电磁感应定律应用

电磁感应定律应用

1.法拉第电磁感应定律:

(1)感应电动势:在电磁感应现象中产生的电动势叫做感应电动势.

感生电动势:由感生电场产生的感应电动势.

动生电动势:由于导体运动而产生的感应电动势.

(2)内容:电路中感应电动势大小,跟穿过这一电路的磁通量的变化率成正比. (3)公式:E =n ∆Φ.

∆t

(4)部分导体切割磁感线产生的感应电动势的大小:E=BLVsinθ.

①式中若V 、L 与B 两两垂直,则E=BLV,此时,感应电动势最大;当V 、L 与B 中任意两个量的方向互相平行时,感应电动势E=0.

②若导体是曲折的,则L 应是导体的两端点在V 、B 所决定的平面的垂线上投影间的.即L 为导体切割磁感线的等效长度.

③公式E=BLV中若V 为一段时间的平均值,则E 应是这段时间内的平均感应电动势;若V 为瞬时值,则E 应是某时刻的瞬时值. 2.互感

两个相互靠近的线圈中,有一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感生电动势,这种现象叫做互感,这种电动势叫做互感电动势.变压器就是利用互感现象制成的. 3.自感:

(1)自感现象:由于导体本身的电流发生变化而产生的电磁感应现象.

(2)自感电动势:在自感现象中产生的感应电动势叫自感电动势.自感电动势的大小取决于自感系数和本身电流变化的快慢.

(3)自感电流:总是阻碍导体中原电流的变化,当自感电流是由于原电流的增加引起时,自感电流的方向与原电流方向相反;当自感电流是由于原电流的减少引起时,自感电流的方向与原电流的方向相同.楞次定律对判断自感电流仍适用. 4) 自感系数:

①大小:线圈的长度越长,线圈的面积越大,单位长度上的匝数越多,线圈的自感系数越大;线圈有铁芯时自感系数大得多. ②单位:亨利(符号H) ,1H=103mH=106μH

③物理意义:表征线圈产生自感电动势本领大小的物理量.

数值上等于通过线圈的电流在1秒内改变1安时产生的自感电动势的大小. 3.通电自感和断电自感的两个基本问题?

自感要搞清楚通电自感和断电自感两个基本问题,尤其是断电自感,特别模糊的是断电自感中“小灯泡在熄灭之前是否要闪亮一下”的问题,如图所示,原来电路闭合处于稳定状态,L 与A 并联,其电流分别为I L 和I A ,都是从左向右.在断开K 的瞬时,灯A 中原来的从左向右的电流I A 立即消失.但是灯A 与

线圈L 组成一闭合回路,由于L 的自感作用,其中的电流I L 不会立即消失,而是在回路中逐渐减弱维持短暂的的时间,这个时间内灯A 中有从右向左的电流通过.这时通过A 的电流是从I L 开始减弱,如果原来I L >I A ,则在灯A 熄灭之前要闪亮一下;如果原来I L ≤IA ,则灯A 逐渐熄灭不再闪亮一下.原来的I L 和I A 哪一个大,要由L 的直流电阻R L 与A 的电阻R A 的大小来决定.如果R L ≥RA ,则I L ≤IA ;如果R L <R A ,则I L >I

【例1】如图1所示,半径为r 的金属环,绕通过某直径的轴OO /以角速度ω转动,匀强磁场的磁感应强度为B .从金属环的平面与磁场方向重合开始计时,则在转过30O 的过程中,环中产生的感应电动势的平均值是多大?

1

【例2】如图2所示,固定在匀强磁场中的正方形导线框abcd ,各边长为L ,其中ab 边是一段电阻为R 的均匀电阻丝,其余三边均为电阻可忽略的铜导线,磁场的磁感应强度为B 方向垂直纸面向里.现有一与ab 段的材料、粗细、长度都相同的电阻丝PQ 架在导线框上,以恒定速度从ad 滑向bc .当PQ 滑过L/3的距离时,通过aP 段电阻丝的电流强度是多大?方向如何?

