继电保护论文1

目 录

摘要 ....................................................................................................................................................... 3

ABSTRACT .............................................................................................................................................. 4

第一章 继电保护的基本概念 ........................................................................................................... 5

1.1什么是继电保护装置: ................................................................................................................. 5

1.2 继电保护的作用与组成 ................................................................................................................ 5

1.3 继电保护的基本原理 .................................................................................................................... 5

1.4 继电保护装置的分类 .................................................................................................................. 6

1.5电力系统常见状态 ......................................................................................................................... 6

1.6 对继电保护装置的基本要求 ..................................................................................................... 7

第二章 10KV的基本介绍 .................................................................................................................. 8

2.1 10KV供电系统继电保护在电力系统中的重要位置 ................................................................... 8

2.2 10KV系统中继电保护的配置现状 ............................................................................................... 9

2.3 10KV系统中应配置的继电保护 ................................................................................................. 9

2.4 10KV供电系统的几种运行状况 ......................................................................................... 10

2.5 10KV供电系统继电保护装置的任务 ...................................................................................... 11

第三章 几种常用电流保护的分析 ................................................................................................ 11

3.1 反时限过电流保护 .................................................................................................................. 11

3.2 定时限过电流保护 ................................................................................................................... 12

3.3 电流速断保护 ............................................................................................................................ 13

3.4 三段式过电流保护装置 ........................................................................................................... 14

第四章 对于10kv继电保护中常用继电器的参数 ........................................................................ 16

4.1 额定工作电压 ............................................................................................................................ 16

4.2 直流电阻 .................................................................................................................................... 16

4.3 吸合电流 .................................................................................................................................... 16

4.4 释放电流 .................................................................................................................................... 16

4.5 触点切换电压和电流 ................................................................................................................ 17

第五章 继电器的选择 ..................................................................................................................... 17

5.1 按使用环境选型 ........................................................................................................................ 17

5.2 按输入信号不同确定继电器种类 ............................................................................................ 17

5.3 输入参量的选定 ........................................................................................................................ 17

5.4 根据负载情况选择继电器触点的种类和容量 ........................................................................ 17

第六章 对某地电信10KV系统中继电保护的综合评价 ................................................................ 18

6.1 定时限过电流保护与反时限过电流保护的配置 .................................................................... 18

6.2 该地电信10KV系统中高压设备的配置 ................................................................................. 18

6.3 关于10KV一相接地保护方式的探讨 ..................................................................................... 19

7.2可采用的措施 ............................................................................................................................... 20

参考文献 ............................................................................................................................................. 21

摘要

在电力系统中,各种类型的、大量的电气设备通过电气线路紧密地联结在一起。由于其覆盖的地域极其辽阔、运行环境极其复杂以及各种人为因素的影响,电气故障的发生是不可避免的。由于电力系统的特殊性,上述五个环节应是环环相扣、时时平衡、缺一不可,又几乎是在同一时间内完成的。在电力系统中的任何一处发生事故,都有可能对电力系统的运行产生重大影响。

关键词:电力系统 发电变电 输电配电

ABSTRACT

In power system, various types, large electrical equipment through the electrical line closely linked together. Due to its geographical coverage is extremely vast, the movement environment is extremely complex and all kinds of man-made factors, the occurrence of electrical failure is inevitable. Because of the particularity of electric power system, the above five aspects should be connected, the balance from time to time, indispensable, and almost in the same time. In the power system in any one accident, are likely to have a significant impact on the operation of electric power system.

Key words: power system power substation power transmission and distribution

第一章 继电保护的基本概念

1.1什么是继电保护装置:

继电保护装置是一种由继电器和其它辅助元件构成的安全自动装置。它能反映电气元件的故障和不正常运行状态,并动作于断路器跳闸或发出信号。

(1)故障:将故障元件切除(借助断路器);

(2)不正常状态——自动发出信号以便及时处理,可预防事故的发生和缩小事故影响范围,保证电能质量和供电可靠性。

1.2 继电保护的作用与组成

在电力系统中,继电保护装置的基本任务(作用)是:

(1)当电力系统中的电气设备发生短路故障时,能自动、迅速、有选择性地将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证其它无故障部分迅速恢复正常运行。

(2)当电力系统中的电气设备出现不正常运行状态时,并根据运行维护的条件( 例如有无经常值班人员) ,动作于发出信号、减负荷或跳闸。此时一般不要求保护迅速动作,而是根据当时电力系统和元件的危害程度规定一定的延时,以免误动作。继电保护的组成一般由测量部分、逻辑部分和执行部分组成。就全局而论,在电力系统的安全问题上有两种必须避免的灾害性事故:一种是重大电力设备损坏,另一种是电网的长期大面积停电。在这些方面,电力系统继电保护一直发挥着特殊重要作用。

继电保护装置主要都包括三个部分:测量部分、逻辑部分、执行部分。

(保护装置结构方框图)

1.3 继电保护的基本原理

现以最简单的过电流保护装置为例,来说明继电保护的组成和基本工作原理。

在图1.1 所示的输电线路过电流保护装置的原理接线图中,电流继电器KA的线圈接于被保护线路电流互感器TA的二次回路,这就是保护的测量回路,它监视被保护线路的运行状态,测量线路中电流的大小。在正常运行情况下,线路中通过负荷电流时,电流继电器KA不动作;当被保护线路发生短路故障时,流入继电器KA线圈回路的电流大于继电器的动作电流时,电流继电器立即动作,其接点闭合,接通逻辑回路中时间继电器KT 的线圈回路,时间继电器起动并经延时后接点闭合,接通执行回路中的信号继电器KS和断路器QF跳闸线圈Y回路,使断路器QF跳闸,切除故障。

(图1.1线路过电流保护装置单相原理接线图)

可见,这种继电保护装置的核心是电流继电器,它通过电流互感器受电,经常测量着线路电流值的变化,并与整定值进行比较,一旦超过整定值就动作,向断路器跳闸机构送出跳闸命令,同时发出继电保护动作信号。

1.4 继电保护装置的分类

继电保护装置一般可以按反应的物理量不同、被保护对象的不同、组成元件的不同以及作用的不同等方式来分类,例如:

(1)根据保护装置反应物理量的不同可分为:电流保护、电压保护、距离保护、差动保护和瓦斯保护等。

(2)根据被保护对象的不同可分为:发电机保护、输电线保护、母线保护、变压器保护、电动机保护等。在电气化铁道牵引供电系统中,主要有110kV(或220 kV)输电线保护、牵引变压器保护、牵引网馈线保护及并联电容器补偿装置保护等。

(3)根据保护装置的组成元件不同可分为:电磁型、半导体型、数字型及微机保护装置等。

(4)根据保护装置的作用不同可分为:主保护、后备保护,以及为了改善保护装置的某种性能,而专门设置的辅助保护装置等。

当某一电气设备装设有多种保护装置时,其中起主要保护作用的保护装置称为主保护;作为主保护装置备用保护的保护装置称为后备保护。后备保护又分为近后备保护和远后备保护,近后备保护指同一电气设备上多种保护的相互备用,远后备保护则是指对相邻电气设备保护的备用。

1.5电力系统常见状态

电力系统在运行中,可能发生各种故障和不正常运行状态,最常见同时也是最危险的故障是发生各种形式的短路,如相间短路、接地短路等。

短路故障可能产生的后果:

(1)流经故障点的很大的短路电流和所燃起的电弧,使故障元件损坏。

(2)短路电流流经非故障电气元件时,由于发热和电动力的作用,引起它们的损坏或缩短它们的使用寿命。

(3) 电力系统中部分地区的电压大大降低,破坏用户工作的稳定性或影响工厂产品质量。

(4)破坏电力系统并列运行的稳定性,引起系统振荡,甚至使整个系统瓦解。

电力系统中电气元件的正常工作遭到破坏,但没有发生故障,这种情况属于不正常运行状态:

(1)例如,因负荷超过电气设备的额定值而引起的电流升高(一般又称过负荷),就是一种最常见

的不正常运行状态。由于过负荷,使元件载流部分和绝缘材料的温度不断升高,加速绝缘的老化和损坏,就可能发展成故障。

(2)系统中出现功率缺额而引起的频率降低

(3)发电机突然甩负荷而产生的过电压

(4)以及电力系统发生振荡

故障和不正常运行状态,都可能在电力系统中引起事故。

事故,就是指系统或其中一部分的正常工作遭到破坏,并造成对用户少送电或电能质量变坏到不能容许的地步,甚至造成人身伤亡和电气设备的损坏。

系统事故的发生,除了由于自然条件的因素(如遭受雷击等)以外,一般都是由于设备制造上的缺陷、设计和安装的错误、检修质量不高或运行维护不当而引起的。因此,只要充分发挥人的主观能动性,正确地掌握客观规律,加强对设备的维护和检修,就可以大大减少事故发生的几率。

1.6 对继电保护装置的基本要求

对继电保护装置的基本要求有四点:即选择性、灵敏性、速动性和可靠性

(1) 选择性

当供电系统中发生故障时,继电保护装置应能有选择性地将故障部分切除。也就是它应该首先断开距离故障点最近的断路器,以保证系统中其它非故障部分能继续正常运行。系统中的继电保护装置能满足上述要求的,就称为有选择性;否则就称为没有选择性。

以图3—1为例,在各个断路器处都装有保护装置。当K—1点故障时,根据选择性的要求,应首先由断路器6处的保护装置动作,使断路器断开,则非故障部分可继续正常运行。若在K—1点故障时,继电保护装置首先使断路器5断开,则变电所Ⅲ将全部停止供电,这种情况称为无选择性的动作。同理,K—2点短路应由断路器5切除,K—3点短路应由断路器1、2切除。

主保护和后备保护:

10KV供电系统中的电气设备和线路应装设短路故障保护。短路故障保护应有主保护、后备保护,必要时可增设辅助保护。

当在系统中的同一地点或不同地点装有两套保护时,其中有一套动作比较快,而另一套动作比较慢,动作比较快的就称为主保护;而动作比较慢的就称为后备保护。即:为满足系统稳定和设备的要求,能以最快速度有选择地切除被保护设备和线路故障的保护,就称为主保护;当主保护或断路器拒动时,用以切除故障的保护,就称为后备保护。

后备保护不应理解为次要保护,它同样是重要的。后备保护不仅可以起到当主保护应该动作而未动作时的后备,还可以起到当主保护虽已动作但最终未能达到切除故障部分的作用。除此之外,它还有另外的意义。为了使快速动作的主保护实现选择性,从而就造成了主保护不能保护线路的全长,而只能保护线路的一部分。也就是说,出现了保护的死区。这一死区就必须利用后备保护来弥补不可。

近后备和远后备:

当主保护或断路器拒动时,由相临设备或线路的保护来实现的后备称为远后备保护;由本级电气设备或线路的另一套保护实现后备的保护,就叫近后备保护;

辅助保护:

为补充主保护和后备保护的性能或当主保护和后备保护退出运行而增设的简单保护,称为辅助保护。

(2) 灵敏性

灵敏性系指继电保护装置对故障和异常工作状况的反映能力。在保护装置的保护范围内,不管短路点的位置如何、不论短路的性质怎样,保护装置均不应产生拒绝动作;但在保护区外发生故障时,又不应该产生错误动作。保护装置灵敏与否,一般用灵敏系数来衡量。保护装置的灵敏系数应根据不利的运行方式和故障类型进行计算。灵敏系数Km为被保护区发生短路时,流过保护安装处的最小短路电流Id.min与保护装置一次动作电流Idz的比值,即:

Km=Id.min/Idz

灵敏系数越高,则反映轻微故障的能力越强。各类保护装置灵敏系数的大小,根据保护装置的不同而不尽相同。对于多相保护,Idz取两相短路电流最小值Idz(2);对于10KV不接地系统的单相短路保护取单相接地电容电流最小值Ic.min;

(3) 速动性

速动性是指保护装置应能尽快地切除短路故障。

缩短切除故障的时间,就可以减轻短路电流对电气设备的损坏程度,加快系统电压的恢复,从而为电气设备的自启动创造了有利条件,同时还提高了发电机并列运行的稳定性。

所谓故障的切除时间是指保护装置的动作时间与断路器的跳闸时间之和。由于断路器一经选定,其跳闸时间就已确定,目前我国生产的断路器跳闸时间均在0.02S以下。所以实现速动性的关键是选用的保护装置应能快速动作。

(4) 可靠性

保护装置应能正确的动作,并随时处于准备状态。如不能满足可靠性的要求,保护装置反而成为了扩大事故或直接造成故障的根源。为确保保护装置动作的可靠性,则要求保护装置的设计原理、整定计算、安装调试要正确无误;同时要求组成保护装置的各元件的质量要可靠、运行维护要得当、系统应尽可能的简化有效,以提高保护的可靠性。

第二章 10KV的基本介绍

2.1 10KV供电系统继电保护在电力系统中的重要位置

随着电力系统的高速发展,电网规模日益壮大,电力系统网络结构更显复杂,提高电力系统的安全运行水平尤为重要。电力系统是电能生产、变换、输送、分配和使用的各种电气设备按照一定的技术与经济要求有机组成的一个联合系统。在电力系统中,各种类型的、大量的电气设备通过电气线路紧密地联结在一起。由于其覆盖的地域极其辽阔、运行环境极其复杂以及各种人为因素的影响,电气故障的发生是不可避免的。由于电力系统的特殊性,上述五个环节应是环环相扣、时时平衡、缺一不可,又几乎是在同一时间内完成的。在电力系统中的任何一处发生事故,都有可能对电力系统的运行产生重大影响。继电保护是确保电力系统安全可靠运行的重要装置,保护装置动作的

