小六数学1

优品教育黄阁翠苑校区教案

教案:

1.电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?

解:设一张电影票价x元

(x-3)×(1+1/2)=(1+1/5)x

(1+1/5)x这一步是什么意思,为什么这么做

(x-3){现在电影票的单价}×(1+1/2){假如原来观众总数为整体1,则现在的观众人数为(1+2/1)}

左边算式求出了总收入

(1+1/5)x{其实这个算式应该是:1x*(1+5/1) 把原观众人数看成整体1,则原来应收入1x元,而现在增加了原来的五分之一,就应该再*(1+5/1),减缩后得到(1+1/5x)}

如此计算后得到总收入,使方程左右相等

2.甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。这时两人钱相等,求 乙的存款

解: 取40%后,存款有9600×(1-40%)=5760(元)

这时,乙有:5760÷2+120=3000(元)

乙原来有:3000÷(1-40%)=5000(元)

3.由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?

解:加10颗奶糖,巧克力占总数的60%,说明此时奶糖占40%,

巧克力是奶糖的60/40=1。5倍

再增加30颗巧克力,巧克力占75%,奶糖占25%,巧克力是奶糖的3倍 增加了3-1.5=1.5倍,说明30颗占1.5倍

奶糖=30/1.5=20颗

巧克力=1.5*20=30颗

奶糖=20-10=10颗

4.小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了。”小明原有玻璃球多少个?

答案

小明说:“你有球的个数比我少1/4!”,则想成小明的球的个数为4份,则小亮的球的个数为3份

4*1/6=2/3 (小明要给小亮2/3份玻璃球)

小明还剩:4-2/3=3又1/3(份)

小亮现有:3+2/3=3又2/3(份)

这多出来的1/3份对应的量为2,则一份里有:3*2=6(个)

小明原有4份玻璃球,又知每份玻璃球为6个,则小明原有玻璃球4*6=24(个)

5.搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?

解:设搬运一个仓库的货物的工作量是1.现在相当于三人共同完成工作量2,所需时间是

答:丙帮助甲搬运3小时,帮助乙搬运5小时

解本题的关键,是先算出三人共同搬运两个仓库的时间.本题计算当然也可以整数化,设搬运一个仓库全部工作量为 60.甲每小时搬运 6,乙每小时搬运 5,丙每小时搬运4 三人共同搬完,需要

60 × 2÷(6+ 5+ 4)= 8(小时)

甲需丙帮助搬运

(60- 6× 8)÷ 4= 3(小时)

乙需丙帮助搬运

(60- 5× 8)÷4= 5(小时)

6. 一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天?

解: 甲乙丙3人8天完成 :5/6-1/3=1/2

甲乙丙3人每天完成 :1/2÷8=1/16,

甲乙丙3人4天完成 :1/16×4=1/4

则甲做一天后乙做2天要做 :1/3-1/4=1/12

那么乙一天做 :[1/12-1/72×3]/2=1/48

则丙一天做 :1/16-1/72-1/48=1/36

则余下的由丙做要 :[1-5/6]÷1/36=6天

答:还需要6天

7. 股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。老王10月8日以股票10.65元的价格买进一种科技股票3000股,

8. 某书店老板去图书批发市场购买某种图书,第一次购书用100元,按该书定价2.8元出售,很快售完。第二次购书时,每本的批发价比第一次增多了0.5元,用去150元,所购数量比第一次多10本,当这批书售出4/5时出现滞销,便以定价的5折售完剩余图书。试问该老板第二次售书是赔钱还是赚钱,若赔,赔多少,若赚,赚多少

答案

(100+40)/2.8=50本 100/50=2 150/(2+0.5)=60本 60*80%=48本 48*2.8+2.8*50*12-150=1.2 盈利1.2元

一件工程原计划40人做,15天完成.如果要提前3天完成,需要增加多少人 解: 设需要增加x人

(40+x)(15-3)=40*15

x=10

所以需要增加10了

9. 仓库有一批货物,运走的货物与剩下的货物的质量比为2:7.如果又运走64吨,那么剩下的货物只有仓库原有货物的五分之三。仓库原有货物多少吨?

解:第1次运走:2/(2+7)=2/9.

64/(1-2/9-3/5)=360吨。

答:原仓库有360吨货物。

10. 育才小学原来体育达标人数与未达标人数比是3:5,后来又有60名同学达标,这时达标人数是未达标人数的9/11,育才小学共有学生多少人?

答案

原来达标人数占总人数的

3÷(3+5)=3/8

现在达标人数占总人数的

9/11÷(1+9/11)=9/20

育才小学共有学生

60÷(9/20-3/8)=800人

11. 小王,小李,小张三人做数学练习题,小王做的题数的一半等于小李的1/3,等于小张的1/8,而且小张比小王多做了72道,小王,小张,小李各做多少道? 答案

设小王做了a道,小李做了b道,小张做了c道

由题意1/2a=1/3b=1/8c

c-a=72

解得a=24 b=36 c=96

12. 甲乙二人共同完成242个机器零件。甲做一个零件要6分钟,乙做一个零件要5分钟。完成这批零件时,两人各做了多少个零件?

