成渝高铁测量工作总结

成渝高铁测量工作总结 GPS 技术在成渝客专的应用

3、 客运专线测量控制网概述

客运专线铁路精密工程测量是相对于传统的铁路工程测量而言,为了保证客运专线铁路非常高的平顺性,轨道测量精度要达到毫米级。其测量方法、测量精度与传统的铁路工程测量完全不同。我们把适合于客运专线铁路工程测量的技术体系称为客运专线铁路精密工程测量。

新建铁路成渝客运专线全长308km 。铁路技术标准为:铁路等级:客运专线;正线数目:双线;正线间距:5m ;旅客列车设计行车速度:250km/h;最小曲线半径:7000m ,进入枢纽可适当减小;限制坡度:20‰;到发线有效长度:650m ;动车组类型:动车组;列车运行控制方式:CTC ;行车指挥方式:调度集中;轨道类型:无砟轨道;结构型式:按CRTS I型板式。

本项目部设计起讫里程DK258+875~DK270+6400,正线全长11.765km 。由于地处重庆低山山脉与丘陵槽谷沿区,且管段内植被茂密通视较差,适于采用GPS 测量技术进行全网加密及RTK 施工测量。 二、GPS

技术发展现状

全球定位系统GPS(GlobalPositioningSystem)是美国陆海空三军联合研制的卫星导航系 统,具有全球性、全天侯、连续性、实时性导航定位和定时功能,能为各类用户提供精密的三维坐标、速度和时间。单点导航定位与相对测地定位是GPS 应用的两

个方面;对常规测量而言相对测地定位是主要的应用方式。

相对测地定位是利用L1和L2载波相位观测值实现高精度测量,其原理是采用载波相位测量 局域差分法:在接收机之间求一次差,在接收机和卫星观测历元之间求二次差,通过两次差分计算解算出待定基线的长度;求解整周模糊度是其关键技术,根据算法 模型,设计了静态、快速静态以及RTK 等作业模式。静态作业模式主要用于地壳变形观测、国家大地测量、大坝变形观测等高精度测量;快

速静态测量以其高效的 作业效率与厘米级精度广泛应用于一般的工程测量;而RTK 测量以其快速实时,厘米级精度等特点广泛应用于数据采集(如碎部测量) 与工程放样中。RTK 技术 代表着GPS

相对测地定位应用的主流。

GPS测地型接收设备是实现测地定位的基本条件,接收机有单频与双频之分,双频机能以L2观测值修正电离 层折射影响,最适宜于中、长基线(大于20km) 测量,具有快速静态测量的功能,可升级为RTK 功能;单频机适宜于小于20km 的短基线测量,对于一般工 程测量具有良好的性能价格比。RTK 系统由GPS 接收设备、无线电通讯设备、电子手薄及配套设备组成,整套设备在轻量化、操作简便性、实时可靠性、厘米级 精度等方面的特点,完全可以满足数据采集和工程放样的要求。鉴于GPS 系统在轨卫星数有限,在对空通视受遮挡的条件下,不能保证正常解算,影响定位的精度 和可靠性。实践表明,单频GPS 系统由于多环境的制约,存在着很大的局限性。随着俄罗斯的全球导航卫星系统(CLONASS)的不断完善,利用 GLONASS来改善GPS 性能的双星座系统(GLONASS+GPS)已由美国Ashtech 公司研制成功,这种全天候、全地域、高精度的系统为用户提 供了更为完善的接收设备,双星座系统的接收设备GPS

接收设备的新水平。

三、静态GPS

技术加密高铁控制网

依据《新建成都至重庆客运专线CPI 、CPII 精密工程控制网测量成果书》,CYSG-5标(中铁二局三公司CYSG-5标项目经理部)管段(DK258+875~DK270+640),于2010年10月, 实施CPII 控制网加密测量。