正确性将直接影响整个系统的安全稳定运行,稍有不慎就会导致事故的发生,只有对继电保护装置进行定期检验和维护,按时检巡其运行状况,及时发现故障并做好处理,才能保证系统无故障设备正常运行,提高供电可靠性

例如,当电力系统的被保护元件(如发电机、线路等)或电力系统本身发生故障时,继电保护装置应能自动、迅速、有选择地将故障元件从电力系统中切除,防止故障范围扩大,以保证无故障部分继续保持正常运行,并使故障元件免于继续遭受损害;当电力系统的被保护元件出现异常运行状态时,继电保护装置应能及时反应,根据运行维护条件,向运行值班人员发出声光报警、图文信息等警告信号。此时一般不要求保护系统迅速动作,而是根据对电力系统及其元件的危害程度设定一定的延时,以免不必要的动作和由于干扰而引起的误动作。

10KV供电系统是电力系统的一部分。它能否安全、稳定、可靠地运行,不但直接关系到企业用电的畅通,而且涉及到电力系统能否正常的运行。因此要全面地理解和执行地区电业部门的有关标准和规程以及相应的国家标准和规范。

2.2 10KV系统中继电保护的配置现状

目前,一般企业高压供电系统中均为10KV系统。除早期建设的10KV系统中,较多采用的是直流操作的定时限过电流保护和瞬时电流速断保护外,近些年来飞速建设的电网上一般均采用了环网或手车式高压开关柜,继电保护方式多为交流操作的反时限过电流保护装置。电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术、网络技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力,因此我国继电保护技术的发展可谓日新月异,先后经历了50年代的机电式继电保护时代、从60年代中到80年代中的晶体管式继电保护时代、从80年代中到90年代中的集成电路式继电保护时代、从90年代到现在的微机式继电保护时代。很多重要企业为双路10KV电源、 高压母线分段但不联络或虽能联络但不能自动投入。配电系统中的继电保护装置与整个电力系统的继电保护一样,历经了电磁型、晶体管型、集成电路型、微机型的发展过程。至今,不同形式的保护还在配电系统中广泛存在并发挥作用。对于微机型继电保护装置由于其性能的优越运行可靠,越来越得到用户的认可而在配电系统中大量使用。同时,由于用户不断提高的要求和制造厂家的努力,继电保护技术在配网中得到很大的发展,并且超越原有的行业范围,走向多功能智能化,而传统意义上的独立的继电保护装置正在消失。在系统供电的可靠性、故障响应的灵敏性、保护动作的选择性、切除故障的快速性以及运行方式的灵活性、运行人员上存在着的一些问题得到解决。

现在、我国新建的发电厂、变电站、高压输电线路等电力系统已全部现实微机式综合自动化继电保护。

2.3 10KV系统中应配置的继电保护

按照工厂企业10KV供电系统的设计规范要求,在10KV的供电线路、配电变压器和分段母线上一般应设置以下保护装置:

(1) 10KV线路应配置的继电保护

10KV线路一般均应装设过电流保护。当过电流保护的时限不大于0.5s~0.7s,并没有保护配合上的要求时,可不装设电流速断保护;自重要的变配电所引出的线路应装设瞬时电流速断保护。当瞬时电流速断保护不能满足选择性动作时,应装设略带时限的电流速断保护。

(2)10KV配电变压器应配置的继电保护

1)变压器的低压侧应装设短路保护和过负荷保护。短路保护作为保护母线、变压器干线的主保护,

并作为配电线路的后备保护。

2)变压器低压侧主保护应与高压侧主保护和低压配电线路保护有良好的选择性,并保证系统出现正常的尖峰电流(如电动机起动电流)时不会引起保护装置误动作。

3)变压器低压侧主保护也可兼作单相接地保护, 可采用带单相接地保护的低压断路器作变压器低压侧的主保护(如DW16型低压断路器),如灵敏度不够时应增设零序保护。

4)为了与出线保护取得动作时限配合, 变压器低压侧短路保护一般采用瞬时或短延时脱扣器动作于断开低压侧断路器, 过负荷保护采用带有长延时脱扣器低压断路器或给值班人员发出报警信号。

(3) 10KV分段母线应配置的继电保护

对于不并列运行的分段母线,应装设电流速断保护,但仅在断路器合闸的瞬间投入,合闸后自动解除;另外应装设过电流保护。如采用的是反时限过电流保护时,其瞬动部分应解除;对于负荷等级较低的配电所可不装设保护。

2.4 10KV供电系统的几种运行状况

(1) 供电系统的正常运行

这种状况系指系统中各种设备或线路均在其额定状态下进行工作;各种信号、指示和仪表均工作在允许范围内的运行状况;

(2) 供电系统的故障

这种状况系指某些设备或线路出现了一、10kV配电系统的保护配置情况

大部分工厂企业及居民小区用电是10kV供电,并设置配电房,一般情况下一个配电房安装一台或二台10kV/400V的配电变压器,用380V/220V电压供用户用电,一次系统接线图,如图1。

用电单位的保护配置存在下面几种情况:

1.10kV配电房单台变压器容量小于800kVA时,为了简化和节省费用,10kV侧往往只装环网柜,内配设负荷开关和熔断器,不装设断路器和继电保护装置,所以当发生短路故障时,只能靠熔断器熔断来保护变压器。这种配置的缺点,一是变压器没有过载保护;二是熔断器熔断电流有分散性、时限不稳定,容易发生越级跳闸,造成停电扩大。

2.当变压器单台容量大于800kVA及以上时,10kV侧开关柜内均装设断路器并配置继电保护装置,配置保护的型式有两种:

①装设GL-10系列反时限过电流继电器,构成过电流保护,电流定值可以从端子上做阶梯状调节,缺点是时限调节误差较大,构成上下级保护时限配合难度大。

②装设微机保护比较完善,具有过负荷保护信号、过电流保护和速断保护作用跳闸,保护定值和时间调整比较精确和方便,建议推广选用。

3.有些10kV专线工业用户,主要用电负载是高压电动机,如轧钢和穿孔行业,其高压电动机容量

较大,有的达2500kW及以上。在生产过程中,经常会连续不断地发生电动机短时(1~2s)的过载,因过载有随机性,所以过电流保护常因定值及时限配合不当使上一级即变电所出线开关(如图1中B1)跳闸,造成整条10kV线路停电。如某钢铁企业一台2500kW轧钢电动机在轧钢过程中,10kV侧瞬间最大尖峰电流高达800A以上,远超过该线路变电所开关处的过流保护定值和时限。电力部门只好根据用户生产的特点,调整保护定值和时限,以保证用户用电的安全可靠。有的用户使用大容量冷冻机,其10kV电动机容量达500~1000kW,起动电流经限流后仍达到3.5倍额定电流。过电流保护的起动电流和时限也要现场试验确定。

所以对于10kV配电系统,应根据不同容量和不同用电负载性质来选配保护装置和进行定值计算。 危及其本身或系统的安全运行,并有可能使事态进一步扩大的运行状况;

2.5 10KV供电系统继电保护装置的任务

(1) 在供电系统中运行正常时,它应能完整地、安全地监视各种设备的运行状况,为值班人员提供可靠的运行依据;

(2)如供电系统中发生故障时,它应能自动地、迅速地、有选择性地切除故障部分,保证非故障部分继续运行;

(3)当供电系统中出现异常运行工作状况时,它应能及时地、准确地发出信号或警报,通知值班人员尽快做出处理;

不难看出,在10KV系统中装设继电保护装置的主要作用是通过缩小事故范围或预报事故的发生,来达到提高系统运行的可靠性,并最大限度地保证供电的安全和不间断。

可以想象,在10KV系统中利用熔断器去完成上述任务是不能满足要求的。因为熔断器的安秒特性不甚完善,熄灭高压电路中强烈电弧的能力不足,甚至有使故障进一步扩大的可能;同时还延长了停电的历时。只有采用继电保护装置才是最完美的措施。因此,在10KV系统中的继电保护装置就成了供电系统能否安全可靠运行的不可缺少的重要组成部分。

第三章 几种常用电流保护的分析

3.1 反时限过电流保护

(1) 什麽是反时限过电流保护

继电保护的动作时间与短路电流的大小有关,短路电流越大,动作时间越短;短路电流越小,动作时间越长,这种保护就叫做反时限过电流保护。

(2) 继电器的构成

反时限过电流保护是由GL-15(25)感应型继电器构成的。这种保护方式广泛应用于一般工矿企业中,感应型继电器兼有电磁式电流继电器(作为起动元件)、电磁式时间继电器(作为时限元件)、电磁式信号继电器(作为信号元件)和电磁式中间继电器(作为出口元件)的功能,用以实现反时限过电流保护;另外,它还有电磁速断元件的功能,又能同时实现电流速断保护。采用这种继电器,就可以采用交流操作,无须装设直流屏等设备;通过一种继电器还可以完成两种保护功能(体现了继电器的多功能性),也可以大大简化继电保护装置。但这种继电器虽外 部接线简单,但内部结构十分复杂,调试比较困难;在灵敏度和动作的准确性、速动性等方面也远不如电磁式继电器构成的继电保护装置。

(3) 反时限过电流保护的基本原理

当供电线路发生相间短路时,感应型继电器KA1或(和)KA2达到整定的一定时限后动作,首先使其常开触点闭合,这时断路器的脱扣器YR1或(和)YR2因有KA1或(和)KA2的常闭触点分流(短路),而无电流通过,故暂时不会动作。但接着KA1或(KA2)的常闭触点断开,因YR1或(和)YR2因“去分流”而通电动作,使断路器跳闸,同时继电器本身的信号掉牌掉下,给出信号。

在这里应予说明,在采用“去分流”跳闸的反时限过电流保护装置中,如继电器的常闭触点先断开而常开触点后闭合时,则会出现下列问题:

1)继电器在其常闭触点断开时即先失电返回,因此其常开触点不可能闭合,因此跳闸线圈也就不能通电跳闸;

2)继电器的常闭触点如先断开,CT的二次侧带负荷开路,将产生数千伏的高电压、比差角差增大、计量不准以及铁心发热有可能烧毁绝缘等,这是不允许的。

3.2 定时限过电流保护

(1) 什麽是定时限过电流保护 继电保护的动作时间与短路电流的大小无关,时间是恒定的,时间是靠时间继电器的整定来获得的。时间继电器在一定范围内是连续可调的,这种保护方式就称为定时限过电流保护。

(2) 继电器的构成

定时限过电流保护是由电磁式时间继电器(作为时限元件)、 电磁式中间继电器(作为出口元件)、电磁式电流继电器(作为起动元件)、电磁式信号继电器(作为信号元件)构成的。它一般采用直流操作,须设置直流屏。定时限过电流保护简单可靠、完全依靠选择动作时间来获得选择性,上、下级的选择性配合比较容易、时限由时间继电器根据计算后获取的参数来整定,动作的选择性能够保证、动作的灵敏性能够满足要求、整定调试比较准确和方便。这种保护方式一般应用在10~35KV系统中比较重要的变配电所。

(3) 定时限过电流保护的基本原理

10KV中性点不接地系统中,广泛采用的两相两继电器的定时限过电流保护的原理接线图。它是由两只电流互感器和两只电流继电器、一只时间继电器和一只信号继电器构成。

当被保护线路只设有一套保护,且时间继电器的容量足大时,可用时间继电器的触点去直接接通跳闸回路,而省去出口中间继电器。

当被保护线路中发生短路故障时,电流互感器的一次电流急剧增加,其二次电流随之成比例的增大。当CT的二次电流大于电流继电器的起动值时,电流继电器动作。由于两只电流继电器的触点是并联的,故当任一电流继电器的触点闭合,都能接通时间继电器的线圈回路。这时,时间继电器就按照预先整定的时间动作使其接点吸合。这样,时间继电器的触点又接通了信号继电器和出口中间继电器的线圈,使其动作。出口中间继电器的触点接通了跳闸线圈回路,从而使被保护回路的断路器跳闸切断了故障回路,保证了非故障回路的继续运行。而信号继电器的动作使信号指示牌掉下并发出警报信号。

由上不难看出,保护装置的动作时间只决定于时间继电器的预先整定的时间,而与被保护回路的短路电流大小无关,所以这种过电流保护称为定时限过电流保护。

a 动作电流的整定计算

过流保护装置中的电流继电器动作电流的整定原则,是按照躲过被保护线路中可能出现的最大负荷电流来考虑的。也就是只有在被保护线路故障时才启动,而在最大负荷电流出现时不应动作。为此必须满足以下两个条:

1)在正常情况下,出现最大负荷电流时(即电动机的启动和自启动电流,以及用户负荷的突增和线路中出现的尖峰电流等)不应动作。即:

Idz> Ifh.max

式中 Idz----过电流保护继电器的一次动作电流;

Ifh.max------最大负荷电流

2)保护装置在外部故障切除后应能可靠地返回。因为短路电流消失后,保护装置有可能出现最大负荷电流,为保证选择性,

已动作的电流继电器在这时应当返回。因此保护装置的一次返回电流If应大于最大负荷电流fh.max。即:

If> Ifh.max

因此,定时限过电流装置电流继电器的动作电流Idz.j 为:

Idz.j=(Kk.Kjx/Kf.Nlh).Ifh.max

式中

Kk------可靠系数,考虑到继电器动作电流的误差和计算误差而设。一般取为1.15~1.25Kjx------由于继电器接入电流互感器二次侧的方式不同而引入的一个系数。电流互感器为三相完全星形接线和不完全星形接线时

Kjx=1;如为三角形接线和两相电流差接线时Kjx= 1.732;

Kf-------返回系数,一般小于1;

Nlh------电流互感器的变比。

b 动作时限的整定原则

为使过电流保护具有一定的选择性,各相临元件的过电流保护应具有不同的动作时间。

在线路XL-1、XL-2、XL-3的靠近电源端分别装有过电流保护装置1、2、3。当D1点发生短路时,短路电流由电源提供并流过保护装置1、2、3,当短路电流大于它们的整定值时,各套保护装置均启动。但按选择性的要求,应只由保护装置3(离故障点最近)动作于跳闸。在故障切除后,保护装置1、2返回。因此就必须使保护装置2的动作时间较保护装置1长一些;而保护装置3又要比保护装置2长一些,并依次类推,即:

t1> t2> t3

不难看出,各级保护装置的动作时限是由末端向电源端逐级增大的。也就是越靠近电源端,保护的动作时限越长,有如阶梯一样,故称为阶梯性时限特性。各级之间的时限均差一个固定的数值,称 其为时限级差D t。对于定时限过电流保护的时限级差D t 一般为0.5S;对于反时限的时限级差D t 一般为0.7S。可是,越靠近电源端线路的阻抗越小,短路电流将越大,而保护的动作时间越长。 也就是说过电流保护存在着缺陷。这种缺陷就必须由电流速断保护来弥补不可。

c 过电流保护的保护范围 过流保护可以保护设备的全部,也可以保护线路的全长,还可以作为相临下一级线路穿越性故障的后备保护。

3.3 电流速断保护

(1) 什麽是电流速断保护

电流速断保护是一种无时限或略带时限动作的一种电流保护。它能在最短的时间内迅速切除短路故障,减小故障持续时间,防止事故扩大。

电流速断保护又分为瞬时电流速断保护和略带时限的电流速断保护两种。

(2) 电流速断保护的构成

电流速断保护是由电磁式中间继电器(作为出口元件)、电磁式电流继电器(作为起动元件)、电磁式信号继电器(作为信号元件)构成的。它一般不需要时间继电器。常采用直流操作,须设置直流屏。电流速断保护简单可靠、完全依靠短路电流的大小来确定保护是否需要启动。它是按一定地点的短路电流来获得选择性动作,动作的选择性能够保证、动作的灵敏性能够满足要求、整定调试比

较准确和方便。

(3) 瞬时电流速断保护的整定原则和保护范围

瞬时电流速断保护与过电流保护的区别,在于它的动作电流值不是躲过最大负荷电流,而是必须大于保护范围外部短路时的最大短路电流。即按躲过被保护线路末端可能产生的三相最大短路电流来整定。从而使速断保护范围被限制在被保护线路的内部,从整定值上保证了选择性,因此可以瞬时跳闸。当在被保护线路外部发生短路时,它不会动作。所以不必考虑返回系数。由于只有当短路电流大于保护装置的动作电流时,保护装置才能动作。所以瞬时电流速断保护不能保护设备的全部,也不能保护线路的全长,而只能保护线路的一部分。对于最大运行方式下的保护范围一般能达到线路全长的50%即认为有良好的保护效果;对于在最小运行方式下的保护范围能保护线路全长的15%~20%,即可装设。保护范围以外的区域称为“死区”。因此,瞬时电流速断保护的任务是在线路始端短路时能快速地切除故障。

当线路故障时,瞬时电流速断保护动作,运行人员根据其保护范围较小这一特点,可以判断故障出在线路首端,并且靠近保护安装处;如为双电源供电线路,则由两侧的瞬时电流速断保护同时动作或同时都不动作,可判断故障在线路的中间部分。

(4) 瞬时电流速断保护的基本原理

瞬时电流速断保护的原理与定时限过电流保护基本相同。只是由一只电磁式中间继电器替代了时间继电器。

中间继电器的作用有两点:其一是因电流继电器的接点容量较小,不能直接接通跳闸线圈,用以增大接点容量;其二是当被保护线路上装有熔断器时,在两相或三相避雷器同时放电时,将造成短时的相间短路。但当放完电后,线路即恢复正常,因此要求速断保护既不误动,又不影响保护的快速性。利用中间继电器的固有动作时间,就可避开避雷器的放电动作时间。

(5) 略带时限的电流速断保护

瞬时电流速断保护最大的优点是动作迅速,但只能保护线路的首端。而定时限过电流保护虽能保护 线路的全长,但动作时限太长。因此,常用略带时限的电流速断保护来消除瞬时电流速断保护的“死区”。要求略带时限的电流速断保护能保护全线路。因此,它的保护范围就必然会延伸到下一段线路的始端去。这样,当下一段线路始端发生短路时,保护也会起动。 为了保证选择性的要求,须使其动作时限比下一段线路的瞬时电流速断保护大一个时限级差,其动作电流也要比下一段 线路瞬时电流速断保护的动作电流大一些。略带时限的电流速断保护可作为被保护线路的主保护。略带时限的电流速断保护的原理接线和定时限过电流保护的原理接线相同。

3.4 三段式过电流保护装置

由于瞬时电流速断保护只能保护线路的一部分,所以不能作为线路的主保护,而只能作为加速切除线路首端故障的辅助保护;略带时限的电流速断保护能保护线路的全长,可作为本线路的主保护,但不能作为下一段线路的后备保护;定时限过电流保护既可作为本级线路的后备保护(当动作时限短时,也可作为主保护,而不再装设略带时限的电流速断保护。),还可以作为相临下一级线路的后备保护,但切除故障的时限较长。

一般情况下,为了对线路进行可靠而有效的保护,也常把瞬时电流速断保护(或略带时限的电流速断保护)和定时限过电流保护相配合构成两段式电流保护。

对于第一段电流保护,究竟采用瞬时电流速断保护,还是采用略带时限的电流速断保护,可由具体情况确定。如用在线路---变压器组接线,以采用瞬时电流速断保护为佳。因在变压器高压侧故障时,切除变压器和切除线路的效果是一样的。此时,允许用线路的瞬时电流速断保护,来切除变压器高压侧的故障。也就是说,其保护范围可保护到线路全长并延伸到变压器高压侧。这时的第一段电流保护可以作为主保护;第二段一般均采用定时限过流保护作为后备保护,其保护范围含线路

---变压器组的全部。

通常在被保护线路较短时,第一段电流保护均采用略带时限的电流速断保护作为主保护;第二段采用定时限过流保护作为后备保护。

在实际中还常采用三段式电流保护。就是以瞬时电流速断保护作为第一段,以加速切除线路首端的故障,用作辅助保护;以略带时限的电流速断保护作为第二段,以保护线路的全长,用作主保护;以定时限过电流保护作为第三段,以作为线路全长和相临下一级线路的后备保护。 对于某地电信的10KV(含35KV)供电线路今后宜选用两段式或三段式电流保护。

因为这种保护的设置可以在相临下一级线路的保护或断路器拒动时,本级线路的定时限过流保护可以动作,起到远后备保护的作用;如本级线路的主保护(瞬时电流速断或略带时限的电流速断保护)拒动时,则本级线路的定时限过电流保护可以动作,以起到近后备的作用。

3.5 零序电流保护

电力系统中发电机或变压器的中性点运行方式,有中性点不接地、中性点经消弧线圈接地和中性点直接接地三种方式。10KV系统采用的是中性点不接地的运行方式。

系统运行正常时,三相是对称的,三相对地间均匀分布有电容。在相电压作用下,每相都有一个超前90°的电容电流流入地中。这三个电容电流数值相等、相位相差120° ,其和为零.中性点电位为零。

假设A相发生了一相金属性接地时,则A相对地电压为零,其他两相对地电压升高为线电压,三个线电压不变。这时对负荷的供电没有影响。按规程规定还可继续运行2小时,而不必切断电路。这也是采用中性点不接地的主要优点。但其他两相电压升高,线路的绝缘受到考验、有发展为两点或多点接地的可能。应及时发出信号,通知值班人员进行处理。

10KV中性点不接地系统中,当出现一相接地时,利用三相五铁心柱的电压互感器(PT)的开口三角形的开口两端有无零序电压来实现绝缘监察。它可以在PT柜上通过三块相电压表和一块线电压表(通过转换开关可观察三个线电压)看到“一低、两高、三不变”。接在开口三角形开口两端的过电压继电器动作,其常开接点接通信号继电器,并发出预告信号。采用这种装置比较简单,但不能立即发现接地点,因为只要网络中发生一相接地,则在同一电压等级的所有工矿企业的变电所母线上,均将出现零序电压,接有带绝缘监视电压互感器的电力用户都会发出预告信号。也就是说该装置没有选择性。为了查找接地点,需要电气人员按照预先制定的“拉路序位图”依次拉路查找,并随之合上未接地的回路,直到找到接地点为止。可以看出,这种方法费力、费时、安全性差,在某些情况下这样做还是不允许的。因此,这种装置存在一定的缺陷。

当网络比较复杂、出线较多、可靠性要求高,采用绝缘监察装置是不能满足运行要求时,可采用零序电流保护装置。它是利用接地故障线路零序电流较非接地故障线路零序电流大的特点构成的一种保护装置。

零序电流保护一般使用在有条件安装零序电流互感器的电缆线路或经电缆引出的架空线路上。当在电缆出线上安装零序电流互感器时,其一次侧为被保护电缆的三相导线,铁心套在电缆外,其二次侧接零序电流继电器。当正常运行或发生相间短路时,一次侧电流为零。二次侧只有因导线排列不对称而产生的不平衡电流。当发生一相接地时,零序电流反映到二次侧,并流入零序电流继电器,使其动作发出信号。在安装零序电流保护装置时,特别注意的一点是:电缆头的接地线必须穿过零序电流互感器的铁心。这是由于被保护电缆发生一相接地时,全靠穿过零序电流互感器铁心的电缆头接地线通过零序电流起作用的。否则互感器二次侧也就不能感应出电流,因而继电器也就不可能动作。

不难理解,当某一条线路上发生一相接地时,非接地线路上的零序电流为本身的零序电流。因此,为了保证动作的选择性,在整定时,保护装置的启动电流Idz应大于本线路的电容电流,即: Idz=Kh.3Uxan.w .Co =Kh.Io

式中 Idz------保护装置的启动电流;

Kh-------可靠系数,如无延时,考虑到不稳定间歇性电弧所发生的振荡涌流时,取4~5;如延时为

0.5S时,则取1.5~2;

Uxan------相电压值;

Co --------被保护线路每相的对地电容;

Io --------被保护线路的总电容电流。

按上式整定后,还需校验在本线路上发生一相接地时的灵敏系数Klm,由于流经接地线路上的零序电流为全网络中非接地线路电容电流的总和,可用3Uxan.w .(CS -Co )表示,因此灵敏系数为: Klm=3Uxan.w .(CS -Co )/Kh. 3Uxan.w .Co

=(CS -Co )/ Kh. Co

上式可改写成:

Klm=I0S -Io /Kh. Io

= I0S -Io /Idz

式中 CS ------同一电压等级网络中,各元件每相对地电容之和;

I0S ------与 CS

相对应的对地电容电流之和。对电缆线路取大于或等于1.25;架空线路取1.5;对于架空线路,由于没有特制的零序电流互感器,如欲安装零序电流保护,可把三相三只电流互感器的同名端并联在一起,构成零序电流过滤器,再接上零序电流继电器。其动作电流整定值中,要考虑零序电流过滤器中不平衡电流的影响。

第四章 对于10kv继电保护中常用继电器的参数

4.1 额定工作电压

是指继电器正常工作时线圈所需要的电压。根据继电器的型号不同,可以是交流电压,也可以是直流电压。

4.2 直流电阻

是指继电器中线圈的直流电阻,可以通过万能表测量。

4.3 吸合电流

是指继电器能够产生吸合动作的最小电流。在正常使用时,给定的电流必须略大于吸合电流,这样继电器才能稳定地工作。而对于线圈所加的工作电压,一般不要超过额定工作电压的1.5倍,否则会产生较大的电流而把线圈烧毁。

4.4 释放电流

是指继电器产生释放动作的最大电流。当继电器吸合状态的电流减小到一定程度时,继电器就会恢复到未通电的释放状态。这时的电流远远小于吸合电流。

4.5 触点切换电压和电流

是指继电器允许加载的电压和电流。它决定了继电器能控制电压和电流的大小,使用时不能超过此值,否则很容易损坏继电器的触点。

第五章 继电器的选择

5.1 按使用环境选型

... 使用环境条件主要指温度(最大与最小)、湿度(一般指40℃下的最大相对湿度)、低气压(使用高度1000米以下可不考虑)、振动和冲击。此外,尚有封装方式、安装方法、外形尺寸及绝缘性等要求。由于材料和结构不同,继电器承受的环境力学条件各异,超过产品标准规定的环境力学条件下使用,有可能损坏继电器,可按整机的环境力学条件或高一级的条件选用。

