 488⨯10

-3

(m3/s)

该线为一平行V VS 轴的直线,记为④。 3.8.5 降液管液泛线关系式

当塔降液管内泡沫层上升至上一层塔板时,即发生了降液管液泛。根据降液管液泛的条件,得以下降液管液泛情况下的关系:

H d =h W +h 0W +∆+h f +h d

H d ≤H T +H W H d =

' '

H d

φ

联立解得: φ(H T +h W ) =h W +h 0W +∆+h f +h d

式中h 0W , h f , h d 均为V LS , V VS 的函数关系,整理即可获得表示降液管液泛线的关系式,其中已确定的各量有H T =0.3m,h W =0.0521m,H =0,φ=0.5

h 0W =2. 84⨯10

-3

E (

V LS l W

2

2

) 3 取E =1

h 0W =

2. 84⨯10(0. 423600

-32

2

V LS

3

=1. 189V LS

3

) 3

h d =0. 153(

V LS l w h b

) =

2

0. 153(0. 42⨯0. 03)

2

2

V LS

2

=963. 72V LS

2

h 0=5. 34⨯

2. 938788. 745

46. 53V LS

2⨯9. 81

23

2

=2. 194V 9LS

2

23

h 1=ε0(h W +h 0W ) =0. 5⨯(0. 0521⨯1. 189V LS ) =0. 0261+0. 5945V LS

h f =h 0+h 1=2. 1949V LS

2

2

2

+0. 5945V LS

2

3

+0. 0261

23

0. 5⨯(0. 3+0. 0521) =0. 0521+1. 189V LS

3

+2. 1949V LS

23

+0. 5945V LS

2

+0. 0261+963. 72V LS

2

∴ V VS

2

=0. 04458-0. 8127V LS -439. 072V LS

由表中数据作出降液管的液泛线,并记为⑤。

表3-6的液泛线数据

V LS (m /s ) V VS (m /s )

33

0.01 16.82

0.02 15.71

0.03 14.42

0.04 12.77

0.05 10.98

0.06 7.66

将以上①,②,③,④,⑤条线标绘在同一V LS -V VS 直角坐标系中,塔板的负荷性能图如图所示.将设计点

(V LS , V VS )

标绘在图中,如D 点所示,

由原点O 及D 做操作线OD ,操作线交严重漏液线③于A ,液沫夹带线①于B. 分别从图中A 、B 两点读得气相流量的下限(V VS ) min 及上限(V VS ) max ,并求得该塔的操作弹性。

操作弹性

=(V VS ) max /(V VS ) min =8.381/3.542=2.37 图3-1 塔板负荷性能图

4 辅助设备设计

本精馏系统辅助设备主要包括在沸器,冷凝器,预热器,冷却器,储罐等。

4.1 塔的主要接管

4.1.1塔顶蒸汽出口管径

表4-1管内蒸气许可速度[6]

13.3~6.7 6.7以下

30~45 45~60

塔顶蒸汽接管

d F =

4V S

πu V

体积流量V S =0. 104m 3/s , u V =14(m/s)

d F =

4⨯0. 1043. 14⨯14

=0. 0973(m)

选取管尺寸φ=18×4

4.1.2 回流液管径

借重力回流, 回流液速度:0.2~0.5 m/s 用泵输送, 回流液速度:1~2.5 m/s

d R =

4l S

πu

R

体积流量

l -4

3

s =1. 382⨯10

m /s , u R =0. 5

(m/s)

. 382⨯10-4

d 4⨯11. 876⨯10

-2

R =

3. 14⨯0. 5

=(m)

选取管尺寸φ=25×2.5

4.1.3 进料管

料液由高位槽流入塔内: 0.4~0.8 m/s

泵: 1.5~2.5 m/s

d L F

F =

4πu

F

体积流量L F =5. 238⨯10-4m 3/s , u F =0. 5(m/s)

d ⨯5. 238⨯10-4

F =

43. 14⨯0. 5

=0. 0365

(m)

选取管尺寸φ=45×3.5

4.1.4 出料管

0.5~1.0 m/s

d 4L W

w =

πu

w

体积流量

l 4

w =3. 0741⨯10

-m /s , u w =0. 5

(m/s)

d w =

4⨯3. 0741⨯10

3. 14⨯0. 5

-4

=0. 02799

(m)

选取管尺寸φ=32×2

4.1.5 饱和水蒸汽管径

表压在295KPa 以下:20~40 m/s 表压在785KPa:40~60 m/s 表压在2950KPa:80 m/s 4.1.6 仪表接管

选取管尺寸φ=25×2.5

4.2 辅助设备的选择

4.2.1 冷凝器

对于小型塔, 回流冷凝器一般安装在塔顶, 冷凝器由重力作用回流入塔, 冷凝器距塔顶回流入口的高度可根据管道阻力损失进行计算。

对于直径较小的塔, 需用冷凝器也较小, 可考虑他直接安装在塔顶和塔连成一个整体, 这种整体结构的优点是占地面积小, 不需要冷凝的支座, 缺点是塔顶的结构复杂, 安装检修不便, 冷凝器的选择大体过程如下:

(1)按工艺要求决定冷凝器的热负荷Q D 选择冷凝剂进口温度并计算冷却剂用量。

(2)初估设备尺寸, 由平均温差∆t m 和经验的总传热系数K, 计算所需传热面积A, 并由此选择标准型号的冷凝器或自行设计。

(3)复核传热面积, 对已选型号或自行设计的设备, 设计计算的总传热系数K 和实际所需传热面积。

(4)决定安装尺寸, 估计各管线长度及阻力损失, 以决定冷凝器底部与回流液入口之间的高度差H R 。

4.2.2 再沸器

再沸器的大小, 取决于处理能力, 操作条件(回流比与加热情况) 以及操作方式(间歇或连续) 等因素。

对于小塔再沸器可直接安装在塔底部, 如设置夹套, 蛇管或列管等. 再沸器的截面积要略大于塔体的截面, 对不易起沫的液体, 釜中装料系数可达80%,对易起沫的液体, 装料系数一般不超过65%.为避免带液现象, 釜中液面距底层塔板高度至少要在0.5m 以上。 4.2.3 泵

泵的选择可运用流体力学的知识进行, 其过程大体简述如下:

(1)因输送物料流过的管路阀门, 管件和单元设备等, 计算出系统的总阻力

(∑h )

f

(2)根据物料的初始界面及最终到达的位置或界面, 确定输送过程流体位能及静压能所发生的变化(∆Z , ∆P /ρg )以及动能变化(∆u 2/2g )

(3)利用能量衡算方程, 计算出所需泵的扬程H.