本次共计9个已知CPI 、CPII 控制点,25个加密CPII 点,加密点名规则为“JM ”开头。

1. 执行技术标准和测量精度 1.1 执行标准和依据

1、《铁路工程卫星定位测量规范》TB10054-2010; 2、《高速铁路工程测量规范》TB10601 —2009; 3、《国家一、二等水准测量规范》GB 12897-2006;

4、中铁第四勘察设计院集团有限公司提供的《成渝客专施工培训材料》2010年9月

5、中铁二院工程集团有限责任公司提供的《成渝客专精密控制测量技术方案》2009年6月;

6、 中铁二局精测队提供《新建铁路成都到重庆客运专线CYSG-5标(DK240+154.2~

DK289+100)精密工程控制网复测技术总结》

1.2 测量精度

根据规范要求,本次控制网加密按GPS 网C 级、铁路三等GPS 精度施测。

2. 测量人员与仪器

2.1测量人员

本次复测由中铁二局集团第三工程有限公司测量队完成,作业证书见附件。参加本次测量的主要人员共计6人, 主要测量人员如下:

2.2 GPS接收机

用于本次复测与加密测量的GPS 测量仪器为3台套Topcon 双频双星接收机,标称精度3mm +0.5ppm 。GPS 接收机及天线均经省级及以上法定计量检定部门检定合格并在检定有效期内。仪器设备进场后,按规范要求统一进行了常规检查,对所有基座水准器和队中器进行了检校,所有仪器设备的精度及其技术状态均满足复测的要求。

加密网按C 级网精度施测,并按边联或网联方式附合到CPI 、CPII 网。按静态相对定位测量模式同步观测。

控制点全部同步观测2个时段,每个时段观测时间>60分钟。

接收机设置观测卫星高度角设为15°, 数据采样间隔设为15s, 满足设计要

求。同步观测的GPS 卫星总数≥7颗,GLONASS 卫星总数为2~5颗。

作业过程中,天线安置严格整平、对中。每时段观测前后分别量取天线高,误差小于2mm ,取两次平均值作为最终结果。 3平面控制网复测成果处理

GPS 数据的基线解算使用随机软件PinnacleVer1.07进行。平面和高程数据转换、控制网数据质量分析、网平差与控制网复测分析,采用中铁二局研制的工程测量数据处理通用软件GSP (2009年11月通过中国中铁股份有限公司评审鉴定),并用Pinnacle 软件进行检核。

3.1 重复基线差检验

按规范要求同一边不同观测时段基线较差要求ds≤2

2σ,

σa 2+(b ⨯D ) 2=2+(1⨯D ) 2为测边距离(单位:km )。

(a 为固定误差=5mm,b 为比例误差=1ppm,D

从统计表中看出,相对较差最大为JM5060~CPI135边,S= 1367.0222 m,差值7.9

3.2 闭合环闭合差检验

GSP 统计出了42个闭合环(均为3边形)的闭合差(详见附件闭合环闭合差统计) ,按规范标准,所有可能的三边形异步环闭合差均满足

W X ≤3σ,W y ≤3σ,W Z ≤3σ,W ≤322σ1、52+(1⨯D ) 22、3a +(b ⨯D ) =

(σ按逐边计算,

22

σ=12+σ2+σ3

)的要求,闭合差值分布数量与百分比统计

结果如下:

独立闭合环最大闭合差(mm )

从统计表中看出,基线向量分量和弦长闭合差均满足规范要求。综合异步环闭合差检验以及重复基线较差检验的结果,均满足规范要求,可确定本次加密网基线解算正确,结果可靠,可用于后续GPS 网平差。

3.3 平差处理

控制网平差处理采用中铁二局精测队开发软件GSP 进行。经做稳定性分析,认为CPI133、CPI135、CPI137、CPI138、CPII522、CPII524、 CPII528 、CPII529、 CPII532控制点均稳定可靠,根据规范规定,采用设计坐标值对加密控制点进行约束平差。