答案

设甲做了X个,则乙做了(242-X)个

6X=5(242-X)

X=110

242-110=132(个)

答:甲做了110个,乙做了132个

13. 某工会男女会员的人数之比是3:2,分为甲乙丙三组,已知甲乙丙三组人数之比是10:8:7,甲组中男女比是3:1,乙组中男女比是5:3。求丙组男女人数之比 答案

设男会员是3N,则女会员是2N,总人是:5N

甲组有:5N*10/[10+8+7]=2N,其中:男:2N*3/4=3N/2,女:2N*1/4=N/2 乙级有:5N*8/25=8/5N,其中男:8/5N*5/8=N,女:8/5N*3/8=3/5N

丙级有:5N*7/25=7/5N

丙级中男有:3N-3N/2-N=N/2,女有:2N-N/2-3/5N=9/10N

那么丙组中男女之比是:N/2:9/10N=5:9

14. 甲乙丙三个村合修一条水渠,修完后,甲乙丙村可灌溉的面积比是8:7:5原来三个村计划按可灌溉的面积比派出劳力,后来因为丙村抽不出劳力,经协商,丙村应抽出的劳力由甲乙两村分担,丙村付给甲乙两村工钱1350元,结果,甲村共派出60人,乙村共派出40人,问甲乙两村各应分得工钱多少元?

答案

原来达标人数占总人数的

3÷(3+5)=3/8

现在达标人数占总人数的

9/11÷(1+9/11)=9/20

育才小学共有学生

60÷(9/20-3/8)=800人

11. 小王,小李,小张三人做数学练习题,小王做的题数的一半等于小李的1/3,等于小张的1/8,而且小张比小王多做了72道,小王,小张,小李各做多少道? 答案

设小王做了a道,小李做了b道,小张做了c道

由题意1/2a=1/3b=1/8c

c-a=72

解得a=24 b=36 c=96

12. 甲乙二人共同完成242个机器零件。甲做一个零件要6分钟,乙做一个零件要5分钟。完成这批零件时,两人各做了多少个零件?

答案

设甲做了X个,则乙做了(242-X)个

6X=5(242-X)

X=110

242-110=132(个)

答:甲做了110个,乙做了132个

13. 某工会男女会员的人数之比是3:2,分为甲乙丙三组,已知甲乙丙三组人数之比是10:8:7,甲组中男女比是3:1,乙组中男女比是5:3。求丙组男女人数之比 答案

设男会员是3N,则女会员是2N,总人是:5N

甲组有:5N*10/[10+8+7]=2N,其中:男:2N*3/4=3N/2,女:2N*1/4=N/2 乙级有:5N*8/25=8/5N,其中男:8/5N*5/8=N,女:8/5N*3/8=3/5N

丙级有:5N*7/25=7/5N

丙级中男有:3N-3N/2-N=N/2,女有:2N-N/2-3/5N=9/10N

那么丙组中男女之比是:N/2:9/10N=5:9

14. 甲乙丙三个村合修一条水渠,修完后,甲乙丙村可灌溉的面积比是8:7:5原来三个村计划按可灌溉的面积比派出劳力,后来因为丙村抽不出劳力,经协商,丙村应抽出的劳力由甲乙两村分担,丙村付给甲乙两村工钱1350元,结果,甲村共派出60人,乙村共派出40人,问甲乙两村各应分得工钱多少元?

答案:根据甲乙丙村可灌溉的面积比算出总份数:8+7+5=20份

20=5人 每份需要的人数:(60+40)÷

5=40人,多出劳力人数:60-40=20人 甲村需要的人数:8×

5=35人,多出劳力人数:40-35=5人 乙村需要的人数:7×

5=25人 或 20+5=25人 丙村需要的人数:5×

25=54元 每人应得的钱数:1350÷

20=1080元 甲村应得的工钱:54×

5=270元 乙村应得的工钱: 54×

15. 李明的爸爸经营已个水果店,按开始的定价,每买出1千克水果,可获利0.2元。后来李明建议爸爸降价销售,结果降价后每天的销量增加了1倍,每天获利比原来增加了50%。问:每千克水果降价多少元?

答案

设以前卖出X 降价a 那么0.2X * (1+0.5)=(0.2-a) * 2x

则0.1X=2aX a=0.05

16. .哈利.波特参加数学竞赛,他一共得了68分。评分的标准是:每做对一道得20分,每做错一道倒扣6分。已知他做对题的数量是做错题的两倍,并且所有的题他都做了,请问这套试卷共有多少道题?

解:设哈利波特答对2X题,答错X题

20×2X-6X=68

40X-6X=68

34X=68

X=2

答对:2×2=4题

共有:4+2=6题

17. 爸爸妈妈和奶奶乘飞机去旅行,三人所带行李的质量都超过了可免费携带行李的质量,要另付行李费,三人共付了4元,而三人行李共重150千克,如果这些行李让一个人带,那么除了免费部分,应另付行李费8元,求每人可免费携带行李的质量。

答案

设可免费携带的重量为x kg,则:

(150-3x)/4=(150-x)/8 //等式两边非免费部分单价相同;

解方程:x=30

15人,还剩9人,如果每船坐18人,刚17. 一队少先队员乘船过河,如果每船坐

好剩余1只船,求有多少只船?

答案

解法一:

设船数为X,则

(15X+9)/18=X-1

15X+9=18X-18

27=3X

X=9

答:有9只船。

解法二:

(15+9)÷(18-15)=8只船 --每船坐18人时坐了8只船

8+1=9只船

18. 建筑工地有两堆沙子,一堆比2堆多85吨,两堆沙子各用去30吨后,一堆剩的是2堆的2倍,两堆沙子原来各有多少吨?