H =∆Z +

∆P

ρg

f 1

+

∆h

2

2g

+

∑h

f

∑h

f

=

∑h

+

∑h

f 2

+

∑h

f 3

式中:∑h f 1 ──系统中直管部分阻力,m ;

∑h

f 2

──系统中阀门, 管件等局部阻力,m ; ──系统内各单元设备阻力之和,m 。

∑h

f 3

(4) 根据输送介质的物性操作条件选择泵的类型, 并根据输送流量要求Q 和上述H 计算值, 利用相应的性能表选定所需泵的型号。

4.3 热量衡算

4.3.1 塔顶冷凝器的热量衡算

塔顶苯蒸气的摩尔潜化热[5]

r v 1=29627. 123

(kJ/kmol)

塔顶乙苯蒸气的摩尔潜化热[5]

r v 2=38143. 288

(kJ/kmol)

所以塔顶上的摩尔潜化热

r v =r V y 1+r V (1-y 1) =29627. 123⨯0. 993+38143. 288⨯0. 007

=29686.736(kJ/mol)

12冷凝器的热负荷

Q C =(R +1)r v =(0. 626+1)⨯7. 621⨯29686. 736=367870. 492

(kJ/h)

冷凝介质的消耗量

W Q C

367870. 492C =

C PC (t 1-t 2)

=

4. 174⨯(45-30)

=5875. 587(kg/h)

式中

C PC ──冷凝介质的比热kJ/(kg. ℃);

t 1,t 2──分别为冷凝介质进出冷凝器的温度℃。

4.3.2 塔底再沸器的热量衡算

塔底苯蒸气的摩尔潜化热[5]

r '

v 1=27775. 916(kJ/kmol)

塔底乙苯蒸气的摩尔潜化热[5]

r '

v 2=36296. 104(kJ/kmol)

所以塔底上升的摩尔潜化热

r v ' =27775. 916⨯0. 027+36296. 104⨯(1-0. 027) =36066. 059

(kJ/kmol)

再沸器的热负荷

Q '

'

B =V r V =(0. 626+1) ⨯7. 621⨯36066. 059=446921. 442(kJ/h)

加热介质的消耗量

W B (1+0. 05)

446921. 442⨯(1+0. 05)

h =

Q r =

R

2177. 6

=215. 498(kJ/h)

r R ──加热蒸汽的汽化潜热,kJ/kg

5 浮阀塔工艺设计计算结果汇总

计算数据(精馏段/提馏

段) 102.17 0.136 5.368 24 10.5 0.6 0.3 单溢流弓形

0.42 0.0521 0.06 0.0079 0.03 0.050 0.035

序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

项目 平均温度 气相流量 液相流量 实际塔板数 有效高度 塔径 板间距 溢流形式(降液管)

堰长 堰高 板上液层高度 堰上液层高度 底隙高度 安定区宽度 边缘区宽度 开孔区面积 阀孔直径 浮阀数目 孔中心距 开孔率% 空塔气速 阀孔气速 稳定系数 停留时间 负荷上限 负荷下限 气相负荷上限 气相负荷下限 操作弹性

符号 t m V s L s N Z D H T --- l w h w h L h ow h b b s b c A 0 d 0 N t Φ μ

单位 ℃ m 3/s m 3/s --- m m m --- m m m m m m m m 2m --- m --- m 3 /s m /s--- s m 3 /s m /s

3 3 3

0.0239 0.039 18 0.10 7.6 0.528 6.328 2.169 13.9 液泛夹带 漏液控制 8.381 3.542 3.15/3.86

μ0

K

τ

--- --- Vs(max) Vs(min) j

m /s m 3 /s ------

6 设计评述

因为苯—乙苯不能形成恒沸点的混合物,所以可直接采用传统的精馏法制备高纯度的乙苯溶液,本设计进行苯—乙苯的分离,采用直径为1.4米的精馏塔,选用效率较高、结构简单、加工方便的单溢流方式、并采用了弓形降液盘。

由于在设计过程中,对板式塔只有一个整体的直观认识以及简单的工作原理的了解,而对于设备中重要部件——塔板、管路等缺乏了解,查询了各种相关书籍,走了很多弯路,但终于通过自己的努力解决了其中的难题。

在设计过程中,考虑到设计塔板所构成的板式塔,不但要具有应有的生产能力,满足工艺要求,还要考虑到能耗,经济,污染等问题,对今后走向工作岗位很有价值。

7 参考文献

[1] 刘光启. 马连湘. 刘杰主编. 化学化工物性数据手册[M].有机卷. 北京:化学工业

出版社,2002.3

[2] 马沛生主编. 有机化合物实验物性数据手册. 北京:化工工业出版社,2006 [3] 谭天恩. 窦梅. 周明华等编著. 化工原理(下册)[M]. 3版. 北京:化学工业出版

社,2009.4

[4] 黄英主编. 化工过程设计[M].西北工业大学出版,2006

[5] 刘雪媛. 汤景凝主编. 化工原理课程设计[M].石油大学出版社,2002 [6] 贾绍义. 化工原理课程设计[M].天津:天津大学出版社,2002

[7] 匡国柱. 史启才主编. 化工单元过程及设备课程设计[M]. 2版. 北京:化学工业出

版社,2009.05

[8] 侯丽新编. 板式精馏塔[M].北京: 化学工业出版社,2000.5

[9] 唐伦成编著. 化工原理课程设计简明课程[M].哈尔滨:哈尔滨工程大学出版

社,2005

[10]贾绍义. 柴诚敬主编. 化工原理课程设计[M].天津:天津大学出版社,2002.8

化工原理课程设计

题 目: 浮阀精馏塔的设计

教 学 院: 化学与材料工程学院 专 业:化学工程与工艺(精细化工方向) 学 号: 学生姓名: 指导教师:

年 月 日

《化工原理课程设计》任务书

2010~2011 学年第2学期

学生姓名: 专业班级: 指导教师: 工作部门:

一、课程设计题目:浮阀精馏塔的设计

二、课程设计内容(含技术指标) 1. 工艺条件与数据

原料液量1600kg/h,含苯48%(质量分数,下同),乙苯52%;馏出液含苯99%,残液含苯2%;泡点进料;料液可视为理想溶液。 2. 操作条件

常压操作;回流液温度为塔顶蒸汽的露点;间接蒸汽加热,加热蒸汽压力为5kgf/cm²(绝对压力);冷却水进口温度30℃,出口温度为45℃;设备热损失为加热蒸汽供热量的5%。 3. 设计内容

① 物料衡算、热量衡算;

② 塔板数、塔径计算; ③ 溢流装置、塔盘设计;、

④ 流体力学计算、负荷性能图。 三、进度安排

1.5月19日:分配任务;

2.5月19日-5月25日:查询资料、初步设计; 3.5月26日-6月01日:设计计算,完成报告。

四、基本要求

1. 设计计算书1份:设计说明书是将本设计进行综合介绍和说明。设计说明书应根据设计指导思想阐明设计特点,列出设计主要技术数据,对有关工艺流程和设备选型作出技术上和经济上的论证和评价。应按设计程序列出计算公式和计算结果,对所选用的物性数据和使用的经验公式、图表应注明来历。

设计说明书应附有带控制点的工艺流程图,塔结构简图。

设计说明书具体包括以下内容:封面;目录;绪论;工艺流程、设备及操作条件;塔工艺和设备设计计算;塔机械结构和塔体附件及附属设备选型和计算;设计结果概览;附录;参考文献等。

2. 图纸1套:包括工艺流程图(3号图纸) 和精馏塔装配总图(1号图纸) 。

教研室主任签名:

年 月 日

2

序言·············································································································································································5 1 工艺流程 ·······························································································································································5 2 主要物性数据 ······················································································································································6 3 工艺计算 ·······························································································································································7 3.1 精馏塔的物料衡算······································································································································7 3.2 相对挥发度α的计算 ·································································································································8 3.3 平衡线,q 线,精馏段操作线,提馏段操作线方程的确定 ···························································9 3.4 塔的工艺条件及相关物性数据计算·····································································································10 3.4.1 物性数据 ·············································································································································10 3.4.2 精馏段工艺条件 ································································································································10 3.4.3 提馏段工艺条件 ································································································································10 3.5 塔板数的计算·············································································································································11 3.5.1 塔板设计选用数据····························································································································11 3.5.2 理论塔板数的计算····························································································································11 3.5.3 实际塔板数的计算····························································································································12 3.6 浮阀塔板工艺尺寸的确定与计算 ·········································································································13 3.6.1 塔高的计算 ·········································································································································13 3.6.2 塔径D ··················································································································································13 3.6.3 降液管及溢流堰尺寸 ·······················································································································15 3.6.4 浮阀数及排列方式····························································································································16 3.7 塔板流动性能的校核 ·······························································································································18 3.7.1 液沫夹带量校核 ································································································································18 3.7.2 塔板阻力h f 计算 ······························································································································19 3.7.3 降液管液阀校核 ································································································································19 3.7.4 液体在降液管内停留时间校核 ·····································································································20 3.7.5 严重液漏校核·····································································································································20 3.8 塔板负荷性能图 ········································································································································20 3.8.1 过量液沫夹带线关系图···················································································································20 3.8.2 液相下限线关系式····························································································································20 3.8.3 严重漏液线关系式····························································································································21 3.8.4 液相上限线关系式····························································································································21 3.8.5 降液管液泛线关系式 ·······················································································································22 4 辅助设备设计 ····················································································································································23 4.1 塔的主要接管·············································································································································23 4.1.1塔顶蒸汽出口管径·····························································································································24 4.1.2 回流液管径 ·········································································································································24 4.1.3 进料管 ··················································································································································24

3

4.1.4 出料管 ··················································································································································25 4.1.5 饱和水蒸汽管径 ································································································································25 4.1.6 仪表接管 ·············································································································································25 4.2 辅助设备的选择 ········································································································································26 4.2.1 冷凝器 ··················································································································································26 4.2.2 再沸器 ··················································································································································26 4.2.3 泵···························································································································································26 4.3 热量衡算 ·····················································································································································27 4.3.1 塔顶冷凝器的热量衡算···················································································································27 4.3.2 塔底再沸器的热量衡算···················································································································28 5 浮阀塔工艺设计计算结果汇总 ·····················································································································28 6 设计评述 ·····························································································································································29 7 参考文献 ·····························································································································································30

4

序言

课程设计是化工原理的一个总结性环节,是培养学生综合运用本门课程及有关选修课程的基本知识来解决某一设计任务的一次训练,在整个教学中它起着培养学生独立工作能力的重要作用。

精馏是分类里液体混合物(含可液化的气体混合物)最常用的一种单元操作,精馏过程在能量剂驱动下,使气液两相多次直接接触和分离,利用液相混合物中各组份的挥发度不同,使易挥发组分由液相向气相转移,难挥发组分由气相向液相转移,实现原料混合液中各组份的分离。根据生产上的不同要求,精馏操作可以是连续的或者间歇的,有些特殊的物系还可以采用衡沸精馏或萃取精馏等特殊方法进行分离。本设计选用浮阀精馏塔分离提纯苯和乙苯。

浮阀塔因具有优异的综合性能,在设计和选用塔型时常被首选的板式塔。优点:①生产能力大,比泡罩塔提高20%——40%;②操作弹性大,在较宽的气相负荷范围内,塔板效率变化较小,其操作弹性较筛板塔有较大的改善;③塔板效率较高,因为它的气液接触状态较好,且气体沿水平方向吹入液层,雾沫夹带较小;④塔板结构及安装较泡罩塔简单,重量较轻,制造费用低,仅为泡罩塔的60%——80%左右。其缺点:①在气速较低时,仍有塔板漏液,故低气速时板效率有所下降;②浮阀阀片有卡死吹脱的可能,这会导致操作运转及检修的困难;③塔板压力降较大,妨碍了它在高气相负荷及真空塔中的应用。

1 工艺流程

冷凝器→塔顶产品冷却器→苯的储罐→乙苯

↑↓回流

原料→原料罐→原料预热器→精馏塔

↑回流↓

再沸器← → 塔底产品冷却器→苯的储罐→乙苯

5

图1-1 流程示意图

2 主要物性数据

表2-1 苯和乙苯的物理性质【1】

项目 苯A 乙苯B

分子式 C 6H 6 C H

分子量 78.11 106.16

沸点(℃) 80.1 136.2

临界温度T C (℃)

289.2 345.2

【2】

临界压P C (kPa)

4910 3677

表2-2 苯和乙苯在某些温度下的表面张力 mN/m)

t /℃ σm N/m σ乙苯

表2-3 苯和乙苯在某些温度下的粘度(mPa·s) 【3】

t /℃ μL 苯 μL 乙苯

0 0.742 0.874

20 0.638 0.666

40 0.485 0.525

60 0.381 0.426

80 0.308 0.354

100 0.255 0.300

120 0.215 0.259

140 0.184 0.226

20 28.80 29.30

40 26.25 27.14

60 23.74 25.01

80 21.27 22.92

100 18.85 20.85

120 16.49 18.81

140 14.17 16.82

6

【4】

表2-4苯和乙苯的液相密度ρL (kg/m3)

t /℃ ρL 苯

20 877.4 867.7

40 857.3 849.8

60 836.6 831.8

80 815.0 813.6

100 792.5 795.2

120 768.9 776.2

140 744.1 756.7

ρL 乙苯

【5】

表2-5 液体气化热r (kJ/kg)

t /℃

Γ苯

20 431.1 399.6

40 420.0 390.1

60 407.7 380.3

80 394.1 370.0

100 379.3 359.3

120 363.2 347.9

140 345.5 335.9

Γ乙苯

3 工艺计算

3.1 精馏塔的物料衡算

F =D+W

F xF =D xD +W xW

苯的摩尔质量[1]:M A =78.11㎏·kmol -1 乙苯的摩尔质量[1]:M B =106.16㎏·kmol -1

0. 48

78. 11

=0.5565

0. 480. 52

+

78. 11106. 16

0. 9978. 11

=.9926

0. 990. 01

+

78. 11106. 16

0. 02

x F =

x D =

x W =

78. 11

=0.02699

0. 020. 98

+

78. 11106. 16

其中,x F x D x W 分别为原料、塔顶、塔底中的苯的摩尔分数。 原料液及塔顶液、塔底液的平均摩尔质量:

7

M F =55.65%×78.11+44.35%×106.16=90.55kg·kmol -1 M D =99%×78.11+1%×106.16=78.3905kg·kmol -1 M W =2%×78.11+98%×106.16=105.599kg·kmol -1 F =D =

1600⨯0. 48

78. 11

+

1600⨯0. 52106. 16

=17.6695kg·kmol -1

=9.6945kg·kmol -1

F (x F -x W ) x D -x W

=

17. 6695(0. 5565-0. 02699)