本次测量取CPI135的WGS -

84大地坐标为起算点先进行三维无约束平差,即采用WGS -84

椭球,中央子午线106°,投影面大地高280m 。

三维无约束平差后,加密网最弱点JM5076,Mx= 1.62mm,My=1.41mm, Mz=6.86mm ,Mp=2.15mm;最弱边为CPII522~JM5058,S=164.104m,Ms=0.6mm,ppm=3.42,相对精度K=1/292000

106°带二维约束平差后,加密网最弱点JM5076,Mx= 1.61mm,My=1.18mm Mp=2mm;最弱边为CPII522~JM5058,Ma=1.0″

3.4 加密成果使用注意事项

本次控制网加密测量满足规范精度要求, 加密桩点应妥善保护。使用本成果前,施工单位认真核对,经同精度检测,确认桩点无误和无位移后方可使用;

施工期间应对控制点进行定期检测,对发生位移或沉降的控制点应停止使用,并及时上报或更新其成果。加密控制点应加强保护,由于施工不确定因素,需要破坏控制点时,应及时按规范要求精度进行引测。 四、RTK 技术在施工测量中的应用4.1 实时动态(RTK)定位技术简介

实 时动态(RTK)定位技术是以载波相位观测值为根据的实时差分GPS(RTDGPS)技术,它是GPS 测量技术发展的一个新突破,在铁路、公路工程中有广阔的应 用前景。众所周知,无论静态定位,还是准动态定位等定位模式,

由于数据处理滞后,所以无法实时解算出定位结果,而且也无法对观测数据进行检核,这就难以保 证观测数据的质量,在实际工作中经常需要返工来重测由于粗差造成的不合格观测成果。解决这一问题的主要方法就是延长观测时间来保证测量数据的可靠性,这样 一来就降低了GPS

测量的工作效率。

实时动态定位(RTK)系统由基准站和流动站组成,建立无线数据通讯是实时动态测量的保证,其原理是取点位 精度较高的首级控制点作为基准点,安置一台接收机作为参考站,对卫星进行连续观测,流动站上的接收机在接收卫星信号的同时,通过无线电传输设备接收基准站 上的观测数据,随机计算机根据相对定位的原理实时计算显示出流动站的三维坐标和测量精度。这样用户就可以实时监测待测点的数据观测质量和基线解算结果的收 敛情况,根据待测点的精度指标,

确定观测时间,从而减少冗余观测,提高工作效率。4.2 应用

实时动态(RTK)定位有快速静态定位和动态定位两种测量模式,两种定位模式相结合,在公路工程中的应用可以覆盖公路勘测、施工放样、监理和GIS(地理信息系统)

前端数据采集。4.2.1 快速静态定位模式。

接收机在每一流动站上,静止的进行观测。在观测过程中,同时接收基准站和卫星的同步观测数据,实时解算整周未知数和用户站的三维坐标,如果解算结 果的变化趋于稳定,且其精度已满足设计要求,便可以结束实时观测。一般应用在控制测量中,如控制网加密;若采用常规测量方法(如全站仪测量) ,受客观因素 影响较大,在自然条件比较恶劣的地区实施比较困难,而采用RTK 快速静态测量,可起到事半功倍的效果。单点定位只需要5-10min(随着技术的不断发 展,定位时间还会缩短) ,不及静态测量所需时间的五分之一,在公路测量中

可以代替全站仪完成导线测量等控制点加密工作。4.2.2 动态定位

测量前需要在一控制点上静止观测数分钟(有的仪器只需2~10s) 进行初始化工作,之后流动站就可以按预定的采样间隔自动进行观测,并连同基准站的同步观测数据,实时确定采样点的空间位置。目前,其定位精度可以达到厘米级。 动态定位模式在公路勘测阶段有着广阔的应用前景,可以完成地形图测绘、