答案

设2堆为X吨,则一堆为X+85吨

X+85-30=2(X-30)

x=115(2堆)

x+85=115+85=200(1堆)

19. 自然数1-100排列,用长方形框出二行六个数,六个数和为432,问这六个数最小的是几

答案

六个数分别是46 47 48 96 97 98

20. 甲乙两地相距420千米,其中一段路面铺了柏油,另一段是泥土路.一辆汽车从甲地驶到乙地用了8小时,已知在柏油路上行驶的速度是每小时60千米,而在泥土路上的行驶速度是每小时40千米.泥土路长多少千米?

答案

两段路所用时间共8小时。

柏油路时间:(420-x)÷60

泥土路时间: x÷40

7-(x÷60)+(x÷40)=8

有x÷120=1

所以x=120

21. 一少先队中队去野营,炊事员问多少人,中队长答: 一个人一个碗,两个人一只菜碗,三个人一只汤碗,放在你这儿有55只碗,你算算有多少人?

设有x个人

x+x/2+x/3=55

x=30

22. 学校购买840本图书分给高、中、低三个年级段,高年级段分的是低年级段的2倍,中年级段分的是低年级段的3倍少120本。三个年级段各分得多少本图书?

设低年级段分得x本书,则高年级段分得2x本,中年级段分得(3x-120)本 x+2x+3x-120=840

6x-120=840

6x=840+120

6x=960

x=960/6

x=160

高年级段为:160*2=320( 本) 中年级段为:160*3-120=360(本)

答:低年级段分得图书160本,中年级段分得图书360本,高年级段分得图书320本.

23. 学校田径组原来女生人数占1/3,后来又有6名女生参加进来,这样女生就占田径组总人数的4/9。现在田径组有女生多少人?

解 设 原来田径队男女生一共x人

1/3x+6= 4/9(x+6)

x=30

1/3x+6=30*1/3+6=16

女生16人

24. 小华有连环画本数是小明6倍如果两人各再买2本那么小华所有本数是小明4倍两人原来各有连环画多少本?

解:设小华的有x本书

4(x+2)=6x+2

4x+8=6x+2

x=3

6x=18

小春一家四口人今年的年龄之和为147岁,爷爷比爸爸大38岁,妈妈比小春大27岁,爷爷的年龄是小春与妈妈年龄之和的2倍。小春一家四口人的年龄各是多少?

答案

1

设小春x岁,则妈妈x+27岁,爷爷(x+x+27)*2=4x+54岁,爸爸4x+54-38=4x+16岁

x+x+27+4x+54+4x+16=147,x=5

所以小春5岁,妈妈32岁,爷爷74岁,爸爸36岁。

2

爷爷+爸爸+(妈妈+小春)

=爷爷+(爷爷-38)+(爷爷/2)=147

爷爷=74岁

爸爸=36岁

妈妈+小春=小春+27+小春=74/2=37

小春=5岁

妈妈=5+27=32岁

小春一家四口人的年龄各是74,36,32,5岁

3

(147+38)÷(2×2+1)=37(岁)

36×2=74(岁) 爷爷的年龄

74-38=36(岁) 爸爸的年龄

(37+27)÷2=32(岁) 妈妈的年龄

32-27=5(岁) 小华的年龄

甲乙两校共有22人参加竞赛,甲校参加人数的5分之1比乙校参加人数的4分之1少1人,甲乙两校各多少人参赛?

解:设甲校有x人参加,则乙校有(22-x)人参加。

0.2 x=(22-x)×0.25-1

0.2x=5.5-0.25x-1

0.45x=4.5

x=10

22-10=12(人)

答: 甲校有10人参加,乙校有12人参加。

在浓度为40%的盐水中加入千克水,浓度变为30%,再加入多千克盐,浓度变为50%?

答案1

设原有盐水x千克,则有盐40%x千克,所以根据关系列出方程:

(40%x)/(x+1)=30% 得出x=3,再设须加入y千克盐,则有方程:

(1.2+y)/(4+y)=50%得出y=1.6

54比45多20%,算法,设所求为x,x(1+20%)=54 算出结果45

答案2

设原有溶液为x千克,加入y千克盐后,浓度变为50%

由题意,得溶质为40%x,则有

40%x/(x+5)=30%

解之得

x=15千克

则溶质有15*40%=6千克

由题意,得

(6+y)/(15+5+y)=50%

解之得

y=8千克

故再加入8千克盐,浓度变为50%

某人到商店买红蓝两种钢笔,红钢笔定价5元,蓝钢笔定价9元,由于购买量较多,商店给予优惠,红钢笔八五折,蓝钢笔八折,结果此人付的钱比原来节省的18%,已知他买了蓝钢笔30枝,那么。他买了几支红钢笔?

答案

红笔买了x支。

(5x+30×9)×(1-18%)=5x×0.85+30×9×0.8

x=36.

甲说:“我乙丙共有100元。”乙说:“如果甲的钱是现有的6倍,我的钱是现有的1/3,丙的钱不变,我们仍有钱100元。”丙说:“我的钱都没有30元。”三人原来各有多少钱?