0. 9926-0. 02699

W=F-D=17.6695-9.6945=7.975kg·kmol -1 挥发组分回收率η=

D ⨯x D F ⨯x F

⨯100%=

9. 6945⨯0. 992617. 6695⨯0. 5565

⨯100%

=97.86%

3.2 相对挥发度α的计算

苯和乙苯在某些温度t 下的蒸汽压P A 0, P B 0及所对应的α, 对于理想溶液有α= P A 0/ PB 0,计算结果见表3-1。

表3-1苯和乙苯相对挥发度α的计算结果

t (K) 357.15 361.15 365.15 369.15 373.15 377.15 381.15 383.75 388.15 393.15 398.15 403.15 408.15 409.35

P A 0/(kPa)

101.3 114.05 128.39 144.11 161.28 179.99 200.33 222.39 237.69 265.40 299.79 337.44 378.55 423.29 434.59

P B 0/ (kPa)

16.83 19.49 22.56 26.02 29.90 34.24 39.07 44.44 48.24 55.26 64.19 74.25 85.52 98.09 101.32

α

6.02 5.85 5.69 5.54 5.39 5.26 5.13 5.00 4.93 4.80 4.67 4.54 4.43 4.32 4.29

x 1 0.865 0.744 0.637 0.543 0.460 0.386 0.320 0.280 0.219 0.158 0.103 0.054 0.010 0

y 1 0.974 0.943 0.906 0.865 0.817 0.763 0.703 0.657 0.574 0.468 0.343 0.202 0.042 0

相对挥发度可去表中x =0苯(α1=4.29)和x =1(αW =6.02)的几何平均值

α=4. 29⨯6. 02=5.082

-

8

3.3 平衡线,q 线,精馏段操作线,提馏段操作线方程的确定

y =

q 线方程

x =0.5565,q =1,q 线方程即为x=xF , 所以q 线方程为 x =0.5565 而

R min =

1

αx 1-(α-1) x

=

5. 082x 1-4. 082x

α-1

[

x D x F

-

α(1-x D ) 1-x F

] =

1

5.. 082-10. 5565

[

0. 9926

-

5. 082(1-0. 9926)

1-0. 5565

]=0.417

取R min =1.5R min =1.5×0.417=0.626

精馏段操作线方程 精馏段摩尔流量:

液相L (s ) =RD =0.626×9.685=6.063(kmol/h)

气相V (s ) =L+D=(1+R)D=1.626×9.685=15.748(kmol/h) 精馏段操作线方程:

y =

R R +1

x +

x D R +1

=

0. 6260. 626+1

+

0. 9930. 626+1

=0. 385x +0. 611

提馏段操作线方程 提馏段摩尔流量:

液相L ' =L+qF=6.063+1×17.669=23.732(kmol/h) 气相V ' =V=L+D=15.748kmol/h 由于提馏段操作线方程为:y =则提馏段操作线方程为:

y =

23. 73215. 748

x -

7. 984⨯0. 02699

15. 748

=1. 507x -0. 014

L V

' '

x -

Wx V

'

3.4 塔的工艺条件及相关物性数据计算

3.4.1 物性数据

由公式ρ=A+BT +CT 2+D3+ET 4 其中T 单位为K ,其中常数为

9

表3-2常数列表

苯 乙苯

A 1114.71 1166.29

-1.35889

B

-2.46925×10-5

C -5.75335×10-3 1.81018×10-3

D 1.41802×10-5 -2.24496×10-6

——

E -1.33393×10-8

3.4.2 精馏段工艺条件

精馏段液体的平均密度

ρL =x 0ρA + (1- x

)ρB =813.681×0.993+812.821×0.007=813.68(kg/m3)

PM RT

101. 3⨯78. 38. 314⨯355. 65

精馏段气体的密度

ρ=

=

=2. 682

(kg/m3)

精馏段气体的体积流量

V V =

VM 3600ρ

=

15. 748⨯78. 33600⨯2. 694

=0. 127

(m3/s)

精馏段液体的体积流量

V L =

LM 3600ρ

=

3. 063⨯78. 33600⨯813. 68

=1. 621⨯10

-4

(m3/s)

3.4.3 提馏段工艺条件

液相平均摩尔质量:M ' =0.02×78.11+0.98×106.16=105.60(kg·kmol -1) 塔底温度t m ’=129.5℃ 查得[4]ρA =754.545kg/m3, ρB =764.07 (kg/m3) 0.02699+764.07×(1-0.2699)=763.81( kg/m3) ρL =ρA x w + (1-x w ) ρB =754.545×

'

ρV =

'

PM RT

'

=

101. 3⨯105. 608. 314⨯(129. 5+273. 15)

=

23. 732⨯105. 603600⨯763. 81

=3.195 (kg/m3)

V L =

L M 3600ρL

'

'

=9. 114⨯10

-4

(m3/s)

V V =

V M 3600ρ

=

15. 748⨯105. 603600⨯3. 195

=0. 145(m/s)

3

10

3.5 塔板数的计算

3.5.1 塔板设计选用数据

表3-3 塔板设计选用数据

由上述计算可得以下结果 汽塔的平均蒸汽流量

V VS

=(VVS +VVS )/2=(0.127+0.145)/2=0.136(m3/s)

'

汽塔的平均液相流量

V LS =

(V LS +VLS ' )/2=(1.621+9.114)×10-4/2=5.368×10-4(m3/s)

气相平均密度

3

ρV =(ρV 1+ρV 2) =(2.682+3.195)/2=2.938(kg/m)

液相平均密度

ρL =(ρL 1+ρL 2) =(813.68+763.81)/2=788.745(kg/m)

3

3.5.2 理论塔板数的计算

最少理论板数

lg[

N min =

x D (1-x D )

⨯1-x W

x W

]=lg(

0. 993

1-0. 027

) =5. 25

lg α

1-0. 9930. 027

lg 5. 082

应用吉利兰关联求理论板数N

X =

R -R min R +1

0. 567

=

0. 0626-0. 4170. 626+1

=0. 129

Y =0. 75(1-x ) =0. 75⨯(1-0. 129

0. 567

) =0. 515

N -N min

N +1

=Y 得:

N =

N min +Y 1-Y

=

5. 25+0. 5151-0. 515

=11. 89(块)

先求精馏段最少理论塔板数N min, 1

lg(

N min, 1=

x D 1-x D

⨯1-x F

x F

) =lg(

0. 993

1-0. 5565

) =3. 608

lg 1

-lg 4. 669

3. 608⨯11. 89

5. 25

N 1=

N min, 1⨯N N min

==6. 95

其中1=

4. 29⨯5. 082=4. 669

故提馏段理论板数N 2=N -N 1=11. 89-6. 95=4. 94 3.5.3 实际塔板数的计算

查得塔顶温度t D =82. 5 C , 塔底温度t W =129. 5 C , 进料温度t F =94. 5 C 全塔平均温度t m =

t D +t F +t W

3

=

82. 5+129. 5+94. 5

3

=102. 2C

在温度t m 下查液体黏度共线图的[3]μ苯=0. 235mPa ·s ,μ乙苯=0. 310mPa ·s 又μL =

∑x

i

μi

所以μL =0. 5565⨯0. 235(-1-0. 5565)⨯0. 31=0. 268(mPa·s)

μL m =

0. 268+0. 235+0. 310

3

=0. 271

(mPa·s)

全塔效率

E 0=0. 49(αμL m )

-0. 245

=0. 49⨯(5. 195⨯0. 271)