中桩测量、横断面测量、纵断面地面线测量等工作。测量2~4S ,精度就可以达到1~3cm ,且整个测量过程不需通视,有着常规测量仪器(如全站仪) 不可比拟的优点。 4.3 RTK

技术的优点

4.3.1 实时动态显示经可靠性检验的厘米级精度的测量成果(包括高程) 。4.3.2 彻底摆脱了由于粗差造成的返工,提高了GPS 作业效率。

4.3.3 作业效率高,每个放样点只需要停留1~2s ,流动站小组作业,每小组(3~4人) 可完成中线测量5~10km 。若用其进行地形测量,每小组每天可以完成0.8~1.5km3

的地形图测绘,其精度和效率是常规测量所无法比拟的。4.3.4

在中线放样的同时完成中桩抄平工作。

4.3.5 应用范围广—可以涵盖铁路、公路测量(包括平、纵、横) ,施工放样,监理,竣工测量,养护测量,GIS

前端数据采集诸多方面。

4.3.6 如辅助相应的软件,RTK 可与全站仪联合作业,充分发挥RTK 与全站仪各自的优势。四、结语

GPS 测量技术在三公司的第一个高铁项目得到应用,得力于领导对测量工作的高度重视和支持。在前期的静态加密和RTK 地亩、桩基放样中作出了不可替代的功劳,由于具有全天候、高精度、适时性等众多优点,相信在以后的工作中会产生更大的效益和作用。

中铁二局成渝客专三分部

谭军

2011-11-30

附:明年测量工作计划安排

2012年测量工作计划安排

一、 保证桥梁支承垫石的高精度放样,按架梁顺序、工作流程逐步推进。 二、 隧道开挖放样、监控量测的准确控制 三、 路基附属放样及时、复核到位。 四、 沉降观测工作按细则要求进行。 五、 内业资料逐步完善归档。

2011-11-30

谭军

中铁二局成渝客专三分部

成渝高铁测量工作总结 GPS 技术在成渝客专的应用

3、 客运专线测量控制网概述

客运专线铁路精密工程测量是相对于传统的铁路工程测量而言,为了保证客运专线铁路非常高的平顺性,轨道测量精度要达到毫米级。其测量方法、测量精度与传统的铁路工程测量完全不同。我们把适合于客运专线铁路工程测量的技术体系称为客运专线铁路精密工程测量。

新建铁路成渝客运专线全长308km 。铁路技术标准为:铁路等级:客运专线;正线数目:双线;正线间距:5m ;旅客列车设计行车速度:250km/h;最小曲线半径:7000m ,进入枢纽可适当减小;限制坡度:20‰;到发线有效长度:650m ;动车组类型:动车组;列车运行控制方式:CTC ;行车指挥方式:调度集中;轨道类型:无砟轨道;结构型式:按CRTS I型板式。

本项目部设计起讫里程DK258+875~DK270+6400,正线全长11.765km 。由于地处重庆低山山脉与丘陵槽谷沿区,且管段内植被茂密通视较差,适于采用GPS 测量技术进行全网加密及RTK 施工测量。 二、GPS

技术发展现状

全球定位系统GPS(GlobalPositioningSystem)是美国陆海空三军联合研制的卫星导航系 统,具有全球性、全天侯、连续性、实时性导航定位和定时功能,能为各类用户提供精密的三维坐标、速度和时间。单点导航定位与相对测地定位是GPS 应用的两

个方面;对常规测量而言相对测地定位是主要的应用方式。

相对测地定位是利用L1和L2载波相位观测值实现高精度测量,其原理是采用载波相位测量 局域差分法:在接收机之间求一次差,在接收机和卫星观测历元之间求二次差,通过两次差分计算解算出待定基线的长度;求解整周模糊度是其关键技术,根据算法 模型,设计了静态、快速静态以及RTK 等作业模式。静态作业模式主要用于地壳变形观测、国家大地测量、大坝变形观测等高精度测量;快