答案

乙的话表明:甲钱5倍与乙钱2/3一样多

所以,乙钱是3*5=15的倍数,甲钱是偶数

丙钱不足30,所以,甲乙钱和多于70,

而乙多于甲的6倍,

所以,乙多于60

设乙=75,甲=75*2/3÷5=10,丙=100-10-75=15

设乙=90,甲=90*2/3÷5=12,90+12>100,不行

所以,三人原来:甲10元,乙75元,丙15元

某厂向银行申请甲乙两种贷款共30万,每年需支付利息4万元,甲种贷款年利率为12%,乙种贷款年利率为14%,该厂申请甲乙两种贷款金额各多少元?

答案

设:甲厂申请贷款金额x万元,则乙厂申请贷款金额(30-x)万元。

列式:x*0.12+(30-x)*0.14=4

化简:4.2-0.02x=4

0.02x=0.2

解得:x=10(万元)

某书店对顾客有一项优惠,凡购买同一种书100本以上,就按书价的90%收款。某学校到书店购买甲、乙两种书,其中乙种书的册数是甲种书册数的3/5只有甲种书得到了90%的优惠。其中买甲种书所付的钱数是买乙种书所付钱数的2倍。已知乙种书每本1.5元,那么甲种书每本定价多少元?

答案1

根据题意,

甲种超过了100本,乙种不到100 本

甲乙花的总钱数比为2:1

那么甲打折以前,和乙的总钱数比为:

(2÷0.9):1=20:9

甲乙册数比为5:3

甲乙单价比为(20÷5):(9÷3)=4:3

优惠前,甲种每本:1.5×4/3=2元

答案2

答案

设甲买了x本,则乙为3/5x,x>100

买乙共付了:3/5x*1.5=0.9x元

则甲共付了:0.9x*2=1.8x元

所以甲优惠后每本为:1.8x/x=1.8元

则优惠前:1.8/0.9=2元

两支成分不同的蜡烛,其中1支以均匀速度燃烧,2小时烧完,另一支可以燃烧3小时,傍晚6时半同时点燃蜡烛,到什么1支剩余部分正好是另一支剩余的2倍? 答案

两支蜡烛分别设为A蜡烛和B蜡烛,其中A蜡烛是那支烧得快点的

A蜡烛,两小时烧完,那么每小时燃烧1/2

B蜡烛,三小时烧完,那么每小时燃烧1/3

设过了x小时以后,B蜡烛剩余的部分是A的两倍

2(1—x/2)=1—x/3

解得x=1.5

由于是6点半开始的,所以到8点的时候刚刚好

学校组织春游,同学们下午1点从学校出发,走了一段平路,爬了一座山后按原路返回,下午七点回到学校。已知他们的步行速度平路4Km/小时,爬山3Km/小时,下山为6Km/小时,返回时间为2.5时。问:他们一共行了多少路

答案1

设走的平路是X公里 山路是Y公里

因为1点到七点共用时间6小时 返回为2.5小时 则去时用3.5小时

Y/3-Y/6=1小时

Y=6公里

去时共用3.5小时 则X/4+Y/3=3.5 X=6

所以总路程为2(6+6)=24km

答案2

解:春游共用时:7:00-1:00=6(小时)

上山用时:6-2.5=3.5(小时)

上山多用:3.5-2.5=1(小时)

山路:(6-3)×1÷(3÷6)=6(千米)

下山用时:6÷6=1(小时)

平路:(2.5-1)×4=6(千米)

单程走路:6+6=12(千米)

共走路:12×2=24(千米)

答:他们共走24千米。

优品教育黄阁翠苑校区教案

教案:

1.电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?

解:设一张电影票价x元

(x-3)×(1+1/2)=(1+1/5)x

(1+1/5)x这一步是什么意思,为什么这么做

(x-3){现在电影票的单价}×(1+1/2){假如原来观众总数为整体1,则现在的观众人数为(1+2/1)}

左边算式求出了总收入

(1+1/5)x{其实这个算式应该是:1x*(1+5/1) 把原观众人数看成整体1,则原来应收入1x元,而现在增加了原来的五分之一,就应该再*(1+5/1),减缩后得到(1+1/5x)}

如此计算后得到总收入,使方程左右相等

2.甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。这时两人钱相等,求 乙的存款

解: 取40%后,存款有9600×(1-40%)=5760(元)

这时,乙有:5760÷2+120=3000(元)

乙原来有:3000÷(1-40%)=5000(元)

3.由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?

解:加10颗奶糖,巧克力占总数的60%,说明此时奶糖占40%,

巧克力是奶糖的60/40=1。5倍

再增加30颗巧克力,巧克力占75%,奶糖占25%,巧克力是奶糖的3倍 增加了3-1.5=1.5倍,说明30颗占1.5倍

奶糖=30/1.5=20颗

巧克力=1.5*20=30颗

奶糖=20-10=10颗

4.小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了。”小明原有玻璃球多少个?

答案

小明说:“你有球的个数比我少1/4!”,则想成小明的球的个数为4份,则小亮的球的个数为3份

4*1/6=2/3 (小明要给小亮2/3份玻璃球)

小明还剩:4-2/3=3又1/3(份)

小亮现有:3+2/3=3又2/3(份)

这多出来的1/3份对应的量为2,则一份里有:3*2=6(个)

小明原有4份玻璃球,又知每份玻璃球为6个,则小明原有玻璃球4*6=24(个)

5.搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?