... 对电磁干扰或射频干扰比较敏感的装置周围,最好不要选用交流电激励的继电器。选用直流继电器要选用带线圈瞬态抑制电路的产品。那些用固态器件或电路提供激励及对尖峰信号比较敏感地地方,也要选择有瞬态抑制电路的产品。

5.2 按输入信号不同确定继电器种类

按输入信号是电、温度、时间、光信号确定选用电磁、温度、时间、光电继电器,这是没有问题的。这里特别说明电压、电流继电器的选用。若整机供给继电器线圈是恒定的电流应选用电流继电器,是恒定电压值则选用电压继电器。

5.3 输入参量的选定

与用户密切相关的输入量是线圈工作电压(或电流),而吸合电压(或电流)则是继电器制造厂控制继电器灵敏度并对其进行判断、考核的参数。对用户来讲,它只是一个工作下极限参数值。控制安全系数是工作电压(电流)/吸合电压(电流),如果在吸合值下使用继电器,是不可靠的、不安全的,环境温度升高或处于振动、冲击条件下,将使继电器工作不可靠。整机设计时,不能以空载电压作为继电器工作电压依据,而应将线圈接入作为负载来计算实际电压,特别是电源内阻大时更是如此。当用三极管作为开关元件控制线圈通断时,三极管必须处于开关状态,对6VDC以下工作电压的继电器来讲,还应扣除三极管饱和压降。当然,并非工作值加得愈高愈好,超过额定工作值太高会增加衔铁的冲击磨损,增加触点回跳次数,缩短电气寿命,一般,工作值为吸合值的

1.5倍,工作值的误差一般为±10%。

5.4 根据负载情况选择继电器触点的种类和容量

国内外长期实践证明,约70%的故障发生在触点上,这足见正确选择和使用继电器触点非常重要。

触点组合形式和触点组数应根据被控回路实际情况确定。常用的触点组合形式见表6。动合触

点组和转换触点组中的动合触点对,由于接通时触点回跳次数少和触点烧蚀后补偿量大,其负载能力和接触可靠性较动断触点组和转换触点组中的动断触点对要高,整机线路可通过对触点位置适当调整,尽量多用动合触点。

根据负载容量大小和负载性质(阻性、感性、容性、灯载及马达负载)确定参数十分重要。认为触点切换负荷小一定比切换负荷大可靠是不正确的,一般说,继电器切换负荷在额定电压下,电流大于100mA、小于额定电流的75%最好。电流小于100mA会使触点积碳增加,可靠性下降,故100mA称作试验电流,是国内外专业标准对继电器生产厂工艺条件和水平的考核内容。由于一般继电器不具备低电平切换能力,用于切换50mV、50μA以下负荷的继电器订货,用户需注明,必要时应请继电器生产厂协助选型以及根据类型选择合适的继电器用在10kv线路中。

第六章 对某地电信10KV系统中继电保护的综合评价

6.1 定时限过电流保护与反时限过电流保护的配置

10KV系统中的上、下级保护之间的配合条件必须考虑周全,考虑不周或选配不当,则会造成保护的非选择性动作,使断路器越级跳闸。保护的选择性配合主要包括上、下级保护之间的电流和时限的配合两个方面。应该指出,定时限过电流保护的配合问题较易解决。由于定时限过电流保护的时限级差为0.5S,选择电网保护装置的动作时限,一般是从距电源端最远的一级保护装置开始整定的。为了缩短保护装置的动作时限,特别是缩短多级电网靠近电源端的保护装置的动作时限,其中时限级差起着决定的作用,因此希望时限级差越小越好。但为了保证各级保护装置动作的选择性,时限级差又不能太小。虽然反时限过电流保护也是按照时限的阶梯原则来整定,其时限级差一般为0.7S。而且反时限过电流保护的动作时限的选择与动作电流的大小有关。也就是说,反时限过电流保护随着短路电流与继电器动作电流的比值而变,因此整定反时限过电流保护时,所指的时间都是在某一电流值下的动作时间。还有,感应型继电器惯性较大,存在一定的误差,它的特性不近相同,新旧、型的特性也不相同。所以,在实际运行整定时,就不能单凭特性曲线作为整定的依据,还应该作必要的实测与调试。比较费力、费事。因此,反时限过电流保护时限特性的整定和配合就比定时限过电流保护装置复杂得多。通过分析可以看出,某地电信10KV新建及在建工程中,应以配置三段式或两段式定时限过电流保护、瞬时电流速断保护和略带时限的电流速断保护为好。

6.2 该地电信10KV系统中高压设备的配置

目前,该地电信10KV系统中高压开关柜的配置主要有两大类:即固定式高压开关柜和手车式高压开关柜。关于固定式高压开关柜是我国解放初期自前苏联引进的老产品,柜型高大、有足够的安全距离、但防护等级低、元器件陈旧、防电击水平较低;而手车式高压开关柜是近年来引进国外技术,消化吸收研制的换代产品,体积缩小、防护等级大大提高、元器件的选用比较先进、防电击水平较高。其主要特点可归纳为:它有四室(手车室、电缆室、母线室和继电仪表室)、七车(断路器手车、隔离手车、接地手车、所用变压器手车、电压互感器手车、电压互感器和避雷器手车、避雷器和电容器手车)、三个位置(工作位置、试验位置和拖出柜外检修位置)和两个锁定(工作位置的锁定和试验位置的锁定)。它用高压一次隔离触头替代了高压隔离开关、用接地开关替代了临时接地线等。对于系统的运行安全提供了很好的条件。关于配电变压器安装于主机楼时,一般均采用了防火等级较高的干式变压器,该地电力部门曾率先尝试采用了D/Yo -11接线组别的干式变压器(传统采用Y/Yo -12接线组别),其一次接成了D形接线,为电信部门产生的大量高次谐波提供了通路,

这样就较为有效的防止了我们电信部门的用电对系统造成的谐波污染(目前电业部门正在谐波管理方面考虑采取必要的经济措施);同时,采用了这种接线组别,使得继电保护的灵敏性有所提高。按照IEC及新的国家标准GB 50054-96的要求,应逐步推广采用 D /Yo -11接线组别的配电变压器。

6.3 关于10KV一相接地保护方式的探讨

10KV中性点不接地系统中发生一相接地时,按照传统方式是采用三相五铁心柱的JSJW-10型电压互感器作为绝缘监视。但是,当我们选用了手车式高压开关柜后,再继续安装JSJW-10已经比较困难,又由于10KV系统中的一次方案有了变化、原有的绝缘监视方案又存在着缺陷,因此较为可取的办法是采用零序电流保护装置。

该地供电部门的要求

根据该地供电局1996年10月22日发文的精神,要求某地市城、近郊区新建和在建项目一律应采用直流操作的定时限过电流保护、并加装零序保护,有条件的用户可逐步考虑采用工厂供电自动化设施。

第七章 继电保护装置的日常维护

7.1 继电保护故障处理方法

(1)直观法

处理一些无法用仪器逐点测试,或某一插件故障一时无备品更换,而又想将故障排除的情况。比如10kv开关柜分或拒合故障处理。在操作命令下发后,观察到合闸接触器或跳闸线圈能动作,说明电气回路正常,故障存在机构内部。到现场如直接观察到继电器内部明显发黄,或哪个元器件发出浓烈的焦味等便可快速确认故障所在,更换损坏的元件即可。

(2)掉换法

用好的或认为正常的相同元件代替怀疑的或认为有故障的元件,来判断它的好坏,可快速地缩小查找故障范围。这是处理综合自动化保护装置内部故障最常用方法。当一些微机保护故障,或一些内部回路复杂的单元继电器,可用附近备用或暂时处于检修的插件、继电器取代它。

(3)逐项拆除(排除)法

将并联在一起的二次回路顺序脱开,然后再依次放回,一旦故障出现,就表明故障存在哪路。再在这一路内用同样方法查找更小的分支路,直至找到故障点。此法主要用于查直流接地,交流电源熔丝放不上等故障。如直流接地故障。先通过拉路法,根据负荷的重要性,分别短时拉开直流屏所供直流负荷各回路,切断时间不得超过3秒,当切除某一回路故障消失,则说明故障就在该回路之内,再进一步运用拉路法,确定故障所在支路。再将接地支路的电源端端子分别拆开,直至查到故障点。如电压互感器二次熔丝熔断,回路存在短路故障,或二次交流电压互串等,可从电压互感器二次短路相的总引出处将端子分离,此时故障消除。然后逐个恢复,直至故障出现,再分支路依次排查。如整套装置的保护熔丝熔断或电源空气开关合不上,则可通过各块插件的拔插排查,并结合观察熔丝熔断情况变化来缩小故障范围。又例如保护装置发控制回路断线信号,可以在保护屏用万用表测量到开关柜电缆的合、分闸回路的电位,初步就可以判断故障点在开关柜还是在保护装置上,然后进一步进行故障排除。

7.2可采用的措施

(1)当班运行人员定时对继电保护装置进行巡视和检查,对运行情况要做好运行记录。

(2)建立岗位责任制,做到人人有岗,每岗有人。

(3)做好继电保护装置的清扫工作。清扫工作必须由两人进行,防止误碰运行设备,注意与带电设备保持安全距离,避免人身触电和造成二次回路短路、接地事故。

(4)对微机保护的电流、电压采样值每周记录一次,对差动保护要记录差动电流值。

(5)定期对保护装置端子排进行红外测温,尽早发现接触不良导致的发热。

(6)每月对微机保护的打印机进行检查并打印。

(7)每月定期检查保护装置时间是否正确,方便故障发生后的故障分析。

(8)定期核对保护定值运行区和打印出定值单进行核对

参考文献

1华中工学院编, 电力系统继电保护原理与运行,北京,电力工业出版社,1981年

2吕继绍主编,继电保护整定计算与实验,武汉,华中工学院出版社,1983年

3王维俭编,电力系统继电保护基本原理,北京,清华大学出版社,1991年

4张志竟、黄玉铮编,电力系统继电保护原理与运行分析,上册,北京,中国电力出版社,1995年

5王广延、吕继绍编,电力系统继电保护原理与运行分析,下册,北京,中国电力出版社,1995年

6朱声石编,高压电网继电保护原理与技术,第二版,北京,中国电力出版社,1995年

7王梅义、蒙定中、郑奎璋、谢葆炎、王大从编,高压电网继电保护运行技术,北京,电力工业出版社,1981年

8崔家佩、孟庆炎、陈永芳、熊炳耀编,电力系统继电保护与安全自动装置整定计算,北京,中国电力 出版社,1993年

9高中德编,超高压电网继电保护专题分析,北京,水利电力出版社,1990年

10 王维俭、侯炳蕴编,大型机组继电保护理论基础,第二版,北京,中国电力出版社,1989年 11 尹项根、曾克娥编,电力系统继电保护原理与应用,上册,武汉,华中科技大学出版社,2001年

12尹项根、曾克娥编,电力系统继电保护原理与应用,下册,武汉,

华中科技大学出版社,2001年

13 国家电力调度中心编,电力系统继电保护规定汇编,北京,中国电

力出版社,1997年

14 陶然、熊为群,继电保护自动装置及二次回路,北京,电力工业出

版社,1981年

15梁永福.微机型继电保护装置的现场调试,电工技术,2008,23(5):121-123.

16冯海东,陈奕琴.谈继电保护故障处理的九种方法,广东科技,2008.

17谷水清.电力系统继电保护,北京:电力工程出版社.

目 录

摘要 ....................................................................................................................................................... 3

ABSTRACT .............................................................................................................................................. 4

第一章 继电保护的基本概念 ........................................................................................................... 5

1.1什么是继电保护装置: ................................................................................................................. 5

1.2 继电保护的作用与组成 ................................................................................................................ 5

1.3 继电保护的基本原理 .................................................................................................................... 5

1.4 继电保护装置的分类 .................................................................................................................. 6

1.5电力系统常见状态 ......................................................................................................................... 6

1.6 对继电保护装置的基本要求 ..................................................................................................... 7

第二章 10KV的基本介绍 .................................................................................................................. 8

2.1 10KV供电系统继电保护在电力系统中的重要位置 ................................................................... 8

2.2 10KV系统中继电保护的配置现状 ............................................................................................... 9

2.3 10KV系统中应配置的继电保护 ................................................................................................. 9

2.4 10KV供电系统的几种运行状况 ......................................................................................... 10

2.5 10KV供电系统继电保护装置的任务 ...................................................................................... 11

第三章 几种常用电流保护的分析 ................................................................................................ 11

3.1 反时限过电流保护 .................................................................................................................. 11

3.2 定时限过电流保护 ................................................................................................................... 12

3.3 电流速断保护 ............................................................................................................................ 13

3.4 三段式过电流保护装置 ........................................................................................................... 14

第四章 对于10kv继电保护中常用继电器的参数 ........................................................................ 16

4.1 额定工作电压 ............................................................................................................................ 16

4.2 直流电阻 .................................................................................................................................... 16

4.3 吸合电流 .................................................................................................................................... 16

4.4 释放电流 .................................................................................................................................... 16

4.5 触点切换电压和电流 ................................................................................................................ 17

第五章 继电器的选择 ..................................................................................................................... 17

5.1 按使用环境选型 ........................................................................................................................ 17

5.2 按输入信号不同确定继电器种类 ............................................................................................ 17

5.3 输入参量的选定 ........................................................................................................................ 17

5.4 根据负载情况选择继电器触点的种类和容量 ........................................................................ 17

第六章 对某地电信10KV系统中继电保护的综合评价 ................................................................ 18

6.1 定时限过电流保护与反时限过电流保护的配置 .................................................................... 18

6.2 该地电信10KV系统中高压设备的配置 ................................................................................. 18

6.3 关于10KV一相接地保护方式的探讨 ..................................................................................... 19

7.2可采用的措施 ............................................................................................................................... 20

参考文献 ............................................................................................................................................. 21

摘要

在电力系统中,各种类型的、大量的电气设备通过电气线路紧密地联结在一起。由于其覆盖的地域极其辽阔、运行环境极其复杂以及各种人为因素的影响,电气故障的发生是不可避免的。由于电力系统的特殊性,上述五个环节应是环环相扣、时时平衡、缺一不可,又几乎是在同一时间内完成的。在电力系统中的任何一处发生事故,都有可能对电力系统的运行产生重大影响。

关键词:电力系统 发电变电 输电配电

ABSTRACT

In power system, various types, large electrical equipment through the electrical line closely linked together. Due to its geographical coverage is extremely vast, the movement environment is extremely complex and all kinds of man-made factors, the occurrence of electrical failure is inevitable. Because of the particularity of electric power system, the above five aspects should be connected, the balance from time to time, indispensable, and almost in the same time. In the power system in any one accident, are likely to have a significant impact on the operation of electric power system.