速静态测量以其高效的 作业效率与厘米级精度广泛应用于一般的工程测量;而RTK 测量以其快速实时,厘米级精度等特点广泛应用于数据采集(如碎部测量) 与工程放样中。RTK 技术 代表着GPS

相对测地定位应用的主流。

GPS测地型接收设备是实现测地定位的基本条件,接收机有单频与双频之分,双频机能以L2观测值修正电离 层折射影响,最适宜于中、长基线(大于20km) 测量,具有快速静态测量的功能,可升级为RTK 功能;单频机适宜于小于20km 的短基线测量,对于一般工 程测量具有良好的性能价格比。RTK 系统由GPS 接收设备、无线电通讯设备、电子手薄及配套设备组成,整套设备在轻量化、操作简便性、实时可靠性、厘米级 精度等方面的特点,完全可以满足数据采集和工程放样的要求。鉴于GPS 系统在轨卫星数有限,在对空通视受遮挡的条件下,不能保证正常解算,影响定位的精度 和可靠性。实践表明,单频GPS 系统由于多环境的制约,存在着很大的局限性。随着俄罗斯的全球导航卫星系统(CLONASS)的不断完善,利用 GLONASS来改善GPS 性能的双星座系统(GLONASS+GPS)已由美国Ashtech 公司研制成功,这种全天候、全地域、高精度的系统为用户提 供了更为完善的接收设备,双星座系统的接收设备GPS

接收设备的新水平。

三、静态GPS

技术加密高铁控制网

依据《新建成都至重庆客运专线CPI 、CPII 精密工程控制网测量成果书》,CYSG-5标(中铁二局三公司CYSG-5标项目经理部)管段(DK258+875~DK270+640),于2010年10月, 实施CPII 控制网加密测量。

本次共计9个已知CPI 、CPII 控制点,25个加密CPII 点,加密点名规则为“JM ”开头。

1. 执行技术标准和测量精度 1.1 执行标准和依据

1、《铁路工程卫星定位测量规范》TB10054-2010; 2、《高速铁路工程测量规范》TB10601 —2009; 3、《国家一、二等水准测量规范》GB 12897-2006;

4、中铁第四勘察设计院集团有限公司提供的《成渝客专施工培训材料》2010年9月

5、中铁二院工程集团有限责任公司提供的《成渝客专精密控制测量技术方案》2009年6月;

6、 中铁二局精测队提供《新建铁路成都到重庆客运专线CYSG-5标(DK240+154.2~

DK289+100)精密工程控制网复测技术总结》

1.2 测量精度

根据规范要求,本次控制网加密按GPS 网C 级、铁路三等GPS 精度施测。

2. 测量人员与仪器

2.1测量人员

本次复测由中铁二局集团第三工程有限公司测量队完成,作业证书见附件。参加本次测量的主要人员共计6人, 主要测量人员如下:

2.2 GPS接收机

用于本次复测与加密测量的GPS 测量仪器为3台套Topcon 双频双星接收机,标称精度3mm +0.5ppm 。GPS 接收机及天线均经省级及以上法定计量检定部门检定合格并在检定有效期内。仪器设备进场后,按规范要求统一进行了常规检查,对所有基座水准器和队中器进行了检校,所有仪器设备的精度及其技术状态均满足复测的要求。

加密网按C 级网精度施测,并按边联或网联方式附合到CPI 、CPII 网。按静态相对定位测量模式同步观测。

控制点全部同步观测2个时段,每个时段观测时间>60分钟。

接收机设置观测卫星高度角设为15°, 数据采样间隔设为15s, 满足设计要

求。同步观测的GPS 卫星总数≥7颗,GLONASS 卫星总数为2~5颗。

作业过程中,天线安置严格整平、对中。每时段观测前后分别量取天线高,误差小于2mm ,取两次平均值作为最终结果。 3平面控制网复测成果处理

GPS 数据的基线解算使用随机软件PinnacleVer1.07进行。平面和高程数据转换、控制网数据质量分析、网平差与控制网复测分析,采用中铁二局研制的工程测量数据处理通用软件GSP (2009年11月通过中国中铁股份有限公司评审鉴定),并用Pinnacle 软件进行检核。