解:设搬运一个仓库的货物的工作量是1.现在相当于三人共同完成工作量2,所需时间是

答:丙帮助甲搬运3小时,帮助乙搬运5小时

解本题的关键,是先算出三人共同搬运两个仓库的时间.本题计算当然也可以整数化,设搬运一个仓库全部工作量为 60.甲每小时搬运 6,乙每小时搬运 5,丙每小时搬运4 三人共同搬完,需要

60 × 2÷(6+ 5+ 4)= 8(小时)

甲需丙帮助搬运

(60- 6× 8)÷ 4= 3(小时)

乙需丙帮助搬运

(60- 5× 8)÷4= 5(小时)

6. 一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天?

解: 甲乙丙3人8天完成 :5/6-1/3=1/2

甲乙丙3人每天完成 :1/2÷8=1/16,

甲乙丙3人4天完成 :1/16×4=1/4

则甲做一天后乙做2天要做 :1/3-1/4=1/12

那么乙一天做 :[1/12-1/72×3]/2=1/48

则丙一天做 :1/16-1/72-1/48=1/36

则余下的由丙做要 :[1-5/6]÷1/36=6天

答:还需要6天

7. 股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。老王10月8日以股票10.65元的价格买进一种科技股票3000股,

8. 某书店老板去图书批发市场购买某种图书,第一次购书用100元,按该书定价2.8元出售,很快售完。第二次购书时,每本的批发价比第一次增多了0.5元,用去150元,所购数量比第一次多10本,当这批书售出4/5时出现滞销,便以定价的5折售完剩余图书。试问该老板第二次售书是赔钱还是赚钱,若赔,赔多少,若赚,赚多少

答案

(100+40)/2.8=50本 100/50=2 150/(2+0.5)=60本 60*80%=48本 48*2.8+2.8*50*12-150=1.2 盈利1.2元

一件工程原计划40人做,15天完成.如果要提前3天完成,需要增加多少人 解: 设需要增加x人

(40+x)(15-3)=40*15

x=10

所以需要增加10了

9. 仓库有一批货物,运走的货物与剩下的货物的质量比为2:7.如果又运走64吨,那么剩下的货物只有仓库原有货物的五分之三。仓库原有货物多少吨?

解:第1次运走:2/(2+7)=2/9.

64/(1-2/9-3/5)=360吨。

答:原仓库有360吨货物。

10. 育才小学原来体育达标人数与未达标人数比是3:5,后来又有60名同学达标,这时达标人数是未达标人数的9/11,育才小学共有学生多少人?

答案

原来达标人数占总人数的

3÷(3+5)=3/8

现在达标人数占总人数的

9/11÷(1+9/11)=9/20

育才小学共有学生

60÷(9/20-3/8)=800人

11. 小王,小李,小张三人做数学练习题,小王做的题数的一半等于小李的1/3,等于小张的1/8,而且小张比小王多做了72道,小王,小张,小李各做多少道? 答案

设小王做了a道,小李做了b道,小张做了c道

由题意1/2a=1/3b=1/8c

c-a=72

解得a=24 b=36 c=96

12. 甲乙二人共同完成242个机器零件。甲做一个零件要6分钟,乙做一个零件要5分钟。完成这批零件时,两人各做了多少个零件?

答案

设甲做了X个,则乙做了(242-X)个

6X=5(242-X)

X=110

242-110=132(个)

答:甲做了110个,乙做了132个

13. 某工会男女会员的人数之比是3:2,分为甲乙丙三组,已知甲乙丙三组人数之比是10:8:7,甲组中男女比是3:1,乙组中男女比是5:3。求丙组男女人数之比 答案

设男会员是3N,则女会员是2N,总人是:5N

甲组有:5N*10/[10+8+7]=2N,其中:男:2N*3/4=3N/2,女:2N*1/4=N/2 乙级有:5N*8/25=8/5N,其中男:8/5N*5/8=N,女:8/5N*3/8=3/5N

丙级有:5N*7/25=7/5N

丙级中男有:3N-3N/2-N=N/2,女有:2N-N/2-3/5N=9/10N

那么丙组中男女之比是:N/2:9/10N=5:9

14. 甲乙丙三个村合修一条水渠,修完后,甲乙丙村可灌溉的面积比是8:7:5原来三个村计划按可灌溉的面积比派出劳力,后来因为丙村抽不出劳力,经协商,丙村应抽出的劳力由甲乙两村分担,丙村付给甲乙两村工钱1350元,结果,甲村共派出60人,乙村共派出40人,问甲乙两村各应分得工钱多少元?

答案

原来达标人数占总人数的

3÷(3+5)=3/8

现在达标人数占总人数的

9/11÷(1+9/11)=9/20

育才小学共有学生

60÷(9/20-3/8)=800人

11. 小王,小李,小张三人做数学练习题,小王做的题数的一半等于小李的1/3,等于小张的1/8,而且小张比小王多做了72道,小王,小张,小李各做多少道? 答案

设小王做了a道,小李做了b道,小张做了c道

由题意1/2a=1/3b=1/8c

c-a=72

解得a=24 b=36 c=96

12. 甲乙二人共同完成242个机器零件。甲做一个零件要6分钟,乙做一个零件要5分钟。完成这批零件时,两人各做了多少个零件?