Key words: power system power substation power transmission and distribution

第一章 继电保护的基本概念

1.1什么是继电保护装置:

继电保护装置是一种由继电器和其它辅助元件构成的安全自动装置。它能反映电气元件的故障和不正常运行状态,并动作于断路器跳闸或发出信号。

(1)故障:将故障元件切除(借助断路器);

(2)不正常状态——自动发出信号以便及时处理,可预防事故的发生和缩小事故影响范围,保证电能质量和供电可靠性。

1.2 继电保护的作用与组成

在电力系统中,继电保护装置的基本任务(作用)是:

(1)当电力系统中的电气设备发生短路故障时,能自动、迅速、有选择性地将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证其它无故障部分迅速恢复正常运行。

(2)当电力系统中的电气设备出现不正常运行状态时,并根据运行维护的条件( 例如有无经常值班人员) ,动作于发出信号、减负荷或跳闸。此时一般不要求保护迅速动作,而是根据当时电力系统和元件的危害程度规定一定的延时,以免误动作。继电保护的组成一般由测量部分、逻辑部分和执行部分组成。就全局而论,在电力系统的安全问题上有两种必须避免的灾害性事故:一种是重大电力设备损坏,另一种是电网的长期大面积停电。在这些方面,电力系统继电保护一直发挥着特殊重要作用。

继电保护装置主要都包括三个部分:测量部分、逻辑部分、执行部分。

(保护装置结构方框图)

1.3 继电保护的基本原理

现以最简单的过电流保护装置为例,来说明继电保护的组成和基本工作原理。

在图1.1 所示的输电线路过电流保护装置的原理接线图中,电流继电器KA的线圈接于被保护线路电流互感器TA的二次回路,这就是保护的测量回路,它监视被保护线路的运行状态,测量线路中电流的大小。在正常运行情况下,线路中通过负荷电流时,电流继电器KA不动作;当被保护线路发生短路故障时,流入继电器KA线圈回路的电流大于继电器的动作电流时,电流继电器立即动作,其接点闭合,接通逻辑回路中时间继电器KT 的线圈回路,时间继电器起动并经延时后接点闭合,接通执行回路中的信号继电器KS和断路器QF跳闸线圈Y回路,使断路器QF跳闸,切除故障。

(图1.1线路过电流保护装置单相原理接线图)

可见,这种继电保护装置的核心是电流继电器,它通过电流互感器受电,经常测量着线路电流值的变化,并与整定值进行比较,一旦超过整定值就动作,向断路器跳闸机构送出跳闸命令,同时发出继电保护动作信号。

1.4 继电保护装置的分类

继电保护装置一般可以按反应的物理量不同、被保护对象的不同、组成元件的不同以及作用的不同等方式来分类,例如:

(1)根据保护装置反应物理量的不同可分为:电流保护、电压保护、距离保护、差动保护和瓦斯保护等。

(2)根据被保护对象的不同可分为:发电机保护、输电线保护、母线保护、变压器保护、电动机保护等。在电气化铁道牵引供电系统中,主要有110kV(或220 kV)输电线保护、牵引变压器保护、牵引网馈线保护及并联电容器补偿装置保护等。

(3)根据保护装置的组成元件不同可分为:电磁型、半导体型、数字型及微机保护装置等。

(4)根据保护装置的作用不同可分为:主保护、后备保护,以及为了改善保护装置的某种性能,而专门设置的辅助保护装置等。

当某一电气设备装设有多种保护装置时,其中起主要保护作用的保护装置称为主保护;作为主保护装置备用保护的保护装置称为后备保护。后备保护又分为近后备保护和远后备保护,近后备保护指同一电气设备上多种保护的相互备用,远后备保护则是指对相邻电气设备保护的备用。

1.5电力系统常见状态

电力系统在运行中,可能发生各种故障和不正常运行状态,最常见同时也是最危险的故障是发生各种形式的短路,如相间短路、接地短路等。

短路故障可能产生的后果:

(1)流经故障点的很大的短路电流和所燃起的电弧,使故障元件损坏。

(2)短路电流流经非故障电气元件时,由于发热和电动力的作用,引起它们的损坏或缩短它们的使用寿命。

(3) 电力系统中部分地区的电压大大降低,破坏用户工作的稳定性或影响工厂产品质量。

(4)破坏电力系统并列运行的稳定性,引起系统振荡,甚至使整个系统瓦解。

电力系统中电气元件的正常工作遭到破坏,但没有发生故障,这种情况属于不正常运行状态:

(1)例如,因负荷超过电气设备的额定值而引起的电流升高(一般又称过负荷),就是一种最常见

的不正常运行状态。由于过负荷,使元件载流部分和绝缘材料的温度不断升高,加速绝缘的老化和损坏,就可能发展成故障。

(2)系统中出现功率缺额而引起的频率降低

(3)发电机突然甩负荷而产生的过电压

(4)以及电力系统发生振荡

故障和不正常运行状态,都可能在电力系统中引起事故。

事故,就是指系统或其中一部分的正常工作遭到破坏,并造成对用户少送电或电能质量变坏到不能容许的地步,甚至造成人身伤亡和电气设备的损坏。

系统事故的发生,除了由于自然条件的因素(如遭受雷击等)以外,一般都是由于设备制造上的缺陷、设计和安装的错误、检修质量不高或运行维护不当而引起的。因此,只要充分发挥人的主观能动性,正确地掌握客观规律,加强对设备的维护和检修,就可以大大减少事故发生的几率。

1.6 对继电保护装置的基本要求

对继电保护装置的基本要求有四点:即选择性、灵敏性、速动性和可靠性

(1) 选择性

当供电系统中发生故障时,继电保护装置应能有选择性地将故障部分切除。也就是它应该首先断开距离故障点最近的断路器,以保证系统中其它非故障部分能继续正常运行。系统中的继电保护装置能满足上述要求的,就称为有选择性;否则就称为没有选择性。

以图3—1为例,在各个断路器处都装有保护装置。当K—1点故障时,根据选择性的要求,应首先由断路器6处的保护装置动作,使断路器断开,则非故障部分可继续正常运行。若在K—1点故障时,继电保护装置首先使断路器5断开,则变电所Ⅲ将全部停止供电,这种情况称为无选择性的动作。同理,K—2点短路应由断路器5切除,K—3点短路应由断路器1、2切除。

主保护和后备保护:

10KV供电系统中的电气设备和线路应装设短路故障保护。短路故障保护应有主保护、后备保护,必要时可增设辅助保护。

当在系统中的同一地点或不同地点装有两套保护时,其中有一套动作比较快,而另一套动作比较慢,动作比较快的就称为主保护;而动作比较慢的就称为后备保护。即:为满足系统稳定和设备的要求,能以最快速度有选择地切除被保护设备和线路故障的保护,就称为主保护;当主保护或断路器拒动时,用以切除故障的保护,就称为后备保护。

后备保护不应理解为次要保护,它同样是重要的。后备保护不仅可以起到当主保护应该动作而未动作时的后备,还可以起到当主保护虽已动作但最终未能达到切除故障部分的作用。除此之外,它还有另外的意义。为了使快速动作的主保护实现选择性,从而就造成了主保护不能保护线路的全长,而只能保护线路的一部分。也就是说,出现了保护的死区。这一死区就必须利用后备保护来弥补不可。

近后备和远后备:

当主保护或断路器拒动时,由相临设备或线路的保护来实现的后备称为远后备保护;由本级电气设备或线路的另一套保护实现后备的保护,就叫近后备保护;

辅助保护:

为补充主保护和后备保护的性能或当主保护和后备保护退出运行而增设的简单保护,称为辅助保护。

(2) 灵敏性

灵敏性系指继电保护装置对故障和异常工作状况的反映能力。在保护装置的保护范围内,不管短路点的位置如何、不论短路的性质怎样,保护装置均不应产生拒绝动作;但在保护区外发生故障时,又不应该产生错误动作。保护装置灵敏与否,一般用灵敏系数来衡量。保护装置的灵敏系数应根据不利的运行方式和故障类型进行计算。灵敏系数Km为被保护区发生短路时,流过保护安装处的最小短路电流Id.min与保护装置一次动作电流Idz的比值,即:

Km=Id.min/Idz

灵敏系数越高,则反映轻微故障的能力越强。各类保护装置灵敏系数的大小,根据保护装置的不同而不尽相同。对于多相保护,Idz取两相短路电流最小值Idz(2);对于10KV不接地系统的单相短路保护取单相接地电容电流最小值Ic.min;

(3) 速动性

速动性是指保护装置应能尽快地切除短路故障。

缩短切除故障的时间,就可以减轻短路电流对电气设备的损坏程度,加快系统电压的恢复,从而为电气设备的自启动创造了有利条件,同时还提高了发电机并列运行的稳定性。

所谓故障的切除时间是指保护装置的动作时间与断路器的跳闸时间之和。由于断路器一经选定,其跳闸时间就已确定,目前我国生产的断路器跳闸时间均在0.02S以下。所以实现速动性的关键是选用的保护装置应能快速动作。

(4) 可靠性

保护装置应能正确的动作,并随时处于准备状态。如不能满足可靠性的要求,保护装置反而成为了扩大事故或直接造成故障的根源。为确保保护装置动作的可靠性,则要求保护装置的设计原理、整定计算、安装调试要正确无误;同时要求组成保护装置的各元件的质量要可靠、运行维护要得当、系统应尽可能的简化有效,以提高保护的可靠性。

第二章 10KV的基本介绍

2.1 10KV供电系统继电保护在电力系统中的重要位置

随着电力系统的高速发展,电网规模日益壮大,电力系统网络结构更显复杂,提高电力系统的安全运行水平尤为重要。电力系统是电能生产、变换、输送、分配和使用的各种电气设备按照一定的技术与经济要求有机组成的一个联合系统。在电力系统中,各种类型的、大量的电气设备通过电气线路紧密地联结在一起。由于其覆盖的地域极其辽阔、运行环境极其复杂以及各种人为因素的影响,电气故障的发生是不可避免的。由于电力系统的特殊性,上述五个环节应是环环相扣、时时平衡、缺一不可,又几乎是在同一时间内完成的。在电力系统中的任何一处发生事故,都有可能对电力系统的运行产生重大影响。继电保护是确保电力系统安全可靠运行的重要装置,保护装置动作的

正确性将直接影响整个系统的安全稳定运行,稍有不慎就会导致事故的发生,只有对继电保护装置进行定期检验和维护,按时检巡其运行状况,及时发现故障并做好处理,才能保证系统无故障设备正常运行,提高供电可靠性

例如,当电力系统的被保护元件(如发电机、线路等)或电力系统本身发生故障时,继电保护装置应能自动、迅速、有选择地将故障元件从电力系统中切除,防止故障范围扩大,以保证无故障部分继续保持正常运行,并使故障元件免于继续遭受损害;当电力系统的被保护元件出现异常运行状态时,继电保护装置应能及时反应,根据运行维护条件,向运行值班人员发出声光报警、图文信息等警告信号。此时一般不要求保护系统迅速动作,而是根据对电力系统及其元件的危害程度设定一定的延时,以免不必要的动作和由于干扰而引起的误动作。

10KV供电系统是电力系统的一部分。它能否安全、稳定、可靠地运行,不但直接关系到企业用电的畅通,而且涉及到电力系统能否正常的运行。因此要全面地理解和执行地区电业部门的有关标准和规程以及相应的国家标准和规范。

2.2 10KV系统中继电保护的配置现状

目前,一般企业高压供电系统中均为10KV系统。除早期建设的10KV系统中,较多采用的是直流操作的定时限过电流保护和瞬时电流速断保护外,近些年来飞速建设的电网上一般均采用了环网或手车式高压开关柜,继电保护方式多为交流操作的反时限过电流保护装置。电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术、网络技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力,因此我国继电保护技术的发展可谓日新月异,先后经历了50年代的机电式继电保护时代、从60年代中到80年代中的晶体管式继电保护时代、从80年代中到90年代中的集成电路式继电保护时代、从90年代到现在的微机式继电保护时代。很多重要企业为双路10KV电源、 高压母线分段但不联络或虽能联络但不能自动投入。配电系统中的继电保护装置与整个电力系统的继电保护一样,历经了电磁型、晶体管型、集成电路型、微机型的发展过程。至今,不同形式的保护还在配电系统中广泛存在并发挥作用。对于微机型继电保护装置由于其性能的优越运行可靠,越来越得到用户的认可而在配电系统中大量使用。同时,由于用户不断提高的要求和制造厂家的努力,继电保护技术在配网中得到很大的发展,并且超越原有的行业范围,走向多功能智能化,而传统意义上的独立的继电保护装置正在消失。在系统供电的可靠性、故障响应的灵敏性、保护动作的选择性、切除故障的快速性以及运行方式的灵活性、运行人员上存在着的一些问题得到解决。

