立体几何知识点总结

1.棱柱、棱锥、棱(圆)台的本质特征

⑴棱柱:①有两个互相平行的面(即底面平行且全等),②其余各面(即侧面)每相邻两个面的公共边都互相平行(即侧棱都平行且相等)。

⑵棱锥:①有一个面(即底面)是多边形,②其余各面(即侧面)是有一个公共顶点的三角形。

⑶棱台:①每条侧棱延长后交于同一点,②两底面是平行且相似的多边形。

⑷圆台:①平行于底面的截面都是圆,②过轴的截面都是全等的等腰梯形,③母线长都相等,每条母线延长后都与轴交于同一点。

2.圆柱、圆锥、圆台的展开图、表面积和体积的计算公式

3. 线线平行常用方法总结

(1)定义:在同一平面内没有公共点的两条直线是平行直线。

(2)公理:在空间中平行于同一条直线的两条直线互相平行。

(3)线面平行的性质:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和两平面的交线平行。

(4)线面垂直的性质:如果两条直线同时垂直于同一平面,那么两直线平行。

(5)面面平行的性质:若两个平行平面同时与第三个平面相交,那么两条交线平行。

4. 线面平行的判定方法。

(1)定义:直线和平面没有公共点。

(2)判定定理:若不在平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。

(3)面面平行的性质:两个平面平行,其中一个平面内的任何一条直线必平行于另一个平面。

(4)线面垂直的性质:平面外于已知平面的垂线垂直的直线平行于已知平面。

5.判定两平面平行的方法。

(1)依定义采用反证法;

(2)利用判定定理:如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行。

(3)利用判定定理的推论:如果一个平面内有两条相交直线平行于另一个平面内的两条直线,则这两平面平行。

(4)垂直于同一条直线的两个平面平行。

(5)平行于同一个平面的两个平面平行。

6. 证明线线垂直的方法

(1)利用定义。

(2)线面垂直的性质:如果一条直线垂直于这个平面,那么这条直线垂直于这个平面的任何一条直线。

7. 证明线面垂直的方法

(1)线面垂直的定义。

(2)线面垂直的判定定理1:如果一条直线与平面内的两条相交直线垂直,那么,这条直线与这个平面垂直。

(3)线面垂直的判定定理2:如果在两条平行直线中,有一条垂直于平面,那么另一条也垂直于平面。

(4)面面垂直的性质:如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。

(5)若一条直线垂直于两平行平面中的一个平面,那么这条直线必定垂直于另一个平面。

8. 判定两个平面垂直的方法

(1)利用定义。

(2)判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面相互垂直。

9.其他定理

夹在两平行平面之间的平行线段相等。

经过平面外一点有且仅有一个平面与已知平面平行。

两条直线被三个平行平面所截,截得的对应线段成比例。

10.空间直线和平面的位置关系

直线与平面相交、直线在平面内、直线与平面平行

直线在平面外——直线和平面相交或平行,记作a α包括a ∩α=A和a ∥α

11.空间平面与平面的位置关系

⑶垂直于同一个平面的所有直线(即平面的垂线)互相平行;

⑷垂直于同一条直线的所有平面(即直线的垂面)互相平行。

空间向量在立体几何中的应用

1. 立体几何中有关垂直和平行的一些命题,可通过向量运算来证明. 对于垂直问题,一般是利用进行证明;

对于平行问题,一般是利用共线向量和共面向量定理进行证明.

2. 利用向量求夹角(线线夹角、线面夹角、面面夹角) 有时也很方便.其一般方法是将所求的角转化为求两个向量的夹角或其补角,而求两个向量的夹角则可以利用向量的夹角公式。

要点诠释:

平面的法向量的求法:

设n =(x,y,z),利用n 与平面内的两个不共线的向a ,b 垂直,其数量积为零,列出两个三元一次方程,联立后取其一组解,即得到平面的一个法向量(如图)。

线线角的求法:

设直线AB 、CD 对应的方向向量分别为a 、b ,则直线AB 与CD

所成的角为

(注意:线线角的范围[00,900])

线面角的求法:

设n 是平面的法向量,是直线的方向向量,则直线与平面所成的角为

(如图)。

二面角的求法:

设n 1,n 2分别是二面角的两个面,

的法向量,则

就是二面角的平面角或其补角的大小(如图)

3. 用向量法求距离的公式

设n 是平面的法向量,AB 是平面的一条斜线,则点B 到平面的距离为(如图)。

要点诠释:

(1)点A 到平面的距离:

,其中 (2)直线与平面,是平面的法向量。 之间的距离:

,其中,是平面

之间的距离: 的法向量。 (3)两平行平面

,其中,

是平面的法向量。

1.棱柱、棱锥、棱(圆)台的本质特征

⑴棱柱:①有两个互相平行的面(即底面平行且全等),②其余各面(即侧面)每相邻两个面的公共边都互相平行(即侧棱都平行且相等)。

⑵棱锥:①有一个面(即底面)是多边形,②其余各面(即侧面)是有一个公共顶点的三角形。

⑶棱台:①每条侧棱延长后交于同一点,②两底面是平行且相似的多边形。

⑷圆台:①平行于底面的截面都是圆,②过轴的截面都是全等的等腰梯形,③母线长都相等,每条母线延长后都与轴交于同一点。

2.圆柱、圆锥、圆台的展开图、表面积和体积的计算公式

3. 线线平行常用方法总结

(1)定义:在同一平面内没有公共点的两条直线是平行直线。

(2)公理:在空间中平行于同一条直线的两条直线互相平行。

(3)线面平行的性质:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和两平面的交线平行。

(4)线面垂直的性质:如果两条直线同时垂直于同一平面,那么两直线平行。

(5)面面平行的性质:若两个平行平面同时与第三个平面相交,那么两条交线平行。

4. 线面平行的判定方法。

(1)定义:直线和平面没有公共点。

(2)判定定理:若不在平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。

(3)面面平行的性质:两个平面平行,其中一个平面内的任何一条直线必平行于另一个平面。

(4)线面垂直的性质:平面外于已知平面的垂线垂直的直线平行于已知平面。

5.判定两平面平行的方法。

(1)依定义采用反证法;

(2)利用判定定理:如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行。

(3)利用判定定理的推论:如果一个平面内有两条相交直线平行于另一个平面内的两条直线,则这两平面平行。

(4)垂直于同一条直线的两个平面平行。

(5)平行于同一个平面的两个平面平行。

6. 证明线线垂直的方法

(1)利用定义。

(2)线面垂直的性质:如果一条直线垂直于这个平面,那么这条直线垂直于这个平面的任何一条直线。

7. 证明线面垂直的方法

(1)线面垂直的定义。

(2)线面垂直的判定定理1:如果一条直线与平面内的两条相交直线垂直,那么,这条直线与这个平面垂直。

(3)线面垂直的判定定理2:如果在两条平行直线中,有一条垂直于平面,那么另一条也垂直于平面。

(4)面面垂直的性质:如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。

(5)若一条直线垂直于两平行平面中的一个平面,那么这条直线必定垂直于另一个平面。

8. 判定两个平面垂直的方法

(1)利用定义。

(2)判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面相互垂直。

9.其他定理

夹在两平行平面之间的平行线段相等。

经过平面外一点有且仅有一个平面与已知平面平行。

两条直线被三个平行平面所截,截得的对应线段成比例。

10.空间直线和平面的位置关系

直线与平面相交、直线在平面内、直线与平面平行

直线在平面外——直线和平面相交或平行,记作a α包括a ∩α=A和a ∥α

11.空间平面与平面的位置关系

⑶垂直于同一个平面的所有直线(即平面的垂线)互相平行;

⑷垂直于同一条直线的所有平面(即直线的垂面)互相平行。

空间向量在立体几何中的应用

1. 立体几何中有关垂直和平行的一些命题,可通过向量运算来证明. 对于垂直问题,一般是利用进行证明;

对于平行问题,一般是利用共线向量和共面向量定理进行证明.

2. 利用向量求夹角(线线夹角、线面夹角、面面夹角) 有时也很方便.其一般方法是将所求的角转化为求两个向量的夹角或其补角,而求两个向量的夹角则可以利用向量的夹角公式。

要点诠释:

平面的法向量的求法:

设n =(x,y,z),利用n 与平面内的两个不共线的向a ,b 垂直,其数量积为零,列出两个三元一次方程,联立后取其一组解,即得到平面的一个法向量(如图)。

线线角的求法:

设直线AB 、CD 对应的方向向量分别为a 、b ,则直线AB 与CD

所成的角为

(注意:线线角的范围[00,900])

线面角的求法:

设n 是平面的法向量,是直线的方向向量,则直线与平面所成的角为

(如图)。

二面角的求法:

设n 1,n 2分别是二面角的两个面,

的法向量,则

就是二面角的平面角或其补角的大小(如图)

3. 用向量法求距离的公式

设n 是平面的法向量,AB 是平面的一条斜线,则点B 到平面的距离为(如图)。

要点诠释:

(1)点A 到平面的距离:

,其中 (2)直线与平面,是平面的法向量。 之间的距离:

,其中,是平面

之间的距离: 的法向量。 (3)两平行平面

,其中,

是平面的法向量。


相关内容

  • 空间立体几何图形的截面
  • 空间立体几何图形的截面 江苏省前黄高级中学 许云峰 教学背景 本课为以立体几何的截面图为核心,让学生借助<几何画板>的实际模拟和探索功能进行学习,由学生自我探究,进行知识迁移,通过类比,自己去尝试并最终解决问题.教师在此过程中进行必要的总结和在学生出现困难时进行指导,由此培养学生思维的独 ...

  • 美术基础知识教案
  • 备课时间:8.31 上课时间:9.2 课题:概述 课型:讲授新课 教学目的:了解美术的基本知识.素描的定义以及素描的分类. 教学重点和难点:理解素描的定义和分类. 教学过程: 一.美术的定义:以一定的物质材料,塑造可视的平面或立体的形象,以反 映客观世界和表达对客观世界的感受的一种艺术形式,因此,美 ...

  • 第一章丰富的图形世界知识点总结
  • 第一章 丰富的图形世界 知识点总结 本章可分为三大板块 第一大板块 常见几何体的性质与分类 1.常见几何体:圆柱.棱柱(长方体.正方体).棱锥.圆锥.球体. 2.性质:底面的个数与形状.侧面的个数与形状.是否含有曲面. 3.分类依据:底面数(柱体.椎体.球体):是否含有曲面:是否含有顶点等.总结时注 ...

  • 数学试卷答题技巧
  • 数学试卷答题技巧 一.试卷答题技巧 问题1:老师基础题怎么得分,有些小题目也很难怎么办,数字很难及格 爱智康王晗老师:不要慌,现在的时间节点只能有针对性的找基础题练习,比如选填除了最后的2道题,大题的三角,统计和立体几何还是很容易拿分的.导数和解析几何的第一问也要拿到分,发挥稳一点,不该错的部分确保 ...

  • 数学试卷质量分析--教学工作总结
  • 一、试卷评阅的总体情况 本学期文科类数学期末考试仍按现用全国五年制高等职业教育公共课《应用数学基础》教学,和省校下发的统一教学要求和复习指导可依据进行命题。经过阅卷后的质量分析,全省各教学点汇总,卷面及格率达到了54%,平均分54.1分,较前学期有很大的提高,答卷还出现了不少高分的学生,这与各教学点 ...

  • 初一数学知识点总结
  • 初一(七年级) 上册数学知识点:一元一次方程 2013-07-08 17:14来源:互联网 作者:佚名 ∙ ∙ ∙ ∙ ∙ [ 标签: 知识点 初一上册数学 ] 五.知识点.概念总结 1. 一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程. 2 ...

  • 高中数学各题型解法方法与技巧总结!
  • 高中数学各题型解法方法与技巧总结! 立体几何篇 高考立体几何试题一般共有4道(选择.填空题3道, 解答题1道), 共计总分27分左右,考查的知识点在20个以内. 选择填空题考核立几中的计算型问题, 而解答题着重考查立几中的逻辑推理型问题, 当然, 二者均应以正确的空间想象为前提. 随着新的课程改革的 ...

  • 课题组阶段工作计划及总结
  • <信息技术辅助初中数学教学应用的研究>课题组 第一阶段工作计划 一. 课题现状 新时期,教育教学有了新的指导思想,要求凸显学生在教学中的主体地位,提出了新的教育教学要求.多媒体技术的迅速兴起.蓬勃发展,其应用已遍及国民经济与社会生活的各个角落,正在对人类的生产方式.工作方式乃至生活方式带 ...

  • 初中"数学高手"细心总结:9类几何证明题,思路一定要正确!
  • 初中数学大题中的几何证明题一直是不少学生的难点,特别是那些需要学生添加辅助线才能发现思路的几何证明题.仅仅因为一条辅助线没有画出来,整整一道题十多分就可能全部丢掉. 一位初二家长向我倾诉:"老师,孩子做几何证明题就是没有思路怎么办,平时做练习题是有参考答案可以帮助孩子找到解题思路,但是真实 ...