答案

设甲做了X个,则乙做了(242-X)个

6X=5(242-X)

X=110

242-110=132(个)

答:甲做了110个,乙做了132个

13. 某工会男女会员的人数之比是3:2,分为甲乙丙三组,已知甲乙丙三组人数之比是10:8:7,甲组中男女比是3:1,乙组中男女比是5:3。求丙组男女人数之比 答案

设男会员是3N,则女会员是2N,总人是:5N

甲组有:5N*10/[10+8+7]=2N,其中:男:2N*3/4=3N/2,女:2N*1/4=N/2 乙级有:5N*8/25=8/5N,其中男:8/5N*5/8=N,女:8/5N*3/8=3/5N

丙级有:5N*7/25=7/5N

丙级中男有:3N-3N/2-N=N/2,女有:2N-N/2-3/5N=9/10N

那么丙组中男女之比是:N/2:9/10N=5:9

14. 甲乙丙三个村合修一条水渠,修完后,甲乙丙村可灌溉的面积比是8:7:5原来三个村计划按可灌溉的面积比派出劳力,后来因为丙村抽不出劳力,经协商,丙村应抽出的劳力由甲乙两村分担,丙村付给甲乙两村工钱1350元,结果,甲村共派出60人,乙村共派出40人,问甲乙两村各应分得工钱多少元?

答案:根据甲乙丙村可灌溉的面积比算出总份数:8+7+5=20份

20=5人 每份需要的人数:(60+40)÷

5=40人,多出劳力人数:60-40=20人 甲村需要的人数:8×

5=35人,多出劳力人数:40-35=5人 乙村需要的人数:7×

5=25人 或 20+5=25人 丙村需要的人数:5×

25=54元 每人应得的钱数:1350÷

20=1080元 甲村应得的工钱:54×

5=270元 乙村应得的工钱: 54×

15. 李明的爸爸经营已个水果店,按开始的定价,每买出1千克水果,可获利0.2元。后来李明建议爸爸降价销售,结果降价后每天的销量增加了1倍,每天获利比原来增加了50%。问:每千克水果降价多少元?

答案

设以前卖出X 降价a 那么0.2X * (1+0.5)=(0.2-a) * 2x

则0.1X=2aX a=0.05

16. .哈利.波特参加数学竞赛,他一共得了68分。评分的标准是:每做对一道得20分,每做错一道倒扣6分。已知他做对题的数量是做错题的两倍,并且所有的题他都做了,请问这套试卷共有多少道题?

解:设哈利波特答对2X题,答错X题

20×2X-6X=68

40X-6X=68

34X=68

X=2

答对:2×2=4题

共有:4+2=6题

17. 爸爸妈妈和奶奶乘飞机去旅行,三人所带行李的质量都超过了可免费携带行李的质量,要另付行李费,三人共付了4元,而三人行李共重150千克,如果这些行李让一个人带,那么除了免费部分,应另付行李费8元,求每人可免费携带行李的质量。

答案

设可免费携带的重量为x kg,则:

(150-3x)/4=(150-x)/8 //等式两边非免费部分单价相同;

解方程:x=30

15人,还剩9人,如果每船坐18人,刚17. 一队少先队员乘船过河,如果每船坐

好剩余1只船,求有多少只船?

答案

解法一:

设船数为X,则

(15X+9)/18=X-1

15X+9=18X-18

27=3X

X=9

答:有9只船。

解法二:

(15+9)÷(18-15)=8只船 --每船坐18人时坐了8只船

8+1=9只船

18. 建筑工地有两堆沙子,一堆比2堆多85吨,两堆沙子各用去30吨后,一堆剩的是2堆的2倍,两堆沙子原来各有多少吨?

答案

设2堆为X吨,则一堆为X+85吨

X+85-30=2(X-30)

x=115(2堆)

x+85=115+85=200(1堆)

19. 自然数1-100排列,用长方形框出二行六个数,六个数和为432,问这六个数最小的是几

答案

六个数分别是46 47 48 96 97 98

20. 甲乙两地相距420千米,其中一段路面铺了柏油,另一段是泥土路.一辆汽车从甲地驶到乙地用了8小时,已知在柏油路上行驶的速度是每小时60千米,而在泥土路上的行驶速度是每小时40千米.泥土路长多少千米?

答案

两段路所用时间共8小时。

柏油路时间:(420-x)÷60

泥土路时间: x÷40

7-(x÷60)+(x÷40)=8

有x÷120=1

所以x=120

21. 一少先队中队去野营,炊事员问多少人,中队长答: 一个人一个碗,两个人一只菜碗,三个人一只汤碗,放在你这儿有55只碗,你算算有多少人?

设有x个人

x+x/2+x/3=55

x=30

22. 学校购买840本图书分给高、中、低三个年级段,高年级段分的是低年级段的2倍,中年级段分的是低年级段的3倍少120本。三个年级段各分得多少本图书?

设低年级段分得x本书,则高年级段分得2x本,中年级段分得(3x-120)本 x+2x+3x-120=840

6x-120=840

6x=840+120

6x=960

x=960/6

x=160

高年级段为:160*2=320( 本) 中年级段为:160*3-120=360(本)

答:低年级段分得图书160本,中年级段分得图书360本,高年级段分得图书320本.

23. 学校田径组原来女生人数占1/3,后来又有6名女生参加进来,这样女生就占田径组总人数的4/9。现在田径组有女生多少人?

解 设 原来田径队男女生一共x人

1/3x+6= 4/9(x+6)

x=30

1/3x+6=30*1/3+6=16

女生16人

24. 小华有连环画本数是小明6倍如果两人各再买2本那么小华所有本数是小明4倍两人原来各有连环画多少本?