现在、我国新建的发电厂、变电站、高压输电线路等电力系统已全部现实微机式综合自动化继电保护。

2.3 10KV系统中应配置的继电保护

按照工厂企业10KV供电系统的设计规范要求,在10KV的供电线路、配电变压器和分段母线上一般应设置以下保护装置:

(1) 10KV线路应配置的继电保护

10KV线路一般均应装设过电流保护。当过电流保护的时限不大于0.5s~0.7s,并没有保护配合上的要求时,可不装设电流速断保护;自重要的变配电所引出的线路应装设瞬时电流速断保护。当瞬时电流速断保护不能满足选择性动作时,应装设略带时限的电流速断保护。

(2)10KV配电变压器应配置的继电保护

1)变压器的低压侧应装设短路保护和过负荷保护。短路保护作为保护母线、变压器干线的主保护,

并作为配电线路的后备保护。

2)变压器低压侧主保护应与高压侧主保护和低压配电线路保护有良好的选择性,并保证系统出现正常的尖峰电流(如电动机起动电流)时不会引起保护装置误动作。

3)变压器低压侧主保护也可兼作单相接地保护, 可采用带单相接地保护的低压断路器作变压器低压侧的主保护(如DW16型低压断路器),如灵敏度不够时应增设零序保护。

4)为了与出线保护取得动作时限配合, 变压器低压侧短路保护一般采用瞬时或短延时脱扣器动作于断开低压侧断路器, 过负荷保护采用带有长延时脱扣器低压断路器或给值班人员发出报警信号。

(3) 10KV分段母线应配置的继电保护

对于不并列运行的分段母线,应装设电流速断保护,但仅在断路器合闸的瞬间投入,合闸后自动解除;另外应装设过电流保护。如采用的是反时限过电流保护时,其瞬动部分应解除;对于负荷等级较低的配电所可不装设保护。

2.4 10KV供电系统的几种运行状况

(1) 供电系统的正常运行

这种状况系指系统中各种设备或线路均在其额定状态下进行工作;各种信号、指示和仪表均工作在允许范围内的运行状况;

(2) 供电系统的故障

这种状况系指某些设备或线路出现了一、10kV配电系统的保护配置情况

大部分工厂企业及居民小区用电是10kV供电,并设置配电房,一般情况下一个配电房安装一台或二台10kV/400V的配电变压器,用380V/220V电压供用户用电,一次系统接线图,如图1。

用电单位的保护配置存在下面几种情况:

1.10kV配电房单台变压器容量小于800kVA时,为了简化和节省费用,10kV侧往往只装环网柜,内配设负荷开关和熔断器,不装设断路器和继电保护装置,所以当发生短路故障时,只能靠熔断器熔断来保护变压器。这种配置的缺点,一是变压器没有过载保护;二是熔断器熔断电流有分散性、时限不稳定,容易发生越级跳闸,造成停电扩大。

2.当变压器单台容量大于800kVA及以上时,10kV侧开关柜内均装设断路器并配置继电保护装置,配置保护的型式有两种:

①装设GL-10系列反时限过电流继电器,构成过电流保护,电流定值可以从端子上做阶梯状调节,缺点是时限调节误差较大,构成上下级保护时限配合难度大。

②装设微机保护比较完善,具有过负荷保护信号、过电流保护和速断保护作用跳闸,保护定值和时间调整比较精确和方便,建议推广选用。

3.有些10kV专线工业用户,主要用电负载是高压电动机,如轧钢和穿孔行业,其高压电动机容量

较大,有的达2500kW及以上。在生产过程中,经常会连续不断地发生电动机短时(1~2s)的过载,因过载有随机性,所以过电流保护常因定值及时限配合不当使上一级即变电所出线开关(如图1中B1)跳闸,造成整条10kV线路停电。如某钢铁企业一台2500kW轧钢电动机在轧钢过程中,10kV侧瞬间最大尖峰电流高达800A以上,远超过该线路变电所开关处的过流保护定值和时限。电力部门只好根据用户生产的特点,调整保护定值和时限,以保证用户用电的安全可靠。有的用户使用大容量冷冻机,其10kV电动机容量达500~1000kW,起动电流经限流后仍达到3.5倍额定电流。过电流保护的起动电流和时限也要现场试验确定。

所以对于10kV配电系统,应根据不同容量和不同用电负载性质来选配保护装置和进行定值计算。 危及其本身或系统的安全运行,并有可能使事态进一步扩大的运行状况;

2.5 10KV供电系统继电保护装置的任务

(1) 在供电系统中运行正常时,它应能完整地、安全地监视各种设备的运行状况,为值班人员提供可靠的运行依据;

(2)如供电系统中发生故障时,它应能自动地、迅速地、有选择性地切除故障部分,保证非故障部分继续运行;

(3)当供电系统中出现异常运行工作状况时,它应能及时地、准确地发出信号或警报,通知值班人员尽快做出处理;

不难看出,在10KV系统中装设继电保护装置的主要作用是通过缩小事故范围或预报事故的发生,来达到提高系统运行的可靠性,并最大限度地保证供电的安全和不间断。

可以想象,在10KV系统中利用熔断器去完成上述任务是不能满足要求的。因为熔断器的安秒特性不甚完善,熄灭高压电路中强烈电弧的能力不足,甚至有使故障进一步扩大的可能;同时还延长了停电的历时。只有采用继电保护装置才是最完美的措施。因此,在10KV系统中的继电保护装置就成了供电系统能否安全可靠运行的不可缺少的重要组成部分。

第三章 几种常用电流保护的分析

3.1 反时限过电流保护

(1) 什麽是反时限过电流保护

继电保护的动作时间与短路电流的大小有关,短路电流越大,动作时间越短;短路电流越小,动作时间越长,这种保护就叫做反时限过电流保护。

(2) 继电器的构成

反时限过电流保护是由GL-15(25)感应型继电器构成的。这种保护方式广泛应用于一般工矿企业中,感应型继电器兼有电磁式电流继电器(作为起动元件)、电磁式时间继电器(作为时限元件)、电磁式信号继电器(作为信号元件)和电磁式中间继电器(作为出口元件)的功能,用以实现反时限过电流保护;另外,它还有电磁速断元件的功能,又能同时实现电流速断保护。采用这种继电器,就可以采用交流操作,无须装设直流屏等设备;通过一种继电器还可以完成两种保护功能(体现了继电器的多功能性),也可以大大简化继电保护装置。但这种继电器虽外 部接线简单,但内部结构十分复杂,调试比较困难;在灵敏度和动作的准确性、速动性等方面也远不如电磁式继电器构成的继电保护装置。

(3) 反时限过电流保护的基本原理

当供电线路发生相间短路时,感应型继电器KA1或(和)KA2达到整定的一定时限后动作,首先使其常开触点闭合,这时断路器的脱扣器YR1或(和)YR2因有KA1或(和)KA2的常闭触点分流(短路),而无电流通过,故暂时不会动作。但接着KA1或(KA2)的常闭触点断开,因YR1或(和)YR2因“去分流”而通电动作,使断路器跳闸,同时继电器本身的信号掉牌掉下,给出信号。

在这里应予说明,在采用“去分流”跳闸的反时限过电流保护装置中,如继电器的常闭触点先断开而常开触点后闭合时,则会出现下列问题:

1)继电器在其常闭触点断开时即先失电返回,因此其常开触点不可能闭合,因此跳闸线圈也就不能通电跳闸;

2)继电器的常闭触点如先断开,CT的二次侧带负荷开路,将产生数千伏的高电压、比差角差增大、计量不准以及铁心发热有可能烧毁绝缘等,这是不允许的。

3.2 定时限过电流保护

(1) 什麽是定时限过电流保护 继电保护的动作时间与短路电流的大小无关,时间是恒定的,时间是靠时间继电器的整定来获得的。时间继电器在一定范围内是连续可调的,这种保护方式就称为定时限过电流保护。

(2) 继电器的构成

定时限过电流保护是由电磁式时间继电器(作为时限元件)、 电磁式中间继电器(作为出口元件)、电磁式电流继电器(作为起动元件)、电磁式信号继电器(作为信号元件)构成的。它一般采用直流操作,须设置直流屏。定时限过电流保护简单可靠、完全依靠选择动作时间来获得选择性,上、下级的选择性配合比较容易、时限由时间继电器根据计算后获取的参数来整定,动作的选择性能够保证、动作的灵敏性能够满足要求、整定调试比较准确和方便。这种保护方式一般应用在10~35KV系统中比较重要的变配电所。

(3) 定时限过电流保护的基本原理

10KV中性点不接地系统中,广泛采用的两相两继电器的定时限过电流保护的原理接线图。它是由两只电流互感器和两只电流继电器、一只时间继电器和一只信号继电器构成。

当被保护线路只设有一套保护,且时间继电器的容量足大时,可用时间继电器的触点去直接接通跳闸回路,而省去出口中间继电器。

当被保护线路中发生短路故障时,电流互感器的一次电流急剧增加,其二次电流随之成比例的增大。当CT的二次电流大于电流继电器的起动值时,电流继电器动作。由于两只电流继电器的触点是并联的,故当任一电流继电器的触点闭合,都能接通时间继电器的线圈回路。这时,时间继电器就按照预先整定的时间动作使其接点吸合。这样,时间继电器的触点又接通了信号继电器和出口中间继电器的线圈,使其动作。出口中间继电器的触点接通了跳闸线圈回路,从而使被保护回路的断路器跳闸切断了故障回路,保证了非故障回路的继续运行。而信号继电器的动作使信号指示牌掉下并发出警报信号。

由上不难看出,保护装置的动作时间只决定于时间继电器的预先整定的时间,而与被保护回路的短路电流大小无关,所以这种过电流保护称为定时限过电流保护。

a 动作电流的整定计算

过流保护装置中的电流继电器动作电流的整定原则,是按照躲过被保护线路中可能出现的最大负荷电流来考虑的。也就是只有在被保护线路故障时才启动,而在最大负荷电流出现时不应动作。为此必须满足以下两个条:

1)在正常情况下,出现最大负荷电流时(即电动机的启动和自启动电流,以及用户负荷的突增和线路中出现的尖峰电流等)不应动作。即:

Idz> Ifh.max

式中 Idz----过电流保护继电器的一次动作电流;

Ifh.max------最大负荷电流

2)保护装置在外部故障切除后应能可靠地返回。因为短路电流消失后,保护装置有可能出现最大负荷电流,为保证选择性,

已动作的电流继电器在这时应当返回。因此保护装置的一次返回电流If应大于最大负荷电流fh.max。即:

If> Ifh.max

因此,定时限过电流装置电流继电器的动作电流Idz.j 为:

Idz.j=(Kk.Kjx/Kf.Nlh).Ifh.max

式中

Kk------可靠系数,考虑到继电器动作电流的误差和计算误差而设。一般取为1.15~1.25Kjx------由于继电器接入电流互感器二次侧的方式不同而引入的一个系数。电流互感器为三相完全星形接线和不完全星形接线时

Kjx=1;如为三角形接线和两相电流差接线时Kjx= 1.732;

Kf-------返回系数,一般小于1;

Nlh------电流互感器的变比。

b 动作时限的整定原则

为使过电流保护具有一定的选择性,各相临元件的过电流保护应具有不同的动作时间。

在线路XL-1、XL-2、XL-3的靠近电源端分别装有过电流保护装置1、2、3。当D1点发生短路时,短路电流由电源提供并流过保护装置1、2、3,当短路电流大于它们的整定值时,各套保护装置均启动。但按选择性的要求,应只由保护装置3(离故障点最近)动作于跳闸。在故障切除后,保护装置1、2返回。因此就必须使保护装置2的动作时间较保护装置1长一些;而保护装置3又要比保护装置2长一些,并依次类推,即:

t1> t2> t3

不难看出,各级保护装置的动作时限是由末端向电源端逐级增大的。也就是越靠近电源端,保护的动作时限越长,有如阶梯一样,故称为阶梯性时限特性。各级之间的时限均差一个固定的数值,称 其为时限级差D t。对于定时限过电流保护的时限级差D t 一般为0.5S;对于反时限的时限级差D t 一般为0.7S。可是,越靠近电源端线路的阻抗越小,短路电流将越大,而保护的动作时间越长。 也就是说过电流保护存在着缺陷。这种缺陷就必须由电流速断保护来弥补不可。

c 过电流保护的保护范围 过流保护可以保护设备的全部,也可以保护线路的全长,还可以作为相临下一级线路穿越性故障的后备保护。

3.3 电流速断保护

(1) 什麽是电流速断保护

电流速断保护是一种无时限或略带时限动作的一种电流保护。它能在最短的时间内迅速切除短路故障,减小故障持续时间,防止事故扩大。

电流速断保护又分为瞬时电流速断保护和略带时限的电流速断保护两种。

(2) 电流速断保护的构成

电流速断保护是由电磁式中间继电器(作为出口元件)、电磁式电流继电器(作为起动元件)、电磁式信号继电器(作为信号元件)构成的。它一般不需要时间继电器。常采用直流操作,须设置直流屏。电流速断保护简单可靠、完全依靠短路电流的大小来确定保护是否需要启动。它是按一定地点的短路电流来获得选择性动作,动作的选择性能够保证、动作的灵敏性能够满足要求、整定调试比