-. 0245

=0. 451

其中α=5.195

对于浮阀塔,总板效率相对值在1.1到1.2之间,本设计取1.1. 因此E 0=0. 451⨯1. 1=0. 496

实际塔板数:N 1p =

6. 950. 496

=14. 00

取14块

N 2P =

4. 940. 496

9. 97

取10块(含塔釜)

故实际塔板数N 实=14+10=24

进料板在第15块。

3.6 浮阀塔板工艺尺寸的确定与计算

3.6.1 塔高的计算

塔高Z =H D +(N-2-S )H T +SHT ’+HF +HW

已知实际塔板数为N =24块,取板间距H T =0.3(m)

由于料液清洁无须经常清洗,可取每隔7块板设一个手孔,则手孔数目S =24/7-1=2个

取手孔两板之间的距离H T ' =0.6m,取塔两端间上封头留H D =1.5m,下封头留H W =1.2 m,进料处板空间高度H F =0.6(m)

所以,全塔高度

Z =1.5+(24-2-2)×0.3+2×0.6+0.6+1.2=10.5(m)

3.6.2 塔径D

由于液体流量和塔径都不太大, 故选用单溢流弓形降液管, 不设进口堰. 因精馏段和提馏段气相流量相差不大,为便于制造,取两端塔径相等。

液汽流动参数:

F LV =

V LS V VS

ρL ρS

5. 368⨯10

0. 136

-4

788. 7452. 938

=0.0647

表5-4塔板间距H T 与塔径的经验关系

塔径(m) 塔板间距H T (m)

0.30.5 0.20.3

0.50.8 0.30.35

0.81.6 0.350.45

1.62.0 0.450.6

2.02.4 0.50.8

2.4 0.6

由表可知,取板间距H T =0.3(m),取清液层高度h L =0.06(m) 液滴高沉降高度:H T -h L =0.3-0.06=0.24(m)

由液汽流动参数F LV 及液滴高沉降高度(H T -h L ) ,查Smith 关联图可得液相表面张力20 mN/m时的气相负荷因子:C20 =0.051

全塔的平均温度为102.2℃, 在102.2℃时液体表面张力[2]:

δ苯(mN/m)=18.0(mN/m) δ乙苯(mN/m)=20.17(6mN/m)

平均液体表面张力经计算当t =102.2℃时, x 苯=0.4879

δ=

δa ⨯δb

20. 176

x δa +(1-x ) δ=

18. 0⨯b

0. 4879⨯18. 0+(1-0. 4879) ⨯20. 176

=19. 000(mN/m)

根据公式校正得:

C=Cδ

20 [(

220

) 0. ]=0.051[(

19. 000. 220

) 0]=0.0505

液泛气速:

μρS

F =C

ρL -ρ=0.0505

788. 745-2. 938

S

2. 938

=0.826(m/s)

取设计泛点率为0.7 计算空塔气速u

u =0.7μF =0.7×0.826=0.5782(m/s)

气相通过时塔截面积

A =

V VS

. 136μ

=

005782

=0. 2352

(m2)

塔截面积为气相流通截面积A 与降液管面积A 之和, 取

l W d D

=0.7

A D =[sin

-1

(l W A ) -l W -(l W T

D

D

D

) 2

]/π

=[sin

-1

(0. 7) -0. 7-0. 7

2

]/π

=0.0877

A D

A 计算塔径D

T

A T =

A =

0. 23521-A D 1-0. 0877

=0. 26(m2)

A T

D =

4A T

4⨯0. 26π

=

3. 14

=0. 576(m)

按标准塔径圆整为D=0.6m 实际塔截面积

A T =

π

D

2

=

3. 14⨯0. 6

2

=0. 2826

(m2)

4

4

实际气相流通面积

A =A A D 2

T (1-

A ) =0. 286⨯(1-0. 0877) =0. 2578(m)

T

实际空塔气速

u =

V VS . 136A

=

00. 2578

=0. 528(m/s)

设计点的泛点率

u u =0. 528=0. 639

f

0. 826

3.6.3 降液管及溢流堰尺寸

1. 降液管尺寸

由以上设计结果得弓形降液管所占面积A D

A 2

D =A T -A =0.2826-0.2578=0.0248(m)

b D =[1-1-(

l W 2D

D

) ]/2.0 即b D =[1--0. 7

2

]×0.6/2.0=0.0858(m)

选平形受液盘, 考虑降液管底部阻力和液封, 取底隙h b =03(m) 2. 溢流堰尺寸 由以上数据确定堰长

l l W W =D

D

=0. 6⨯0. 7=0.42(m)

堰上方液头高度

h h 2

0W

=2.84⨯10-3E(

V L l ) 3, 因为V L 不大,E 可近似取为1,(V L 的单位为m 3/s)

W

-4

故h 0W =2.84⨯10-3⨯(

5. 368⨯10⨯3600

2

3

0. 42

) =0.0079(m)

堰高h W 由选取清液层h L 确定

h W

=h L -h 0W =0.06-0.0079=0.0521(m)

堰流强度

u L =

V LS l W

=

5. 368⨯10

-4

⨯3600

0. 42

=4.601m /(m.h)

3

降液管底隙液体流速

u b =

V LS l W h b

=

5. 368⨯10

-4

0. 42⨯0. 03

=0.043(m/s)

验算液体在降液管中停留时间

τ=

A D H T V LS

=

0. 0248⨯0. 35. 368⨯10

-4

=13.860(s)

故降液管可用。 3.6.4 浮阀数及排列方式

(1). 浮阀数

选取F 1型浮阀, 重型, 阀孔直径d 0=0.039m,初选阀孔动能因子F 0=10,计算阀孔气速

u 0=

F 0

=

102. 938

=5.834(m/s)

ρV

浮阀个数

n =

V VS

π4

=

0. 136⨯43. 14⨯0. 039

2

d 0u 0

2

⨯5. 834

=19.52420(个)

(2)浮阀排列方式

取塔板上液体进出口安定区宽度b S =b S =50mm,取边缘区宽b C =50mm,

x =

D 2

-(b S +b D ) =

'

0. 620. 62

-(0.05+0.0858)=0.1642(m) -0.005=0.295(m)

r =

有效传质区面积

A a =2[x r

2

D 2

-b C

=

-x

2

+r sin

2-1

x ()] r

2

=2[0.16420. 2952-0. 1642开孔所占面积

+0. 295

2

sin

-1

(

0. 16420. 295

)

]=0.183(m2)

A 0=n

π

4

d 0

2

=20⨯

3. 144

⨯0. 039

2

=0. 0239

(m2)

采用等边三角形错排方式,其孔心距t 用下式计算

t =

0. 907A 0A a

⨯d 0=

0. 9070. 02390183

⨯0. 039=0. 103(m)