图2

【例3】.金属杆ab 放在光滑的水平金属导轨上,与导轨组成闭合矩形电话,长L 1 = 0.8m,宽L 2 = 0.5m,回路的总电阻R = 0.2Ω,回路处在竖直方向的匀强磁场中,金属杆用水平绳通过定滑轮连接质量M = 0.04kg的木块,木块放在水平面上,如图3所示,磁场的磁感应强度从B 0 = 1T 开始随时间均匀增强,5s 末木块将离开水平面,不计一切摩擦,g = 10m/s2,求回路中的电流强度.

图3

【例4】如图4所示的电路,L 为自感线圈,R 是一个灯泡,E 是电源,当S 闭合瞬间,通过电灯的电流方向是 ,当S 切断瞬间,通过电灯的电流方向是 .

图4

【例5】如图5所示,光滑导体棒bc 固定在竖直放置的足够长的平行金属导轨上,构成框架abcd ,其中bc 棒电阻为R ,其余电阻不计.一不计电阻的导体棒ef 水平放置在框架上,且始终保持良好接触,能无摩擦地滑动,质量为m .整个装置处在磁感应强度为B 的匀强磁场中,磁场方向垂直框面.若用恒力F 向上拉ef ,则当ef 匀速上升时,速度多大?

图5

【例

6】如图6所示,两根电阻不计,间距为l 的平行金属导轨,一端接有阻值为R 的电阻,导轨上垂直搁置一根质量为m 、电阻为r 的金属棒,整个装置处于竖直向上磁感强度为B 的匀强磁场中.现给金属棒施一冲量,使它以初速V 0向左滑行.设棒与导轨间的动摩擦因数为 ,金属棒从开始运动到停止的整个过程中,通过电阻R 的电量为q .求:(导轨足够长)

(1)金属棒沿导轨滑行的距离;

(2)在运动的整个过程中消耗的电能.

图6

【例7】.如图7所示,两光滑平行导轨MN 、PQ 水平放置在匀强磁场中,磁场方向与导轨所在平面垂直,金属棒ab 可沿导轨自由移动,导轨左端M 、P 接一定值电阻,金属棒以及导轨的电阻不计.现将金属棒由静止向右拉,若保持拉力F 恒定,经过时间t 1后,金属棒的速度为v ,加速度为a 1,最终以2v 作匀速运动;若保持拉力F 的功率恒定,经过时间t 2后,金属棒的速度为v ,加速度为a 2,最终以2v 作匀速运动.求a 1与 a2的比值.

图7

练习

1.在电磁感应现象中,通过线圈的磁通量与感应电动势关系正确的是( )

A .穿过线圈的磁通量越大,感应电动势越大 B .穿过线圈的磁通量为零,感应电动势一定为零 C .穿过线圈的磁通量变化越大,感应电动势越大 D .穿过线圈的磁通量变化越快,感应电动势越大 2.如图1所示的电路中,A 1和A 2是完全相同的灯泡,线圈L 的电阻可以忽略.下列说法中正确的是()

A .合上开关S 接通电路时,A 2先亮,A 1后亮,最后一样亮 B .合上开关S 接通电路时,A 1和A 2始终一样亮

C .断开开关S 切断电路时,A 2立刻熄灭,A 1过一会儿才熄灭 D .断开开关S 切断电路时,A 1和A 2都要过一会儿才熄灭

1

2

3.如图2所示,a 、b 是平行金属导轨,匀强磁场垂直导轨平面,c 、d 是分别串有电压表和电流表的金属棒,它们与导轨接触良好,当c 、d 以相同的速度向右运动时,下列说法正确的是()

A. 两表均无读数 B. 两表均有读数

C. 电流表有读数,电压表无读数 D. 电流表无读数,电压表有读数

4.如图3示,甲中有两条不平行轨道而乙中的两条轨道是平行的,其余物理条件都相同.金属棒MN 都正在轨道上向右匀速平动,在棒运动的过程中,将观察到 ( )

A .L1,L2小电珠都发光,只是亮度不同 B.Ll ,L2都不发光 C .L2发光,Ll 不发光 D.Ll 发光,L2不发光

5.如图4所示,AOC 是光滑的直角金属导轨,AO 沿竖直方向,OC 沿水平方向,ab 是一根金属直棒,如图立在导轨上(开始时b 离O 点很近).它从静止开始在重力作用下运动,运动过程中a 端始终在AO 上,b 端始终在OC 上,直到ab 完全落在OC 上,整个装置放在一匀强磁场中,磁场方向垂直纸面向里,则ab 棒在运动过程中( )