较准确和方便。

(3) 瞬时电流速断保护的整定原则和保护范围

瞬时电流速断保护与过电流保护的区别,在于它的动作电流值不是躲过最大负荷电流,而是必须大于保护范围外部短路时的最大短路电流。即按躲过被保护线路末端可能产生的三相最大短路电流来整定。从而使速断保护范围被限制在被保护线路的内部,从整定值上保证了选择性,因此可以瞬时跳闸。当在被保护线路外部发生短路时,它不会动作。所以不必考虑返回系数。由于只有当短路电流大于保护装置的动作电流时,保护装置才能动作。所以瞬时电流速断保护不能保护设备的全部,也不能保护线路的全长,而只能保护线路的一部分。对于最大运行方式下的保护范围一般能达到线路全长的50%即认为有良好的保护效果;对于在最小运行方式下的保护范围能保护线路全长的15%~20%,即可装设。保护范围以外的区域称为“死区”。因此,瞬时电流速断保护的任务是在线路始端短路时能快速地切除故障。

当线路故障时,瞬时电流速断保护动作,运行人员根据其保护范围较小这一特点,可以判断故障出在线路首端,并且靠近保护安装处;如为双电源供电线路,则由两侧的瞬时电流速断保护同时动作或同时都不动作,可判断故障在线路的中间部分。

(4) 瞬时电流速断保护的基本原理

瞬时电流速断保护的原理与定时限过电流保护基本相同。只是由一只电磁式中间继电器替代了时间继电器。

中间继电器的作用有两点:其一是因电流继电器的接点容量较小,不能直接接通跳闸线圈,用以增大接点容量;其二是当被保护线路上装有熔断器时,在两相或三相避雷器同时放电时,将造成短时的相间短路。但当放完电后,线路即恢复正常,因此要求速断保护既不误动,又不影响保护的快速性。利用中间继电器的固有动作时间,就可避开避雷器的放电动作时间。

(5) 略带时限的电流速断保护

瞬时电流速断保护最大的优点是动作迅速,但只能保护线路的首端。而定时限过电流保护虽能保护 线路的全长,但动作时限太长。因此,常用略带时限的电流速断保护来消除瞬时电流速断保护的“死区”。要求略带时限的电流速断保护能保护全线路。因此,它的保护范围就必然会延伸到下一段线路的始端去。这样,当下一段线路始端发生短路时,保护也会起动。 为了保证选择性的要求,须使其动作时限比下一段线路的瞬时电流速断保护大一个时限级差,其动作电流也要比下一段 线路瞬时电流速断保护的动作电流大一些。略带时限的电流速断保护可作为被保护线路的主保护。略带时限的电流速断保护的原理接线和定时限过电流保护的原理接线相同。

3.4 三段式过电流保护装置

由于瞬时电流速断保护只能保护线路的一部分,所以不能作为线路的主保护,而只能作为加速切除线路首端故障的辅助保护;略带时限的电流速断保护能保护线路的全长,可作为本线路的主保护,但不能作为下一段线路的后备保护;定时限过电流保护既可作为本级线路的后备保护(当动作时限短时,也可作为主保护,而不再装设略带时限的电流速断保护。),还可以作为相临下一级线路的后备保护,但切除故障的时限较长。

一般情况下,为了对线路进行可靠而有效的保护,也常把瞬时电流速断保护(或略带时限的电流速断保护)和定时限过电流保护相配合构成两段式电流保护。

对于第一段电流保护,究竟采用瞬时电流速断保护,还是采用略带时限的电流速断保护,可由具体情况确定。如用在线路---变压器组接线,以采用瞬时电流速断保护为佳。因在变压器高压侧故障时,切除变压器和切除线路的效果是一样的。此时,允许用线路的瞬时电流速断保护,来切除变压器高压侧的故障。也就是说,其保护范围可保护到线路全长并延伸到变压器高压侧。这时的第一段电流保护可以作为主保护;第二段一般均采用定时限过流保护作为后备保护,其保护范围含线路

---变压器组的全部。

通常在被保护线路较短时,第一段电流保护均采用略带时限的电流速断保护作为主保护;第二段采用定时限过流保护作为后备保护。

在实际中还常采用三段式电流保护。就是以瞬时电流速断保护作为第一段,以加速切除线路首端的故障,用作辅助保护;以略带时限的电流速断保护作为第二段,以保护线路的全长,用作主保护;以定时限过电流保护作为第三段,以作为线路全长和相临下一级线路的后备保护。 对于某地电信的10KV(含35KV)供电线路今后宜选用两段式或三段式电流保护。

因为这种保护的设置可以在相临下一级线路的保护或断路器拒动时,本级线路的定时限过流保护可以动作,起到远后备保护的作用;如本级线路的主保护(瞬时电流速断或略带时限的电流速断保护)拒动时,则本级线路的定时限过电流保护可以动作,以起到近后备的作用。

3.5 零序电流保护

电力系统中发电机或变压器的中性点运行方式,有中性点不接地、中性点经消弧线圈接地和中性点直接接地三种方式。10KV系统采用的是中性点不接地的运行方式。

系统运行正常时,三相是对称的,三相对地间均匀分布有电容。在相电压作用下,每相都有一个超前90°的电容电流流入地中。这三个电容电流数值相等、相位相差120° ,其和为零.中性点电位为零。

假设A相发生了一相金属性接地时,则A相对地电压为零,其他两相对地电压升高为线电压,三个线电压不变。这时对负荷的供电没有影响。按规程规定还可继续运行2小时,而不必切断电路。这也是采用中性点不接地的主要优点。但其他两相电压升高,线路的绝缘受到考验、有发展为两点或多点接地的可能。应及时发出信号,通知值班人员进行处理。

10KV中性点不接地系统中,当出现一相接地时,利用三相五铁心柱的电压互感器(PT)的开口三角形的开口两端有无零序电压来实现绝缘监察。它可以在PT柜上通过三块相电压表和一块线电压表(通过转换开关可观察三个线电压)看到“一低、两高、三不变”。接在开口三角形开口两端的过电压继电器动作,其常开接点接通信号继电器,并发出预告信号。采用这种装置比较简单,但不能立即发现接地点,因为只要网络中发生一相接地,则在同一电压等级的所有工矿企业的变电所母线上,均将出现零序电压,接有带绝缘监视电压互感器的电力用户都会发出预告信号。也就是说该装置没有选择性。为了查找接地点,需要电气人员按照预先制定的“拉路序位图”依次拉路查找,并随之合上未接地的回路,直到找到接地点为止。可以看出,这种方法费力、费时、安全性差,在某些情况下这样做还是不允许的。因此,这种装置存在一定的缺陷。

当网络比较复杂、出线较多、可靠性要求高,采用绝缘监察装置是不能满足运行要求时,可采用零序电流保护装置。它是利用接地故障线路零序电流较非接地故障线路零序电流大的特点构成的一种保护装置。

零序电流保护一般使用在有条件安装零序电流互感器的电缆线路或经电缆引出的架空线路上。当在电缆出线上安装零序电流互感器时,其一次侧为被保护电缆的三相导线,铁心套在电缆外,其二次侧接零序电流继电器。当正常运行或发生相间短路时,一次侧电流为零。二次侧只有因导线排列不对称而产生的不平衡电流。当发生一相接地时,零序电流反映到二次侧,并流入零序电流继电器,使其动作发出信号。在安装零序电流保护装置时,特别注意的一点是:电缆头的接地线必须穿过零序电流互感器的铁心。这是由于被保护电缆发生一相接地时,全靠穿过零序电流互感器铁心的电缆头接地线通过零序电流起作用的。否则互感器二次侧也就不能感应出电流,因而继电器也就不可能动作。

不难理解,当某一条线路上发生一相接地时,非接地线路上的零序电流为本身的零序电流。因此,为了保证动作的选择性,在整定时,保护装置的启动电流Idz应大于本线路的电容电流,即: Idz=Kh.3Uxan.w .Co =Kh.Io

式中 Idz------保护装置的启动电流;

Kh-------可靠系数,如无延时,考虑到不稳定间歇性电弧所发生的振荡涌流时,取4~5;如延时为

0.5S时,则取1.5~2;

Uxan------相电压值;

Co --------被保护线路每相的对地电容;

Io --------被保护线路的总电容电流。

按上式整定后,还需校验在本线路上发生一相接地时的灵敏系数Klm,由于流经接地线路上的零序电流为全网络中非接地线路电容电流的总和,可用3Uxan.w .(CS -Co )表示,因此灵敏系数为: Klm=3Uxan.w .(CS -Co )/Kh. 3Uxan.w .Co

=(CS -Co )/ Kh. Co

上式可改写成:

Klm=I0S -Io /Kh. Io

= I0S -Io /Idz

式中 CS ------同一电压等级网络中,各元件每相对地电容之和;

I0S ------与 CS

相对应的对地电容电流之和。对电缆线路取大于或等于1.25;架空线路取1.5;对于架空线路,由于没有特制的零序电流互感器,如欲安装零序电流保护,可把三相三只电流互感器的同名端并联在一起,构成零序电流过滤器,再接上零序电流继电器。其动作电流整定值中,要考虑零序电流过滤器中不平衡电流的影响。

第四章 对于10kv继电保护中常用继电器的参数

4.1 额定工作电压

是指继电器正常工作时线圈所需要的电压。根据继电器的型号不同,可以是交流电压,也可以是直流电压。

4.2 直流电阻

是指继电器中线圈的直流电阻,可以通过万能表测量。

4.3 吸合电流

是指继电器能够产生吸合动作的最小电流。在正常使用时,给定的电流必须略大于吸合电流,这样继电器才能稳定地工作。而对于线圈所加的工作电压,一般不要超过额定工作电压的1.5倍,否则会产生较大的电流而把线圈烧毁。

4.4 释放电流

是指继电器产生释放动作的最大电流。当继电器吸合状态的电流减小到一定程度时,继电器就会恢复到未通电的释放状态。这时的电流远远小于吸合电流。

4.5 触点切换电压和电流

是指继电器允许加载的电压和电流。它决定了继电器能控制电压和电流的大小,使用时不能超过此值,否则很容易损坏继电器的触点。

第五章 继电器的选择

5.1 按使用环境选型

... 使用环境条件主要指温度(最大与最小)、湿度(一般指40℃下的最大相对湿度)、低气压(使用高度1000米以下可不考虑)、振动和冲击。此外,尚有封装方式、安装方法、外形尺寸及绝缘性等要求。由于材料和结构不同,继电器承受的环境力学条件各异,超过产品标准规定的环境力学条件下使用,有可能损坏继电器,可按整机的环境力学条件或高一级的条件选用。

... 对电磁干扰或射频干扰比较敏感的装置周围,最好不要选用交流电激励的继电器。选用直流继电器要选用带线圈瞬态抑制电路的产品。那些用固态器件或电路提供激励及对尖峰信号比较敏感地地方,也要选择有瞬态抑制电路的产品。

5.2 按输入信号不同确定继电器种类

按输入信号是电、温度、时间、光信号确定选用电磁、温度、时间、光电继电器,这是没有问题的。这里特别说明电压、电流继电器的选用。若整机供给继电器线圈是恒定的电流应选用电流继电器,是恒定电压值则选用电压继电器。

5.3 输入参量的选定

与用户密切相关的输入量是线圈工作电压(或电流),而吸合电压(或电流)则是继电器制造厂控制继电器灵敏度并对其进行判断、考核的参数。对用户来讲,它只是一个工作下极限参数值。控制安全系数是工作电压(电流)/吸合电压(电流),如果在吸合值下使用继电器,是不可靠的、不安全的,环境温度升高或处于振动、冲击条件下,将使继电器工作不可靠。整机设计时,不能以空载电压作为继电器工作电压依据,而应将线圈接入作为负载来计算实际电压,特别是电源内阻大时更是如此。当用三极管作为开关元件控制线圈通断时,三极管必须处于开关状态,对6VDC以下工作电压的继电器来讲,还应扣除三极管饱和压降。当然,并非工作值加得愈高愈好,超过额定工作值太高会增加衔铁的冲击磨损,增加触点回跳次数,缩短电气寿命,一般,工作值为吸合值的

1.5倍,工作值的误差一般为±10%。

5.4 根据负载情况选择继电器触点的种类和容量

国内外长期实践证明,约70%的故障发生在触点上,这足见正确选择和使用继电器触点非常重要。

触点组合形式和触点组数应根据被控回路实际情况确定。常用的触点组合形式见表6。动合触

点组和转换触点组中的动合触点对,由于接通时触点回跳次数少和触点烧蚀后补偿量大,其负载能力和接触可靠性较动断触点组和转换触点组中的动断触点对要高,整机线路可通过对触点位置适当调整,尽量多用动合触点。