根据估算提供孔心距进行布孔,并按实际可能的情况进行调整来确定浮阀的实际个数n, 按n=100mm进行布孔,实际安排浮阀个数n=18个,并重新计算塔板的个参数,

阀孔气速

u 0=

n V VS

π4

=

2

0. 136

18⨯

3. 144

⨯0. 039

2

=6. 328(m/s)

d 0

动能因子

F 0=u 0

ρV =6. 328⨯

2. 938=10. 847

塔板开孔率

A 0A T

18⨯=

3. 144

0. 2826

⨯0. 039

2

ϕ==0. 076

3.7 塔板流动性能的校核

3.7.1 液沫夹带量校核

为控制液沫夹带量e v 过大,应使泛点F 1

V VS

F 1=

ρV ρL -ρV

KC

F

+1. 36V LS Z L A b

V s

F 1=

V L -V

F

0. 78KC

A T

式中,由塔板上气液密度ρV 及塔板间距H T 查图泛点负荷因数得系数C F =0.10,根据表3-5,本物系K 值可选取1。

表3-5物性系数K

系统

K 系统

K 无泡沫,正常系统 1.0 多泡沫系统 0.73 氟化物 0.90 严重起泡点 0.60 中等起泡点

0.85

形成稳定泡沫系统

0.30

塔板上液体流道长

Z L =D -2b d =0. 6-2⨯0. 0858=0. 428

(m)

液流面积

A b =A T -2A d =0. 2826-2⨯0. 0248=0. 233

(m)

故得

0. 136⨯2. 9381. 36⨯5. 368⨯10

-4

⨯0. 428

F 788. 748-2. 938

+1=

1⨯0. 10⨯0. 233

=0. 369

0. 136

2. 938

或 F 788. 745-2. 938

1

0. 78⨯0. 10⨯0. 2826

=0. 377

所得泛点率F 1低于0.8,故不会产生过量的泡沫夹带。 3.7.2 塔板阻力h f 计算

(1)干板阻力h 0 临界孔速

1

u 0c =(

73

1

ρ) 1. 825=(

73. 825V

2. 938

) 1=5. 814

因孔阀气速u 0大于其临界阀孔气速u 0c ,故应在浮阀全开计算干板阻力,h u 2

6. 328

2

0=5. 34

ρV ρ5. 34

2. 938L ⨯2g

=788. 745

2⨯9. 81

=0. 0406(m)

(2)塔板清液层阻力h 1 取充气系数ε=0. 5

h 1=0. 5h L =0. 5⨯0. 06=0. 03(m)

(3)克服表面张力h [2]

σ

h σ=

4⨯10

-3

δ

ρL gd 0

=

4⨯10

-3

⨯19. 000

788. 745⨯9. 81⨯0. 039

=2. 519⨯10

-4

(m)

由以上三项阻力之和求得塔板阻力h f

h f =h 0+h 1+h σ=0. 0406+0. 03+2. 519⨯10

-4

=0. 0709(m)

3.7.3 降液管液阀校核

降液管中清液层高度由

H d =H W +H 0W +∆+

P 2-P 1

ρL g

+h d =H W +H 0W +∆+h f +h d

式中h d 为液体流过降液管隙的阻力,其阻力h d 由式

h d =ζ

u d

2

2g

=0. 153(

V LS l W h b

) =1. 18⨯10

2-8

⨯(

V Lh l w h b

2

) (m 液柱)

计算得:

h d =1. 18⨯10

-8

⨯(

V LS l W h b

) =1. 18⨯10

2-8

⨯(

5. 368⨯10

-4

⨯3600

0. 42⨯0. 03

) =2. 776⨯10

2-4

(m)

浮阀塔板上液面落差∆一般较少可以忽略,于是由得其他各项之和求得降液管内清液层高度H d

H d =0. 0521+0. 0079+0. 0709+2. 776⨯10

-4

=0. 1312

(m)

取降液管中泡沫层相对密度φ=0. 5,则可求降液管中泡沫层的高度H d ’

H d =

'

H d

φ

=0. 2624

而H T +h W =0. 3+0. 0521=0. 3521>H d ,故不会发生降液管液泛。 3.7.4 液体在降液管内停留时间校核

应保证液体在降液管内的停留时间大于3到5s ,才能保证液体所夹带气体的释出。

τ=

A d H T V LS

=

0. 0248⨯0. 35. 368⨯⨯10

-4

'

=13. 9(s)>5(s)

故所夹带气体可以释出。

3.7.5 严重液漏校核

当阀孔的动能因子F 0低于5时将会发生严重液漏,故液漏点的孔速u 0可取

F 0=5的相应孔流气速

u 0=

'

5

ρV

=

52. 938

=2. 915

(m/s)

稳定系数

K =

u 0u 0

'

=

6. 3282. 917

=2. 619>1. 5~2. 0

,故不会发生严重液漏。

3.8 塔板负荷性能图

3.8.1 过量液沫夹带线关系图

已知物系性质及塔盘结构尺寸,同时给定泛点率等于F 1时,即可表示出气, 液相流量之间的关系

V VS

F 1=

ρV ρb -ρV

KC

F

+1. 36V LS Z L A b

对于直径在0.9m 以下的塔,F 1

V VS

0. 7=

2. 938788. 745-2. 938

+1. 36V LS ⨯0. 428

1⨯0. 10⨯0. 233

得: V VS =0. 267-9. 527V LS

为一次线性方程,由两点即可确定,当V LS =0时,V VS =0. 267m 3/s,取

V LS =0. 01m

3

/s时,有V VS =0. 172m 3/s,

由此两点作过量液沫夹带线①。 3.8.2 液相下限线关系式

对于平直堰,其堰上液头高度h 0W 必须大于0.006m ,取h 0W =0. 006m ,即可确定液相流量的下限线,

h 0W =2. 84⨯10

-3

E (

V Lh l W

2

) 3=0. 006

取E=1.0,代人l W =0. 42, 求得V Lh =1. 2897(m3/h), 则V LS =

1. 28973600

=3. 583⨯10

-4

(m3/s)

可见该线为垂直轴的直线V VS , 该线记为② 3.8.3 严重漏液线关系式

因为动能因子F 0

V VS =A 0u 0

式中A 0=n

π

4

5

π

4

d 0

2

, u 0=

3. 144

5

ρV

2

52. 938

∴ V VS =n

d 0⨯

2

ρ

=18⨯

V

⨯0. 039⨯

(m=0. 0627

2

/s)

此为以平行V VS 轴的直线,为漏液线,也称之为气相下限线,该线记为③ 。 3.8.4 液相上限线关系式

为了使降液管中液体所夹带的气泡有足够时间分离出,液体降液管中的停留时间不应小于3.5s ,取τ=5s为液体在降液管中停留时间下限,则降液的最大流量为

V LS =

A d H T

5

=

0. 0248⨯0. 3

5

=1. 488⨯10

-3

(m3/s)

该线为一平行V VS 轴的直线,记为④。 3.8.5 降液管液泛线关系式

当塔降液管内泡沫层上升至上一层塔板时,即发生了降液管液泛。根据降液管液泛的条件,得以下降液管液泛情况下的关系:

H d =h W +h 0W +∆+h f +h d

H d ≤H T +H W H d =

' '

H d

φ

联立解得: φ(H T +h W ) =h W +h 0W +∆+h f +h d

式中h 0W , h f , h d 均为V LS , V VS 的函数关系,整理即可获得表示降液管液泛线的关系式,其中已确定的各量有H T =0.3m,h W =0.0521m,H =0,φ=0.5

h 0W =2. 84⨯10

-3

E (

V LS l W

2

2

) 3 取E =1

h 0W =

2. 84⨯10(0. 423600

-32

2

V LS

3

=1. 189V LS

3

) 3

h d =0. 153(

V LS l w h b

) =

2

0. 153(0. 42⨯0. 03)