A. 感应电流方向始终是b→a

B. 感应电流方向先是b→a,后变为a→b C. 受磁场力方向垂直于ab 向上

D. 受磁场力方向先垂直ab 向下,后垂直于ab 向上

图3

图5

综合练习:

1.穿过闭合回路的磁通量φ随时间t 变化的图象分别如图5①~④所示,下列关于回路中产生的感应电动势的论述,正确的是( )

A. 图①中回路产生的感应电动势恒定不变 B. 图②中回路产生的感应电动势一直在变大

C. 图③中回路在0~t 1时间内产生的感应电动势小于在t 1~t 2感应电动势

D. 图④中回路产生的感应电动势先变小再变大

2.如图7所示,两个互连的金属圆环,粗金属环的电阻是细金属环电阻的二分之一.磁场垂直穿过粗金属环所在区域.当磁感应强度随时间均匀变化时,在粗环内产生的感应电动势为E ,则a 、b 两点间的电势差为:( )

1 图

7

3

8

A. 1E B. 1E C. 2E D. E

2

3

3.水平放置的金属框架cdef 处于如图8所示的匀强磁场中,金属棒ab 置于粗糙的框架上且接触良好.从某时刻开始磁感应强度均匀增大,金属棒ab 始终保持静止,则()

A .ab 中电流增大,ab B .ab 中电流不变,ab 棒受摩擦力也不变 C .ab 中电流不变,ab 棒受摩擦力增大 D .ab 中电流增大,ab 棒受摩擦力不变

4.如图9所示,让线圈由位置1通过一个匀强磁场的区域运动到位置2,下述说法中正确的是:( )

A .线圈进入匀强磁场区域的过程中,线圈中有感应电流,而且进入时的速度越大,感应电流越大

B .整个线圈在匀强磁场中匀速运动时,线圈中有感应电流,而且感应电流是恒定的

C .整个线圈在匀强磁场中加速运动时,线圈中有感应电流,而且感应电流越来越大

D .线圈穿出匀强磁场区域的过程中,线圈中有感应电流,而且感应电流越来越大

5.如图10中所示电路,开关S 原来闭合着,若在t 1时刻突然断开开关S ,则于此时刻前后通过电阻R 1的电流情况用图11中哪个图像表示比较合适()

图10

图11 6.如图12所示,一宽40cm 的匀强磁场区域,磁

场方向垂直纸面向里,一边长为20cm 的正方形导线框位于纸面内,以垂直于磁场边界的恒定速度v =20cm/s通过磁场区域,在运动过程中,线框中有一边始终与磁场区域的边界平行,取它刚进入磁场的时刻t =0,在图13的图线中,正确反映感应电流强度随时间变化规律的是()

12

13

7.如图14所示,一闭合小铜环用绝缘细线悬挂起来,铜环从图示位置静止释放,若不计空气阻力,则()

15

图14

A .铜环进入或离开磁场区域时,环中感应电流方向都沿顺时针方向

B .铜环进入磁场区域后,越靠近OO′位置速度超大,产生的感应电流越大 C .此摆的机械能不守恒

D .在开始一段时间内,铜环摆动角度逐渐变小,以后不变

8.如图15所示,在光滑绝缘水平面上,有一矩形线圈以一定的初速度进入匀强磁场区域,线圈全部进入匀强磁场区域时,其动能恰好等于它在磁场外面时的一半,设磁场区域宽度大于线圈宽度,则( )

A .线圈恰好在完全离开磁场时停下 B .线圈在未完全离开磁场时已停下 C .线圈能通过场区不会停下 D .线圈在磁场中某个位置停下

9.如图16所示,水平金属导轨足够长,处于竖直向上的匀强磁场中,导轨上架着金属棒ab ,现给ab 一个水平冲量,ab 将运动起来,最后又静止在导轨上,对此过程,就导轨光滑和粗糙两种情况比较有( )

A .安培力对ab 棒做功相等 B .电流通过整个回路做功相等 C .整个回路产生的热量相等 D .两棒运动的路程相等

图16

电磁感应定律应用

1.法拉第电磁感应定律:

(1)感应电动势:在电磁感应现象中产生的电动势叫做感应电动势.