解:设小华的有x本书

4(x+2)=6x+2

4x+8=6x+2

x=3

6x=18

小春一家四口人今年的年龄之和为147岁,爷爷比爸爸大38岁,妈妈比小春大27岁,爷爷的年龄是小春与妈妈年龄之和的2倍。小春一家四口人的年龄各是多少?

答案

1

设小春x岁,则妈妈x+27岁,爷爷(x+x+27)*2=4x+54岁,爸爸4x+54-38=4x+16岁

x+x+27+4x+54+4x+16=147,x=5

所以小春5岁,妈妈32岁,爷爷74岁,爸爸36岁。

2

爷爷+爸爸+(妈妈+小春)

=爷爷+(爷爷-38)+(爷爷/2)=147

爷爷=74岁

爸爸=36岁

妈妈+小春=小春+27+小春=74/2=37

小春=5岁

妈妈=5+27=32岁

小春一家四口人的年龄各是74,36,32,5岁

3

(147+38)÷(2×2+1)=37(岁)

36×2=74(岁) 爷爷的年龄

74-38=36(岁) 爸爸的年龄

(37+27)÷2=32(岁) 妈妈的年龄

32-27=5(岁) 小华的年龄

甲乙两校共有22人参加竞赛,甲校参加人数的5分之1比乙校参加人数的4分之1少1人,甲乙两校各多少人参赛?

解:设甲校有x人参加,则乙校有(22-x)人参加。

0.2 x=(22-x)×0.25-1

0.2x=5.5-0.25x-1

0.45x=4.5

x=10

22-10=12(人)

答: 甲校有10人参加,乙校有12人参加。

在浓度为40%的盐水中加入千克水,浓度变为30%,再加入多千克盐,浓度变为50%?

答案1

设原有盐水x千克,则有盐40%x千克,所以根据关系列出方程:

(40%x)/(x+1)=30% 得出x=3,再设须加入y千克盐,则有方程:

(1.2+y)/(4+y)=50%得出y=1.6

54比45多20%,算法,设所求为x,x(1+20%)=54 算出结果45

答案2

设原有溶液为x千克,加入y千克盐后,浓度变为50%

由题意,得溶质为40%x,则有

40%x/(x+5)=30%

解之得

x=15千克

则溶质有15*40%=6千克

由题意,得

(6+y)/(15+5+y)=50%

解之得

y=8千克

故再加入8千克盐,浓度变为50%

某人到商店买红蓝两种钢笔,红钢笔定价5元,蓝钢笔定价9元,由于购买量较多,商店给予优惠,红钢笔八五折,蓝钢笔八折,结果此人付的钱比原来节省的18%,已知他买了蓝钢笔30枝,那么。他买了几支红钢笔?

答案

红笔买了x支。

(5x+30×9)×(1-18%)=5x×0.85+30×9×0.8

x=36.

甲说:“我乙丙共有100元。”乙说:“如果甲的钱是现有的6倍,我的钱是现有的1/3,丙的钱不变,我们仍有钱100元。”丙说:“我的钱都没有30元。”三人原来各有多少钱?

答案

乙的话表明:甲钱5倍与乙钱2/3一样多

所以,乙钱是3*5=15的倍数,甲钱是偶数

丙钱不足30,所以,甲乙钱和多于70,

而乙多于甲的6倍,

所以,乙多于60

设乙=75,甲=75*2/3÷5=10,丙=100-10-75=15

设乙=90,甲=90*2/3÷5=12,90+12>100,不行

所以,三人原来:甲10元,乙75元,丙15元

某厂向银行申请甲乙两种贷款共30万,每年需支付利息4万元,甲种贷款年利率为12%,乙种贷款年利率为14%,该厂申请甲乙两种贷款金额各多少元?

答案

设:甲厂申请贷款金额x万元,则乙厂申请贷款金额(30-x)万元。

列式:x*0.12+(30-x)*0.14=4

化简:4.2-0.02x=4

0.02x=0.2

解得:x=10(万元)

某书店对顾客有一项优惠,凡购买同一种书100本以上,就按书价的90%收款。某学校到书店购买甲、乙两种书,其中乙种书的册数是甲种书册数的3/5只有甲种书得到了90%的优惠。其中买甲种书所付的钱数是买乙种书所付钱数的2倍。已知乙种书每本1.5元,那么甲种书每本定价多少元?

答案1

根据题意,

甲种超过了100本,乙种不到100 本

甲乙花的总钱数比为2:1

那么甲打折以前,和乙的总钱数比为:

(2÷0.9):1=20:9

甲乙册数比为5:3

甲乙单价比为(20÷5):(9÷3)=4:3

优惠前,甲种每本:1.5×4/3=2元

答案2

答案

设甲买了x本,则乙为3/5x,x>100

买乙共付了:3/5x*1.5=0.9x元

则甲共付了:0.9x*2=1.8x元

所以甲优惠后每本为:1.8x/x=1.8元

则优惠前:1.8/0.9=2元

两支成分不同的蜡烛,其中1支以均匀速度燃烧,2小时烧完,另一支可以燃烧3小时,傍晚6时半同时点燃蜡烛,到什么1支剩余部分正好是另一支剩余的2倍? 答案

两支蜡烛分别设为A蜡烛和B蜡烛,其中A蜡烛是那支烧得快点的

A蜡烛,两小时烧完,那么每小时燃烧1/2

B蜡烛,三小时烧完,那么每小时燃烧1/3

设过了x小时以后,B蜡烛剩余的部分是A的两倍

2(1—x/2)=1—x/3

解得x=1.5

由于是6点半开始的,所以到8点的时候刚刚好

学校组织春游,同学们下午1点从学校出发,走了一段平路,爬了一座山后按原路返回,下午七点回到学校。已知他们的步行速度平路4Km/小时,爬山3Km/小时,下山为6Km/小时,返回时间为2.5时。问:他们一共行了多少路