根据负载容量大小和负载性质(阻性、感性、容性、灯载及马达负载)确定参数十分重要。认为触点切换负荷小一定比切换负荷大可靠是不正确的,一般说,继电器切换负荷在额定电压下,电流大于100mA、小于额定电流的75%最好。电流小于100mA会使触点积碳增加,可靠性下降,故100mA称作试验电流,是国内外专业标准对继电器生产厂工艺条件和水平的考核内容。由于一般继电器不具备低电平切换能力,用于切换50mV、50μA以下负荷的继电器订货,用户需注明,必要时应请继电器生产厂协助选型以及根据类型选择合适的继电器用在10kv线路中。

第六章 对某地电信10KV系统中继电保护的综合评价

6.1 定时限过电流保护与反时限过电流保护的配置

10KV系统中的上、下级保护之间的配合条件必须考虑周全,考虑不周或选配不当,则会造成保护的非选择性动作,使断路器越级跳闸。保护的选择性配合主要包括上、下级保护之间的电流和时限的配合两个方面。应该指出,定时限过电流保护的配合问题较易解决。由于定时限过电流保护的时限级差为0.5S,选择电网保护装置的动作时限,一般是从距电源端最远的一级保护装置开始整定的。为了缩短保护装置的动作时限,特别是缩短多级电网靠近电源端的保护装置的动作时限,其中时限级差起着决定的作用,因此希望时限级差越小越好。但为了保证各级保护装置动作的选择性,时限级差又不能太小。虽然反时限过电流保护也是按照时限的阶梯原则来整定,其时限级差一般为0.7S。而且反时限过电流保护的动作时限的选择与动作电流的大小有关。也就是说,反时限过电流保护随着短路电流与继电器动作电流的比值而变,因此整定反时限过电流保护时,所指的时间都是在某一电流值下的动作时间。还有,感应型继电器惯性较大,存在一定的误差,它的特性不近相同,新旧、型的特性也不相同。所以,在实际运行整定时,就不能单凭特性曲线作为整定的依据,还应该作必要的实测与调试。比较费力、费事。因此,反时限过电流保护时限特性的整定和配合就比定时限过电流保护装置复杂得多。通过分析可以看出,某地电信10KV新建及在建工程中,应以配置三段式或两段式定时限过电流保护、瞬时电流速断保护和略带时限的电流速断保护为好。

6.2 该地电信10KV系统中高压设备的配置

目前,该地电信10KV系统中高压开关柜的配置主要有两大类:即固定式高压开关柜和手车式高压开关柜。关于固定式高压开关柜是我国解放初期自前苏联引进的老产品,柜型高大、有足够的安全距离、但防护等级低、元器件陈旧、防电击水平较低;而手车式高压开关柜是近年来引进国外技术,消化吸收研制的换代产品,体积缩小、防护等级大大提高、元器件的选用比较先进、防电击水平较高。其主要特点可归纳为:它有四室(手车室、电缆室、母线室和继电仪表室)、七车(断路器手车、隔离手车、接地手车、所用变压器手车、电压互感器手车、电压互感器和避雷器手车、避雷器和电容器手车)、三个位置(工作位置、试验位置和拖出柜外检修位置)和两个锁定(工作位置的锁定和试验位置的锁定)。它用高压一次隔离触头替代了高压隔离开关、用接地开关替代了临时接地线等。对于系统的运行安全提供了很好的条件。关于配电变压器安装于主机楼时,一般均采用了防火等级较高的干式变压器,该地电力部门曾率先尝试采用了D/Yo -11接线组别的干式变压器(传统采用Y/Yo -12接线组别),其一次接成了D形接线,为电信部门产生的大量高次谐波提供了通路,

这样就较为有效的防止了我们电信部门的用电对系统造成的谐波污染(目前电业部门正在谐波管理方面考虑采取必要的经济措施);同时,采用了这种接线组别,使得继电保护的灵敏性有所提高。按照IEC及新的国家标准GB 50054-96的要求,应逐步推广采用 D /Yo -11接线组别的配电变压器。

6.3 关于10KV一相接地保护方式的探讨

10KV中性点不接地系统中发生一相接地时,按照传统方式是采用三相五铁心柱的JSJW-10型电压互感器作为绝缘监视。但是,当我们选用了手车式高压开关柜后,再继续安装JSJW-10已经比较困难,又由于10KV系统中的一次方案有了变化、原有的绝缘监视方案又存在着缺陷,因此较为可取的办法是采用零序电流保护装置。

该地供电部门的要求

根据该地供电局1996年10月22日发文的精神,要求某地市城、近郊区新建和在建项目一律应采用直流操作的定时限过电流保护、并加装零序保护,有条件的用户可逐步考虑采用工厂供电自动化设施。

第七章 继电保护装置的日常维护

7.1 继电保护故障处理方法

(1)直观法

处理一些无法用仪器逐点测试,或某一插件故障一时无备品更换,而又想将故障排除的情况。比如10kv开关柜分或拒合故障处理。在操作命令下发后,观察到合闸接触器或跳闸线圈能动作,说明电气回路正常,故障存在机构内部。到现场如直接观察到继电器内部明显发黄,或哪个元器件发出浓烈的焦味等便可快速确认故障所在,更换损坏的元件即可。

(2)掉换法

用好的或认为正常的相同元件代替怀疑的或认为有故障的元件,来判断它的好坏,可快速地缩小查找故障范围。这是处理综合自动化保护装置内部故障最常用方法。当一些微机保护故障,或一些内部回路复杂的单元继电器,可用附近备用或暂时处于检修的插件、继电器取代它。

(3)逐项拆除(排除)法

将并联在一起的二次回路顺序脱开,然后再依次放回,一旦故障出现,就表明故障存在哪路。再在这一路内用同样方法查找更小的分支路,直至找到故障点。此法主要用于查直流接地,交流电源熔丝放不上等故障。如直流接地故障。先通过拉路法,根据负荷的重要性,分别短时拉开直流屏所供直流负荷各回路,切断时间不得超过3秒,当切除某一回路故障消失,则说明故障就在该回路之内,再进一步运用拉路法,确定故障所在支路。再将接地支路的电源端端子分别拆开,直至查到故障点。如电压互感器二次熔丝熔断,回路存在短路故障,或二次交流电压互串等,可从电压互感器二次短路相的总引出处将端子分离,此时故障消除。然后逐个恢复,直至故障出现,再分支路依次排查。如整套装置的保护熔丝熔断或电源空气开关合不上,则可通过各块插件的拔插排查,并结合观察熔丝熔断情况变化来缩小故障范围。又例如保护装置发控制回路断线信号,可以在保护屏用万用表测量到开关柜电缆的合、分闸回路的电位,初步就可以判断故障点在开关柜还是在保护装置上,然后进一步进行故障排除。

7.2可采用的措施

(1)当班运行人员定时对继电保护装置进行巡视和检查,对运行情况要做好运行记录。

(2)建立岗位责任制,做到人人有岗,每岗有人。

(3)做好继电保护装置的清扫工作。清扫工作必须由两人进行,防止误碰运行设备,注意与带电设备保持安全距离,避免人身触电和造成二次回路短路、接地事故。

(4)对微机保护的电流、电压采样值每周记录一次,对差动保护要记录差动电流值。

(5)定期对保护装置端子排进行红外测温,尽早发现接触不良导致的发热。

(6)每月对微机保护的打印机进行检查并打印。

(7)每月定期检查保护装置时间是否正确,方便故障发生后的故障分析。

(8)定期核对保护定值运行区和打印出定值单进行核对

参考文献

1华中工学院编, 电力系统继电保护原理与运行,北京,电力工业出版社,1981年

2吕继绍主编,继电保护整定计算与实验,武汉,华中工学院出版社,1983年

3王维俭编,电力系统继电保护基本原理,北京,清华大学出版社,1991年

4张志竟、黄玉铮编,电力系统继电保护原理与运行分析,上册,北京,中国电力出版社,1995年

5王广延、吕继绍编,电力系统继电保护原理与运行分析,下册,北京,中国电力出版社,1995年

6朱声石编,高压电网继电保护原理与技术,第二版,北京,中国电力出版社,1995年

7王梅义、蒙定中、郑奎璋、谢葆炎、王大从编,高压电网继电保护运行技术,北京,电力工业出版社,1981年

8崔家佩、孟庆炎、陈永芳、熊炳耀编,电力系统继电保护与安全自动装置整定计算,北京,中国电力 出版社,1993年

9高中德编,超高压电网继电保护专题分析,北京,水利电力出版社,1990年

10 王维俭、侯炳蕴编,大型机组继电保护理论基础,第二版,北京,中国电力出版社,1989年 11 尹项根、曾克娥编,电力系统继电保护原理与应用,上册,武汉,华中科技大学出版社,2001年

12尹项根、曾克娥编,电力系统继电保护原理与应用,下册,武汉,

华中科技大学出版社,2001年

13 国家电力调度中心编,电力系统继电保护规定汇编,北京,中国电

力出版社,1997年

14 陶然、熊为群,继电保护自动装置及二次回路,北京,电力工业出

版社,1981年

15梁永福.微机型继电保护装置的现场调试,电工技术,2008,23(5):121-123.

16冯海东,陈奕琴.谈继电保护故障处理的九种方法,广东科技,2008.

17谷水清.电力系统继电保护,北京:电力工程出版社.


相关内容

  • 超高速暂态方向继电器的研究
  • 第25卷第4期2005年2月 文章编号:0258培013(2005)04-0007.06 中国电机工程学报 Proceedingsof Vbl.25No.4Feb.2005@2005Chill.Soc.forElec.Eng tlleCsEE 中图分类号:1M77文献标识码:A学科分类号:470・4 ...

  • 工厂供电论文
  • 过电流保护 预定当被测电流增大超过允许值时执行相应保护动作(如使断路器跳闸)的一种措施保护,当电流超过预定最大值时,使保护装置动作的一种保护方式.过电流保护主要包括短路保护和过载保护两种类型.短路保护的特点是整定电流大.瞬时动作.电磁式电流脱扣器(或继电器).熔断器常用作短路保护元件.过载保护的特点 ...

  • 微机型继电保护论文继电保护论文
  • 总第126期2010年第4期 文章编号:(2010)1672-115204-0029-03 山西冶金 SHANXIMETALLURGYTotal126No.4,2010 SEL-587型微机继电保护装置的调试技术 潘邦全金仁才 (中国十七冶机电安装公司,安徽 摘 唐克斌 马鞍山 243000) 要: ...

  • 毕业论文答辩自述及答辩提问
  • 各位领导.老师.同学们,大家好.我叫***,是08级电气工程及其自动化二班的学生,我的论文题目是<某小型水电站电气继电保护及二次设计>.本次设计是在指导老师的悉心指导下完成的,在此,我要对指导老师表达我深深的谢意.同时,我也要感谢在论文设计过程中帮助过我的同学. 首先,我需要了解的是选题 ...

  • [强烈推荐]大型发电机-变压器组的继电保护设计毕业论文
  • (此文档为word 格式,下载后您可任意编辑修改!) 电力系统继电保护课程设 计 题目 大型发电机-变压器组的继电保 姓 名: 所在学院:工学院电气与电子工程系 所学专业:电气工程及其自动化 班 级:电气工程班 学 号: 指导教师: 继电保护课程设计要求 继电保护课程设计是学生在学完继电保护课程之后 ...

  • 电力机车毕业论文
  • 轨道交通技术学院 毕 业 论 文 题 目: 电力机车控制电路的优化改进 作 者: 宋 广 军 学 号: 0815070301 专 业: 电气化铁道技术(电力机车方向) 班 级: 机 车08-3班 指导教师: 刘 颖(讲 师) 2011年06 月 毕业论文中文摘要 目 录 1.问题的提出....... ...

  • 三相异步电机反接制动线路的设计(论文)
  • 课 程 设 计 题目 三相异步电动机的降压启动.反接制动 姓 名 学 号 201103120 系(院)电子电气工程学院 班 级 **** 指导教师____***___ 职 称____教授__ 二O 一三年 七 月 四 日 摘 要 在交流电力拖动系统中 ,异步电动机既可运行于电动状态 ,又可运行于电磁 ...

  • 配电自动化与继电保护故障处理论文
  • 配电自动化与继电保护故障处理论文 摘要:多级差保护与集中式故障处理模式的配合可以减少故障处理的麻烦,也解决全线停电的问题.总而言之,随着配电网不断深化改造,配电网智能化配合技术的发展以及推广运用大大提高了配网的安全性及可靠性. 0. 前言 智能电网中配电自动化是其重要的组成部分,配电网故障处理是配电 ...

  • 机电一体化毕业设计论文
  • 榆林职业技术学院神木校区 2011级毕业设计(论文) 三相异步电动机正反转电路的设计 年 级: 2011 学 号: 11050318 姓 名: 刘强 专 业: 机电一体化 指导老师: 王艳红 二零一四年三月 榆林职业技术学院神木校区毕业设计(论文) 院 系 机电 专 业 机电一体化 年 级 2011 ...

  • 中小型火电厂二次线.继电保护及自动装置的应用概况|论文中心|中国期刊在线
  • 1 工程概况 BiGA电厂位于土耳其Marmara海南岸,原有装机容量为1x135MW,二期扩建2台135MW循环流化床机组,电气主接线采用发电机和变压器组成单元接线,发电机出口装设断路器,不设高压起备电源,2台机组互为停机备用,电厂所发电量输送到土耳其国家电网(电压等级380kV)以及业主自有的钢 ...