3.1 重复基线差检验

按规范要求同一边不同观测时段基线较差要求ds≤2

2σ,

σa 2+(b ⨯D ) 2=2+(1⨯D ) 2为测边距离(单位:km )。

(a 为固定误差=5mm,b 为比例误差=1ppm,D

从统计表中看出,相对较差最大为JM5060~CPI135边,S= 1367.0222 m,差值7.9

3.2 闭合环闭合差检验

GSP 统计出了42个闭合环(均为3边形)的闭合差(详见附件闭合环闭合差统计) ,按规范标准,所有可能的三边形异步环闭合差均满足

W X ≤3σ,W y ≤3σ,W Z ≤3σ,W ≤322σ1、52+(1⨯D ) 22、3a +(b ⨯D ) =

(σ按逐边计算,

22

σ=12+σ2+σ3

)的要求,闭合差值分布数量与百分比统计

结果如下:

独立闭合环最大闭合差(mm )

从统计表中看出,基线向量分量和弦长闭合差均满足规范要求。综合异步环闭合差检验以及重复基线较差检验的结果,均满足规范要求,可确定本次加密网基线解算正确,结果可靠,可用于后续GPS 网平差。

3.3 平差处理

控制网平差处理采用中铁二局精测队开发软件GSP 进行。经做稳定性分析,认为CPI133、CPI135、CPI137、CPI138、CPII522、CPII524、 CPII528 、CPII529、 CPII532控制点均稳定可靠,根据规范规定,采用设计坐标值对加密控制点进行约束平差。

本次测量取CPI135的WGS -

84大地坐标为起算点先进行三维无约束平差,即采用WGS -84

椭球,中央子午线106°,投影面大地高280m 。

三维无约束平差后,加密网最弱点JM5076,Mx= 1.62mm,My=1.41mm, Mz=6.86mm ,Mp=2.15mm;最弱边为CPII522~JM5058,S=164.104m,Ms=0.6mm,ppm=3.42,相对精度K=1/292000

106°带二维约束平差后,加密网最弱点JM5076,Mx= 1.61mm,My=1.18mm Mp=2mm;最弱边为CPII522~JM5058,Ma=1.0″

3.4 加密成果使用注意事项

本次控制网加密测量满足规范精度要求, 加密桩点应妥善保护。使用本成果前,施工单位认真核对,经同精度检测,确认桩点无误和无位移后方可使用;

施工期间应对控制点进行定期检测,对发生位移或沉降的控制点应停止使用,并及时上报或更新其成果。加密控制点应加强保护,由于施工不确定因素,需要破坏控制点时,应及时按规范要求精度进行引测。 四、RTK 技术在施工测量中的应用4.1 实时动态(RTK)定位技术简介

实 时动态(RTK)定位技术是以载波相位观测值为根据的实时差分GPS(RTDGPS)技术,它是GPS 测量技术发展的一个新突破,在铁路、公路工程中有广阔的应 用前景。众所周知,无论静态定位,还是准动态定位等定位模式,

由于数据处理滞后,所以无法实时解算出定位结果,而且也无法对观测数据进行检核,这就难以保 证观测数据的质量,在实际工作中经常需要返工来重测由于粗差造成的不合格观测成果。解决这一问题的主要方法就是延长观测时间来保证测量数据的可靠性,这样 一来就降低了GPS