答案1

设走的平路是X公里 山路是Y公里

因为1点到七点共用时间6小时 返回为2.5小时 则去时用3.5小时

Y/3-Y/6=1小时

Y=6公里

去时共用3.5小时 则X/4+Y/3=3.5 X=6

所以总路程为2(6+6)=24km

答案2

解:春游共用时:7:00-1:00=6(小时)

上山用时:6-2.5=3.5(小时)

上山多用:3.5-2.5=1(小时)

山路:(6-3)×1÷(3÷6)=6(千米)

下山用时:6÷6=1(小时)

平路:(2.5-1)×4=6(千米)

单程走路:6+6=12(千米)

共走路:12×2=24(千米)

答:他们共走24千米。


相关内容

  • 数学教学网站大全
  • 数学123 中国数学在线 海天数学网 广东中山市中学数学网 中数网 奥数网 港中数学苑 草中数学 中小学数学教学资源网 数学110 中学数学在线 大榕树高中数学 初中数学乐园 数学动力网 数学456资源网 悠悠数学资源网 中学数学网 初中数学网 初中数学动力网 小学数学试卷网 中学数学交流园地 ss ...

  • 推荐老师的数学杂志
  • 请各位老师推荐一下关于数学的好刊物好吗?(最好附上特点) 我订的杂志有: [1]数学教育学报(天津):国内数学教育论文格式最规范的杂志,可当作论文范例,有很多大学教师.研究生关于数学教育的论文,学术性堪称国内一流. [2]数学教学(华东师大):在国际数学教育发展方向的介绍方面,在国内无人可比,欲了解 ...

  • 小学生趣味数学题百题汇编
  • 小学生趣味数学题二百一十六(自古英雄出少年) 小学生趣味数学题二百一十五(小玩意大智慧) 小学生趣味数学题二百一十四(编制密码) 小学生趣味数学题二百一十三(不言自明) 小学生趣味数学题二百一十二(西游记中的倒数诗) 小学生趣味数学题二百一十一(镜花缘迷题) 小学生趣味数学题二百零十(文学家解数学题 ...

  • 中学数学教学参考资料
  • 中学数学教学参考资料 ·MA 教育理论 MA1 教育研究 MA11 教育改革(教材改革及分析) MA111 教学计划 MA112 课程标准 ·对<" 高中数学课程标准" 的框架设想>的思考/李世杰.候万胜.吴卫国//<中学教研(数学)>2003.3第1页 ...

  • 试探竞赛数学的产生和发展
  • 试探竞赛数学的产生和发展 试探竞赛数学的产生和发展内容摘要:随着数学竞赛的发展,已逐渐形成一门特殊的数学学科-竞赛数学,也可称为奥林匹克数学.将高等数学下放到初等数学中去,用初等数学的语言来表述高等数学的问题,并用初等数学方法来解决这些问题,这就是竞赛数学的任务.这里的问题甚至解法的背景往往来源于某 ...

  • 16 影响大学生数学成绩的三因素研究
  • 第17卷第6期 2008年12月 数 学 教 育 学 报 JOURNAL OF MATHEMATICS EDUCATION Vol.17, No.6 Dec., 2008 影响大学生数学成绩的三因素研究 杨云苏1,王礼胜1,罗润生2 (1.井冈山大学 数理学院,江西 吉安 343009:2.井冈山大 ...

  • 论高观点下的初等数学及其在新课标中的体现
  • 论"高观点"下的初等数学及其在新课标中的 体现 (许昌市第三初级中学 赵永) 1 引言 19世纪末20世纪初, 英国爆发了一场数学改革的运动, 人们称之为"克莱茵---贝利"运动. 在这次运动中, 克莱茵写了<高观点下的初等数学>, 主张加强函数和 ...

  • 小学数学教学彰显数学文化魅力研究 成果报告
  • 学年度 阶段成果报告 <小学数学教学彰显数学文化魅力研究> 成  果  报  告 渠县渠江镇第三小学课题组 [内容摘要]小学数学新课程充满着清新扑面的文化气息.数学文化已不可避免地走进小学数学实践.教学中如何彰显数学文化的魅力,让学生获得终身受益的文化力量,提升数学教育的价值,我们的回答 ...

  • 数学实验的设计与实践
  • 数学实验的设计与实践 一.数学实验的界定 "数学实验(Mathematics Experiment)"是指类似于物理实验.化学实验等的科学实验,结合数学学科的特点,"数学实验"可以界定为:为获得某种数学理论,检验某个数学猜想,解决某类实际问题,而运用一定的物质 ...

  • 浅谈高中数学核心素养
  • 摘 要:数学核心素养是衡量数学教育质量的标准,也是数学教育改革的指挥棒.随着数学课程改革的不断深化,准确把握数学核心素养的内涵,认真分析数学核心素养的特征具有十分重要的意义.本文针对数学核心素养这个热门话题,结合高中学段的特点及国内外学者对其进行的前沿性研究,浅谈对数学核心素养的理解,分析了数学核心 ...