感生电动势:由感生电场产生的感应电动势.

动生电动势:由于导体运动而产生的感应电动势.

(2)内容:电路中感应电动势大小,跟穿过这一电路的磁通量的变化率成正比. (3)公式:E =n ∆Φ.

∆t

(4)部分导体切割磁感线产生的感应电动势的大小:E=BLVsinθ.

①式中若V 、L 与B 两两垂直,则E=BLV,此时,感应电动势最大;当V 、L 与B 中任意两个量的方向互相平行时,感应电动势E=0.

②若导体是曲折的,则L 应是导体的两端点在V 、B 所决定的平面的垂线上投影间的.即L 为导体切割磁感线的等效长度.

③公式E=BLV中若V 为一段时间的平均值,则E 应是这段时间内的平均感应电动势;若V 为瞬时值,则E 应是某时刻的瞬时值. 2.互感

两个相互靠近的线圈中,有一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感生电动势,这种现象叫做互感,这种电动势叫做互感电动势.变压器就是利用互感现象制成的. 3.自感:

(1)自感现象:由于导体本身的电流发生变化而产生的电磁感应现象.

(2)自感电动势:在自感现象中产生的感应电动势叫自感电动势.自感电动势的大小取决于自感系数和本身电流变化的快慢.

(3)自感电流:总是阻碍导体中原电流的变化,当自感电流是由于原电流的增加引起时,自感电流的方向与原电流方向相反;当自感电流是由于原电流的减少引起时,自感电流的方向与原电流的方向相同.楞次定律对判断自感电流仍适用. 4) 自感系数:

①大小:线圈的长度越长,线圈的面积越大,单位长度上的匝数越多,线圈的自感系数越大;线圈有铁芯时自感系数大得多. ②单位:亨利(符号H) ,1H=103mH=106μH

③物理意义:表征线圈产生自感电动势本领大小的物理量.

数值上等于通过线圈的电流在1秒内改变1安时产生的自感电动势的大小. 3.通电自感和断电自感的两个基本问题?

自感要搞清楚通电自感和断电自感两个基本问题,尤其是断电自感,特别模糊的是断电自感中“小灯泡在熄灭之前是否要闪亮一下”的问题,如图所示,原来电路闭合处于稳定状态,L 与A 并联,其电流分别为I L 和I A ,都是从左向右.在断开K 的瞬时,灯A 中原来的从左向右的电流I A 立即消失.但是灯A 与

线圈L 组成一闭合回路,由于L 的自感作用,其中的电流I L 不会立即消失,而是在回路中逐渐减弱维持短暂的的时间,这个时间内灯A 中有从右向左的电流通过.这时通过A 的电流是从I L 开始减弱,如果原来I L >I A ,则在灯A 熄灭之前要闪亮一下;如果原来I L ≤IA ,则灯A 逐渐熄灭不再闪亮一下.原来的I L 和I A 哪一个大,要由L 的直流电阻R L 与A 的电阻R A 的大小来决定.如果R L ≥RA ,则I L ≤IA ;如果R L <R A ,则I L >I

【例1】如图1所示,半径为r 的金属环,绕通过某直径的轴OO /以角速度ω转动,匀强磁场的磁感应强度为B .从金属环的平面与磁场方向重合开始计时,则在转过30O 的过程中,环中产生的感应电动势的平均值是多大?

1

【例2】如图2所示,固定在匀强磁场中的正方形导线框abcd ,各边长为L ,其中ab 边是一段电阻为R 的均匀电阻丝,其余三边均为电阻可忽略的铜导线,磁场的磁感应强度为B 方向垂直纸面向里.现有一与ab 段的材料、粗细、长度都相同的电阻丝PQ 架在导线框上,以恒定速度从ad 滑向bc .当PQ 滑过L/3的距离时,通过aP 段电阻丝的电流强度是多大?方向如何?