2

2

V LS

2

=963. 72V LS

2

h 0=5. 34⨯

2. 938788. 745

46. 53V LS

2⨯9. 81

23

2

=2. 194V 9LS

2

23

h 1=ε0(h W +h 0W ) =0. 5⨯(0. 0521⨯1. 189V LS ) =0. 0261+0. 5945V LS

h f =h 0+h 1=2. 1949V LS

2

2

2

+0. 5945V LS

2

3

+0. 0261

23

0. 5⨯(0. 3+0. 0521) =0. 0521+1. 189V LS

3

+2. 1949V LS

23

+0. 5945V LS

2

+0. 0261+963. 72V LS

2

∴ V VS

2

=0. 04458-0. 8127V LS -439. 072V LS

由表中数据作出降液管的液泛线,并记为⑤。

表3-6的液泛线数据

V LS (m /s ) V VS (m /s )

33

0.01 16.82

0.02 15.71

0.03 14.42

0.04 12.77

0.05 10.98

0.06 7.66

将以上①,②,③,④,⑤条线标绘在同一V LS -V VS 直角坐标系中,塔板的负荷性能图如图所示.将设计点

(V LS , V VS )

标绘在图中,如D 点所示,

由原点O 及D 做操作线OD ,操作线交严重漏液线③于A ,液沫夹带线①于B. 分别从图中A 、B 两点读得气相流量的下限(V VS ) min 及上限(V VS ) max ,并求得该塔的操作弹性。

操作弹性

=(V VS ) max /(V VS ) min =8.381/3.542=2.37 图3-1 塔板负荷性能图

4 辅助设备设计

本精馏系统辅助设备主要包括在沸器,冷凝器,预热器,冷却器,储罐等。

4.1 塔的主要接管

4.1.1塔顶蒸汽出口管径

表4-1管内蒸气许可速度[6]

13.3~6.7 6.7以下

30~45 45~60

塔顶蒸汽接管

d F =

4V S

πu V

体积流量V S =0. 104m 3/s , u V =14(m/s)

d F =

4⨯0. 1043. 14⨯14

=0. 0973(m)

选取管尺寸φ=18×4

4.1.2 回流液管径

借重力回流, 回流液速度:0.2~0.5 m/s 用泵输送, 回流液速度:1~2.5 m/s

d R =

4l S

πu

R

体积流量

l -4

3

s =1. 382⨯10

m /s , u R =0. 5

(m/s)

. 382⨯10-4

d 4⨯11. 876⨯10

-2

R =

3. 14⨯0. 5

=(m)

选取管尺寸φ=25×2.5

4.1.3 进料管

料液由高位槽流入塔内: 0.4~0.8 m/s

泵: 1.5~2.5 m/s

d L F

F =

4πu

F

体积流量L F =5. 238⨯10-4m 3/s , u F =0. 5(m/s)

d ⨯5. 238⨯10-4

F =

43. 14⨯0. 5

=0. 0365

(m)

选取管尺寸φ=45×3.5

4.1.4 出料管

0.5~1.0 m/s

d 4L W

w =

πu

w

体积流量

l 4

w =3. 0741⨯10

-m /s , u w =0. 5

(m/s)

d w =

4⨯3. 0741⨯10

3. 14⨯0. 5

-4

=0. 02799

(m)

选取管尺寸φ=32×2

4.1.5 饱和水蒸汽管径

表压在295KPa 以下:20~40 m/s 表压在785KPa:40~60 m/s 表压在2950KPa:80 m/s 4.1.6 仪表接管

选取管尺寸φ=25×2.5

4.2 辅助设备的选择

4.2.1 冷凝器

对于小型塔, 回流冷凝器一般安装在塔顶, 冷凝器由重力作用回流入塔, 冷凝器距塔顶回流入口的高度可根据管道阻力损失进行计算。

对于直径较小的塔, 需用冷凝器也较小, 可考虑他直接安装在塔顶和塔连成一个整体, 这种整体结构的优点是占地面积小, 不需要冷凝的支座, 缺点是塔顶的结构复杂, 安装检修不便, 冷凝器的选择大体过程如下:

(1)按工艺要求决定冷凝器的热负荷Q D 选择冷凝剂进口温度并计算冷却剂用量。

(2)初估设备尺寸, 由平均温差∆t m 和经验的总传热系数K, 计算所需传热面积A, 并由此选择标准型号的冷凝器或自行设计。

(3)复核传热面积, 对已选型号或自行设计的设备, 设计计算的总传热系数K 和实际所需传热面积。

(4)决定安装尺寸, 估计各管线长度及阻力损失, 以决定冷凝器底部与回流液入口之间的高度差H R 。

4.2.2 再沸器

再沸器的大小, 取决于处理能力, 操作条件(回流比与加热情况) 以及操作方式(间歇或连续) 等因素。

对于小塔再沸器可直接安装在塔底部, 如设置夹套, 蛇管或列管等. 再沸器的截面积要略大于塔体的截面, 对不易起沫的液体, 釜中装料系数可达80%,对易起沫的液体, 装料系数一般不超过65%.为避免带液现象, 釜中液面距底层塔板高度至少要在0.5m 以上。 4.2.3 泵

泵的选择可运用流体力学的知识进行, 其过程大体简述如下:

(1)因输送物料流过的管路阀门, 管件和单元设备等, 计算出系统的总阻力

(∑h )

f

(2)根据物料的初始界面及最终到达的位置或界面, 确定输送过程流体位能及静压能所发生的变化(∆Z , ∆P /ρg )以及动能变化(∆u 2/2g )

(3)利用能量衡算方程, 计算出所需泵的扬程H.

H =∆Z +

∆P

ρg

f 1

+

∆h

2

2g

+

∑h

f

∑h

f

=

∑h

+

∑h

f 2

+

∑h

f 3

式中:∑h f 1 ──系统中直管部分阻力,m ;

∑h

f 2

──系统中阀门, 管件等局部阻力,m ; ──系统内各单元设备阻力之和,m 。

∑h

f 3

(4) 根据输送介质的物性操作条件选择泵的类型, 并根据输送流量要求Q 和上述H 计算值, 利用相应的性能表选定所需泵的型号。

4.3 热量衡算

4.3.1 塔顶冷凝器的热量衡算

塔顶苯蒸气的摩尔潜化热[5]

r v 1=29627. 123

(kJ/kmol)

塔顶乙苯蒸气的摩尔潜化热[5]

r v 2=38143. 288

(kJ/kmol)

所以塔顶上的摩尔潜化热

r v =r V y 1+r V (1-y 1) =29627. 123⨯0. 993+38143. 288⨯0. 007

=29686.736(kJ/mol)

12冷凝器的热负荷

Q C =(R +1)r v =(0. 626+1)⨯7. 621⨯29686. 736=367870. 492

(kJ/h)

冷凝介质的消耗量

W Q C

367870. 492C =

C PC (t 1-t 2)

=

4. 174⨯(45-30)

=5875. 587(kg/h)

式中

C PC ──冷凝介质的比热kJ/(kg. ℃);

t 1,t 2──分别为冷凝介质进出冷凝器的温度℃。

4.3.2 塔底再沸器的热量衡算

塔底苯蒸气的摩尔潜化热[5]

r '

v 1=27775. 916(kJ/kmol)

塔底乙苯蒸气的摩尔潜化热[5]

r '

v 2=36296. 104(kJ/kmol)