测量的工作效率。

实时动态定位(RTK)系统由基准站和流动站组成,建立无线数据通讯是实时动态测量的保证,其原理是取点位 精度较高的首级控制点作为基准点,安置一台接收机作为参考站,对卫星进行连续观测,流动站上的接收机在接收卫星信号的同时,通过无线电传输设备接收基准站 上的观测数据,随机计算机根据相对定位的原理实时计算显示出流动站的三维坐标和测量精度。这样用户就可以实时监测待测点的数据观测质量和基线解算结果的收 敛情况,根据待测点的精度指标,

确定观测时间,从而减少冗余观测,提高工作效率。4.2 应用

实时动态(RTK)定位有快速静态定位和动态定位两种测量模式,两种定位模式相结合,在公路工程中的应用可以覆盖公路勘测、施工放样、监理和GIS(地理信息系统)

前端数据采集。4.2.1 快速静态定位模式。

接收机在每一流动站上,静止的进行观测。在观测过程中,同时接收基准站和卫星的同步观测数据,实时解算整周未知数和用户站的三维坐标,如果解算结 果的变化趋于稳定,且其精度已满足设计要求,便可以结束实时观测。一般应用在控制测量中,如控制网加密;若采用常规测量方法(如全站仪测量) ,受客观因素 影响较大,在自然条件比较恶劣的地区实施比较困难,而采用RTK 快速静态测量,可起到事半功倍的效果。单点定位只需要5-10min(随着技术的不断发 展,定位时间还会缩短) ,不及静态测量所需时间的五分之一,在公路测量中

可以代替全站仪完成导线测量等控制点加密工作。4.2.2 动态定位

测量前需要在一控制点上静止观测数分钟(有的仪器只需2~10s) 进行初始化工作,之后流动站就可以按预定的采样间隔自动进行观测,并连同基准站的同步观测数据,实时确定采样点的空间位置。目前,其定位精度可以达到厘米级。 动态定位模式在公路勘测阶段有着广阔的应用前景,可以完成地形图测绘、

中桩测量、横断面测量、纵断面地面线测量等工作。测量2~4S ,精度就可以达到1~3cm ,且整个测量过程不需通视,有着常规测量仪器(如全站仪) 不可比拟的优点。 4.3 RTK

技术的优点

4.3.1 实时动态显示经可靠性检验的厘米级精度的测量成果(包括高程) 。4.3.2 彻底摆脱了由于粗差造成的返工,提高了GPS 作业效率。

4.3.3 作业效率高,每个放样点只需要停留1~2s ,流动站小组作业,每小组(3~4人) 可完成中线测量5~10km 。若用其进行地形测量,每小组每天可以完成0.8~1.5km3

的地形图测绘,其精度和效率是常规测量所无法比拟的。4.3.4

在中线放样的同时完成中桩抄平工作。

4.3.5 应用范围广—可以涵盖铁路、公路测量(包括平、纵、横) ,施工放样,监理,竣工测量,养护测量,GIS

前端数据采集诸多方面。

4.3.6 如辅助相应的软件,RTK 可与全站仪联合作业,充分发挥RTK 与全站仪各自的优势。四、结语

GPS 测量技术在三公司的第一个高铁项目得到应用,得力于领导对测量工作的高度重视和支持。在前期的静态加密和RTK 地亩、桩基放样中作出了不可替代的功劳,由于具有全天候、高精度、适时性等众多优点,相信在以后的工作中会产生更大的效益和作用。

中铁二局成渝客专三分部

谭军

2011-11-30

附:明年测量工作计划安排

2012年测量工作计划安排

一、 保证桥梁支承垫石的高精度放样,按架梁顺序、工作流程逐步推进。 二、 隧道开挖放样、监控量测的准确控制 三、 路基附属放样及时、复核到位。 四、 沉降观测工作按细则要求进行。 五、 内业资料逐步完善归档。

2011-11-30

谭军

中铁二局成渝客专三分部


相关内容

  • 高铁隧道平面控制网精度的控制方法
  • 新兴产业与关键技术 高铁隧道平面控制网精度的控制方法 刘贤武1 周咸领2 1.中天城投集团乌当房地产开发有限公司 贵州贵阳 550018: 2.宁波力拓爆破工程有限公司 浙江慈溪 315316 摘要:结合国内高铁隧道建设的工程实践,从隧道平面控制网的布测入手,论述网型优化.系统误差控制.数据对比检查 ...