图2

【例3】.金属杆ab 放在光滑的水平金属导轨上,与导轨组成闭合矩形电话,长L 1 = 0.8m,宽L 2 = 0.5m,回路的总电阻R = 0.2Ω,回路处在竖直方向的匀强磁场中,金属杆用水平绳通过定滑轮连接质量M = 0.04kg的木块,木块放在水平面上,如图3所示,磁场的磁感应强度从B 0 = 1T 开始随时间均匀增强,5s 末木块将离开水平面,不计一切摩擦,g = 10m/s2,求回路中的电流强度.

图3

【例4】如图4所示的电路,L 为自感线圈,R 是一个灯泡,E 是电源,当S 闭合瞬间,通过电灯的电流方向是 ,当S 切断瞬间,通过电灯的电流方向是 .

图4

【例5】如图5所示,光滑导体棒bc 固定在竖直放置的足够长的平行金属导轨上,构成框架abcd ,其中bc 棒电阻为R ,其余电阻不计.一不计电阻的导体棒ef 水平放置在框架上,且始终保持良好接触,能无摩擦地滑动,质量为m .整个装置处在磁感应强度为B 的匀强磁场中,磁场方向垂直框面.若用恒力F 向上拉ef ,则当ef 匀速上升时,速度多大?

图5

【例

6】如图6所示,两根电阻不计,间距为l 的平行金属导轨,一端接有阻值为R 的电阻,导轨上垂直搁置一根质量为m 、电阻为r 的金属棒,整个装置处于竖直向上磁感强度为B 的匀强磁场中.现给金属棒施一冲量,使它以初速V 0向左滑行.设棒与导轨间的动摩擦因数为 ,金属棒从开始运动到停止的整个过程中,通过电阻R 的电量为q .求:(导轨足够长)

(1)金属棒沿导轨滑行的距离;

(2)在运动的整个过程中消耗的电能.

图6

【例7】.如图7所示,两光滑平行导轨MN 、PQ 水平放置在匀强磁场中,磁场方向与导轨所在平面垂直,金属棒ab 可沿导轨自由移动,导轨左端M 、P 接一定值电阻,金属棒以及导轨的电阻不计.现将金属棒由静止向右拉,若保持拉力F 恒定,经过时间t 1后,金属棒的速度为v ,加速度为a 1,最终以2v 作匀速运动;若保持拉力F 的功率恒定,经过时间t 2后,金属棒的速度为v ,加速度为a 2,最终以2v 作匀速运动.求a 1与 a2的比值.

图7

练习

1.在电磁感应现象中,通过线圈的磁通量与感应电动势关系正确的是( )

A .穿过线圈的磁通量越大,感应电动势越大 B .穿过线圈的磁通量为零,感应电动势一定为零 C .穿过线圈的磁通量变化越大,感应电动势越大 D .穿过线圈的磁通量变化越快,感应电动势越大 2.如图1所示的电路中,A 1和A 2是完全相同的灯泡,线圈L 的电阻可以忽略.下列说法中正确的是()

A .合上开关S 接通电路时,A 2先亮,A 1后亮,最后一样亮 B .合上开关S 接通电路时,A 1和A 2始终一样亮

C .断开开关S 切断电路时,A 2立刻熄灭,A 1过一会儿才熄灭 D .断开开关S 切断电路时,A 1和A 2都要过一会儿才熄灭

1

2

3.如图2所示,a 、b 是平行金属导轨,匀强磁场垂直导轨平面,c 、d 是分别串有电压表和电流表的金属棒,它们与导轨接触良好,当c 、d 以相同的速度向右运动时,下列说法正确的是()

A. 两表均无读数 B. 两表均有读数

C. 电流表有读数,电压表无读数 D. 电流表无读数,电压表有读数

4.如图3示,甲中有两条不平行轨道而乙中的两条轨道是平行的,其余物理条件都相同.金属棒MN 都正在轨道上向右匀速平动,在棒运动的过程中,将观察到 ( )

A .L1,L2小电珠都发光,只是亮度不同 B.Ll ,L2都不发光 C .L2发光,Ll 不发光 D.Ll 发光,L2不发光

5.如图4所示,AOC 是光滑的直角金属导轨,AO 沿竖直方向,OC 沿水平方向,ab 是一根金属直棒,如图立在导轨上(开始时b 离O 点很近).它从静止开始在重力作用下运动,运动过程中a 端始终在AO 上,b 端始终在OC 上,直到ab 完全落在OC 上,整个装置放在一匀强磁场中,磁场方向垂直纸面向里,则ab 棒在运动过程中( )