所以塔底上升的摩尔潜化热

r v ' =27775. 916⨯0. 027+36296. 104⨯(1-0. 027) =36066. 059

(kJ/kmol)

再沸器的热负荷

Q '

'

B =V r V =(0. 626+1) ⨯7. 621⨯36066. 059=446921. 442(kJ/h)

加热介质的消耗量

W B (1+0. 05)

446921. 442⨯(1+0. 05)

h =

Q r =

R

2177. 6

=215. 498(kJ/h)

r R ──加热蒸汽的汽化潜热,kJ/kg

5 浮阀塔工艺设计计算结果汇总

计算数据(精馏段/提馏

段) 102.17 0.136 5.368 24 10.5 0.6 0.3 单溢流弓形

0.42 0.0521 0.06 0.0079 0.03 0.050 0.035

序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

项目 平均温度 气相流量 液相流量 实际塔板数 有效高度 塔径 板间距 溢流形式(降液管)

堰长 堰高 板上液层高度 堰上液层高度 底隙高度 安定区宽度 边缘区宽度 开孔区面积 阀孔直径 浮阀数目 孔中心距 开孔率% 空塔气速 阀孔气速 稳定系数 停留时间 负荷上限 负荷下限 气相负荷上限 气相负荷下限 操作弹性

符号 t m V s L s N Z D H T --- l w h w h L h ow h b b s b c A 0 d 0 N t Φ μ

单位 ℃ m 3/s m 3/s --- m m m --- m m m m m m m m 2m --- m --- m 3 /s m /s--- s m 3 /s m /s

3 3 3

0.0239 0.039 18 0.10 7.6 0.528 6.328 2.169 13.9 液泛夹带 漏液控制 8.381 3.542 3.15/3.86

μ0

K

τ

--- --- Vs(max) Vs(min) j

m /s m 3 /s ------

6 设计评述

因为苯—乙苯不能形成恒沸点的混合物,所以可直接采用传统的精馏法制备高纯度的乙苯溶液,本设计进行苯—乙苯的分离,采用直径为1.4米的精馏塔,选用效率较高、结构简单、加工方便的单溢流方式、并采用了弓形降液盘。

由于在设计过程中,对板式塔只有一个整体的直观认识以及简单的工作原理的了解,而对于设备中重要部件——塔板、管路等缺乏了解,查询了各种相关书籍,走了很多弯路,但终于通过自己的努力解决了其中的难题。

在设计过程中,考虑到设计塔板所构成的板式塔,不但要具有应有的生产能力,满足工艺要求,还要考虑到能耗,经济,污染等问题,对今后走向工作岗位很有价值。

7 参考文献

[1] 刘光启. 马连湘. 刘杰主编. 化学化工物性数据手册[M].有机卷. 北京:化学工业

出版社,2002.3

[2] 马沛生主编. 有机化合物实验物性数据手册. 北京:化工工业出版社,2006 [3] 谭天恩. 窦梅. 周明华等编著. 化工原理(下册)[M]. 3版. 北京:化学工业出版

社,2009.4

[4] 黄英主编. 化工过程设计[M].西北工业大学出版,2006

[5] 刘雪媛. 汤景凝主编. 化工原理课程设计[M].石油大学出版社,2002 [6] 贾绍义. 化工原理课程设计[M].天津:天津大学出版社,2002

[7] 匡国柱. 史启才主编. 化工单元过程及设备课程设计[M]. 2版. 北京:化学工业出

版社,2009.05

[8] 侯丽新编. 板式精馏塔[M].北京: 化学工业出版社,2000.5

[9] 唐伦成编著. 化工原理课程设计简明课程[M].哈尔滨:哈尔滨工程大学出版

社,2005

[10]贾绍义. 柴诚敬主编. 化工原理课程设计[M].天津:天津大学出版社,2002.8


相关内容

  • 马后炮化工技术论坛_精馏讲义
  • 本文由bingxuerui贡献 ppt文档可能在WAP端浏览体验不佳.建议您优先选择TXT,或下载源文件到本机查看. 一.蒸馏基本原理 1.蒸馏概述 2.拉乌尔定律 二.精馏 1.精馏概述 2.精馏原理 3.精馏过程 4.物料衡算 5.板式塔 1.蒸馏概述 . (1) 蒸馏的原理 利用混合物在一定压 ...

  • 乙醇 水 精馏塔
  • 1. 引言 1.1. 精馏原理及其在化工生产上的应用 实际生产中,在精馏柱及精馏塔中精馏时,上述部分气化和部分冷凝是同时进行的.对理想液态混合物精馏时,最后得到的馏液(气相冷却而成)是沸点低的B物质,而残液是沸点高的A物质,精馏是多次简单蒸馏的组合.精馏塔底部是加热区,温度最高:塔顶温度最低.精馏结 ...

  • 化工原理课程设计_乙醇-水连续浮阀精馏塔的设计
  • 目 录 第一章 绪论--------------------------- 1 第二章 塔板的工艺设计---------------------- 3 2.1 精馏塔全塔物料衡算------------------- 3 2.2 常压下乙醇-水气液平衡组成(摩尔)与温度关系------- 3 2.3 ...

  • 乙醇-水系统设计举例 挺详细(仅供参考)
  • 目 录 1 概述------------------------------------3 1.1设计依据与原理---------------------------3 1.2技术来源------------------------------3 1.3设计任务------------------- ...

  • 精馏塔设计说明书
  • 目 录 1. 设计任务书 ................................................................................................................................... 1 1.1 ...

  • 精馏塔设计1
  • 化工原理课程设计一.设计概述高径比很大的设备称为塔器.用于蒸馏(精馏)和吸收的塔器分别称为蒸馏塔和吸收 塔.塔器在石化工艺过程中的作用主要是分馏.吸收.汽提.萃取.洗涤.回收.再生. 脱水及气体净化和冷却等.常用的有板式塔和填料塔,国外塔器主要是在塔盘和填料技术 上不断改进.我国近 20 年开发了许 ...

  • 乙醇-水混合液精馏塔设计
  • 河西 学 院 Hexi University 化工原理课程设计 题 目: 乙醇-水混合液精馏塔设计 学 院:化学化工学院 专 业:_化学工程与工艺 学 号:2014210040 姓 名:赵哲 指导教师:杨自嵘 2016年 12月 1 日 化工原理课程设计任务书 一.设计题目 乙醇-水混合液精馏塔设计 ...

  • 分离乙醇-水精馏塔设计[1]
  • 前言 在炼油.石油化工.精细化工.食品.医药及环保部门,塔设备属于使用量大,应用面广的重要单元设备,而精馏操作则是工业中分离液体混合物的最常用手段.其操作原理是利用液体混合物中各组分的挥发度的不同,在气液两相相互接触时,易挥发的组分向气相传递,难挥发的组分向液相传递,使混合物达到一定程度的分离.塔设 ...

  • 500吨年产香菇多糖提取综合车间设计
  • 500吨/年产香菇多糖提取 综合车间设计 一.设计任务和内容 1.1 设计题目 年产5吨香菇多糖的工艺设计 1.2 设计原始数据 (1)厂址及气象资料 ①厂区位置: 河南郑州高新区 ②地势: 厂区地势平整 ③气温: 最高温度40℃ 最低温度 -10℃ 平均温度 15℃ (2)原料: 香菇 (3)产品 ...