  • 高铁路基主要技术标准
  • 浅谈高铁路基主要技术标准 摘要 通过比较发达国家高铁路基基础标准,系统的研究包括路 基宽度.结构形式.机床厚度.工后沉降等的主要技术指标,并对 关键技术参数进行了分析. 关键词 高铁:路基宽度:路基结构:机床厚度:工后沉降 中图分类号u41 文献标识码a 文章编号 1674-6708(2011) 4 ...

  • 探索武广高铁棘轮补偿偏磨原因和调整方法
  • 探索武广高铁棘轮补偿偏磨 原因和调整方法 小组名称:武广客专QC 活动小组 发 布 人:缑浩亮 发布时间:2011年7月 武汉供电段武广客专供电车间 目录 一.工程概况 ..................................... 1 二.小组概况 .................. ...

  • 浅谈CRTSⅡ型板式无砟轨道轨道板施工质量控制
  • 摘要: CRTSⅡ型板式无砟轨道是高速铁路常用的无砟轨道之一,其轨道板的质量直接影响高速铁路的运营安全和日常维护投入.本文针对该型无砟轨道的轨道板铺设.轨道板精调.CA砂浆灌注.轨道板张拉连接等工序,列举了施工中CRTSⅡ无砟轨道施工中较为突出的的质量问题,以及笔者在京沪高铁施工期间采用的质量控制方 ...

  • 高铁隧道导向墙.边坡.开挖测量资料
  • 杭长铁路客运专线 测量放样报验单(TA7) 工程项目名称:新建杭长铁路客运专线 施工合同段:HCZJ-2标 编号:HCZJ2-SQJ-×-TA7-20××××××-×× 注:本表一式3份,承包单位2份,项目监理机构1份. 杭长铁路客运专线 附件1 施工测量放样记录表(一) 第1页 共1页 杭长铁路客 ...

  • 下穿高铁工程施工方案
  • 某快速通道新建工程 下穿某铁路客运专线专项施工方案 编制: 审核: 审批: 中建七局某快速通道新建工程项目经理部 二○一三年七月 目 录 一.施工组织编制说明 ..................................... 1 1.编制依据 ....................... ...

  • 测绘见习期工作总结报告
  • 斗转星移,日月如梭。时间总在不经意间就带走了我奋斗过的痕迹,也留下了岁月的脚印,回想过去半年多的日日夜夜,竟感觉xx是如此的曲折而又匆匆!希望伴随着迷茫在脑海里荡漾,感动伴随着激动在眼眶里打转,甜蜜伴随着辛酸在舌尖缠绕。而这一切让我懂得了珍惜,收获了成长的喜悦。 自从2月份,大年还没有过完我就来到了 ...

  • 天宝S系列全站仪注意事项
  • 天宝S 系列全站仪注意事项 本注意事项用于内部使用,不得向客户分发 为了更好的使用全站仪,并在出现问题时候能够解决与校准有关的问题,特发此注意事项: 一.注意事项 1.全站仪在以下情况需要检查与校准: 第一场使用前: 精密测量前: 长途运输后: 长期工作后: 温度变化大于10度 高程变化超过500米 ...

  • 基于任务分析法高铁调度工作负荷模型研究
  • 基于任务分析法的高铁调度工作负荷模型研究 摘 要:列车运行安全与高铁行车调度工作有着密切的联系,本文通过对高铁调度工作的作业内容和作业流程进行分析,分析了行车调度工作负荷与所需处理信息量之间的关系,采用任务分析法对行车调度的工作负荷进行分类后建立了工作负荷评估模型. 关键词:高速铁路:工作负荷模型: ...