A. 感应电流方向始终是b→a

B. 感应电流方向先是b→a,后变为a→b C. 受磁场力方向垂直于ab 向上

D. 受磁场力方向先垂直ab 向下,后垂直于ab 向上

图3

图5

综合练习:

1.穿过闭合回路的磁通量φ随时间t 变化的图象分别如图5①~④所示,下列关于回路中产生的感应电动势的论述,正确的是( )

A. 图①中回路产生的感应电动势恒定不变 B. 图②中回路产生的感应电动势一直在变大

C. 图③中回路在0~t 1时间内产生的感应电动势小于在t 1~t 2感应电动势

D. 图④中回路产生的感应电动势先变小再变大

2.如图7所示,两个互连的金属圆环,粗金属环的电阻是细金属环电阻的二分之一.磁场垂直穿过粗金属环所在区域.当磁感应强度随时间均匀变化时,在粗环内产生的感应电动势为E ,则a 、b 两点间的电势差为:( )

1 图

7

3

8

A. 1E B. 1E C. 2E D. E

2

3

3.水平放置的金属框架cdef 处于如图8所示的匀强磁场中,金属棒ab 置于粗糙的框架上且接触良好.从某时刻开始磁感应强度均匀增大,金属棒ab 始终保持静止,则()

A .ab 中电流增大,ab B .ab 中电流不变,ab 棒受摩擦力也不变 C .ab 中电流不变,ab 棒受摩擦力增大 D .ab 中电流增大,ab 棒受摩擦力不变

4.如图9所示,让线圈由位置1通过一个匀强磁场的区域运动到位置2,下述说法中正确的是:( )

A .线圈进入匀强磁场区域的过程中,线圈中有感应电流,而且进入时的速度越大,感应电流越大

B .整个线圈在匀强磁场中匀速运动时,线圈中有感应电流,而且感应电流是恒定的

C .整个线圈在匀强磁场中加速运动时,线圈中有感应电流,而且感应电流越来越大

D .线圈穿出匀强磁场区域的过程中,线圈中有感应电流,而且感应电流越来越大

5.如图10中所示电路,开关S 原来闭合着,若在t 1时刻突然断开开关S ,则于此时刻前后通过电阻R 1的电流情况用图11中哪个图像表示比较合适()

图10

图11 6.如图12所示,一宽40cm 的匀强磁场区域,磁

场方向垂直纸面向里,一边长为20cm 的正方形导线框位于纸面内,以垂直于磁场边界的恒定速度v =20cm/s通过磁场区域,在运动过程中,线框中有一边始终与磁场区域的边界平行,取它刚进入磁场的时刻t =0,在图13的图线中,正确反映感应电流强度随时间变化规律的是()

12

13

7.如图14所示,一闭合小铜环用绝缘细线悬挂起来,铜环从图示位置静止释放,若不计空气阻力,则()

15

图14

A .铜环进入或离开磁场区域时,环中感应电流方向都沿顺时针方向

B .铜环进入磁场区域后,越靠近OO′位置速度超大,产生的感应电流越大 C .此摆的机械能不守恒

D .在开始一段时间内,铜环摆动角度逐渐变小,以后不变

8.如图15所示,在光滑绝缘水平面上,有一矩形线圈以一定的初速度进入匀强磁场区域,线圈全部进入匀强磁场区域时,其动能恰好等于它在磁场外面时的一半,设磁场区域宽度大于线圈宽度,则( )

A .线圈恰好在完全离开磁场时停下 B .线圈在未完全离开磁场时已停下 C .线圈能通过场区不会停下 D .线圈在磁场中某个位置停下

9.如图16所示,水平金属导轨足够长,处于竖直向上的匀强磁场中,导轨上架着金属棒ab ,现给ab 一个水平冲量,ab 将运动起来,最后又静止在导轨上,对此过程,就导轨光滑和粗糙两种情况比较有( )

A .安培力对ab 棒做功相等 B .电流通过整个回路做功相等 C .整个回路产生的热量相等 D .两棒运动的路程相等

图16


相关内容

  • 人教版高中物理教材总目录
  • 高中物理新课标教材目录(人教版) 高中物理新课标教材·必修1 第一章 运动的描述 1 质点参考系和坐标系 2 时间和位移 3 运动快慢的描述──速度 4 实验:用打点计时器测速度 5 速度变化快慢的描述:加速度 第二章 匀变速直线运动的研究 1 实验:探究小车速度随时间变化的规律 2 匀变速直线运动 ...

  • 高中物理教材目录
  • 现行高中物理新课标教材目录(人教版) 高中物理新课标教材·必修1 第一章 运动的描述 1 质点参考系和坐标系 2 时间和位移 3 运动快慢的描述──速度 4 实验:用打点计时器测速度 5 速度变化快慢的描述──加速度 第二章 匀变速直线运动的研究 1 实验:探究小车速度随时间变化的规律 2 匀变速直 ...

  • 人教版高中物理新课标教科书目录(全套)11
  • 人教版高中物理新课标教科书目录 (全套) 必修1 走进物理课堂之前 物理学与人类文明 第一章 运动的描述 4 圆周运动 5 向心加速度 6 向心力 7 生活中的圆周运动 第六章 万有引力与航天 1 行星的运动 2 太阳与行星间的引力 3 万有引力定律 4 万有引力理论的成就 1 质点 参考系和坐标系 ...

  • 16.5.楞次定律的应用
  • 次定律的应用 一.教学目标: 1. 熟练运用楞次定律判断感应电流的方向. 2. 熟练运用楞次定律,由感应电流的方向判断引起感应电流的原磁场 方向及磁通量变化. 3. 理解楞次定律与能的转化和守恒定律的一种具体表现形式. 二.教学重点: 熟练运用楞次定律解决实际问题. 三.教学难点: 熟练运用楞次定律 ...

  • 4.3[楞次定律]电子教案
  • 4.3楞次定律 罗田一中高二物理组 郭智鹏 [教学目标] 1.知识与技能: (1)理解楞次定律的内容. (2)能初步应用楞次定律判定感应电流方向. (3)理解楞次定律与能量守恒定律是相符的. (4)理解楞次定律中"阻碍"二字的含义. 2.过程与方法 (1)通过观察演示实验,探索和 ...

  • 研究感应电流的方向
  • 1.3<研究感应电流的方向>教案 [教学目标] 1.知识与技能: (1)理解楞次定律的内容. (2)能初步应用楞次定律判定感应电流方向. (3)理解楞次定律与能量守恒定律是相符的. (4)理解楞次定律中"阻碍"二字的含义. 2.过程与方法 (1)通过观察演示实验,探索 ...

  • 大学物理教学大纲
  • 附件: 本科教学大纲 ( 大学物理 专业课程) 河南警察学院教务处编 目 录(2号.加粗) (以下为4号字) 课程名称 ----------------------(页码) 课程名称----------------------(页码) 课程名称----------------------(页码) 课 ...

  • 粤教版高中物理目录[1]
  • 粤教版高中物理目录 必修1 第一章 运动的描述 第一节 认识运动 第二节 时间 位移 第三节 记录物体的运动信息 第四节 物体运动的速度 第五节 速度变化的快慢 加速度 第六节 用图象描述直线运动 第二章 探究匀变速直线运动规律 第一节 探究自由落体运动 第二节 自由落体运动规律 第三节 从自由落体 ...

  • [安培定则.左手定则.右手定则.楞次定律的综合应用]复习教案
  • <安培定则.左手定则.右手定则.楞次定律的综合应用>复习教案 安培定则.左手定则.右手定则.楞次定律的综合应用 安培定则 课题 教学对象 复习目标 教学课时 教学重难点 学情分析 高中物理专题复习课-安培定则.左手定则.右手定则.楞次定律的综合应用 高三学生 1.巩固对安培定则.左手定则 ...

  • [大学物理]教学大纲
  • <大学物理>教学大纲 适用专业:机电一体化函授 课程性质:学科基础 学 时 数:24 学 分 数: 课程号: 开课学期: 大纲执笔人:王玉娥 大纲审核人:郑永春 一.课程定位和目标 课程定位:大学物理课程是理工科专业的学科基础课.物理学是研究物质的基本结构.相互作用和物质最基本.最普遍的 ...