1.2.1 解决有关测量距离的问题

1.2 应用举例

1.2.1

解决有关测量距离的问题

从容说课

解斜三角形知识在实际问题中有着广泛的应用,如测量、航海等都要用到这方面的知识.对于解斜三角形的实际问题,我们要在理解一些术语(如坡角、仰角、俯角、方位角、方向角等)的基础上,正确地将实际问题中的长度、角度看成三角形相应的边和角,创造可解的条件,综合运用三角函数知识以及正弦定理和余弦定理来解决.学习这部分知识有助于增强学生的数学应用意识和解决实际问题的能力.

本节的例1、例2是两个有关测量距离的问题. 例1是测量从一个可到达的点到一个不可到达的点之间的距离问题,例2是测量两个不可到达的点之间距离的问题. 对于例1可以引导学生分析这个问题实际上就是已知三角形两个角和一边解三角形的问题,从而可以用正弦定理去解决.对于例2首先把求不可到达的两点A 、B 之间的距离转化为应用余弦定理求三角形的边长的问题,然后把求未知的BC 和AC 的问题转化为例1中测量可到达的一点与不

可到达的一点之间的距离问题.

教学重点 分析测量问题的实际情景,从而找到测量距离的方法.

教学难点 实际问题向数学问题转化思路的确定,即根据题意建立数学模型,画出示意图. 教具准备 三角板、直尺、量角器等

三维目标

一、知识与技能

能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语,如:坡度、俯角、方向角、方位角等

二、过程与方法

1. 首先通过巧妙的设疑,顺利地引导新课,为以后的几节课做良好铺垫.其次结合学生的实际情况,采用―提出问题——引发思考——探索猜想——总结规律——反馈训练‖的教学过程,根据大纲要求以及教学内容之间的内在关系,铺开例题,设计变式,同时通过多媒体、图形观察等直观演示,帮助学生掌握解法,能够类比解决实际问题.对于例2这样的开放性

题目要鼓励学生讨论,引导学生从多角度发现问题并进行适当的指点和矫正.

2. 通过解三角形的应用的学习,

提高解决实际问题的能力

三、情感态度与价值观

1. 激发学生学习数学的兴趣, 并体会数学的应用价值;

2. 通过解斜三角形在实际中的应用, 要求学生体会具体问题可以转化为抽象的数学问题, 以及数学知识在生产、生活实际中所发挥的重要作用. 同时培养学生运用图形、数学符号表

达题意和应用转化思想解决数学问题的能力.

教学过程 导入新课

师 前面引言第一章―解三角形‖中,我们遇到这么一个问题,―遥不可及的月亮离我们地球究竟有多远呢?‖在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,比如可以应用全等三角形、相似三角形的方法,或借助解直角三角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会不能实施.如因为没有足够的空间,不能用全等三角形的方法来测量,所以,有些方法会有局限性.于是上面介绍的问题是用以前的方法所不能解决的.今天我们开始学习正弦定理、余弦定理在科学实践中的重要应用,首先研究如何测量距离. 推进新课

解决实际测量问题的过程一般要充分认真理解题意,正确作出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解 [例题剖析]

【例1】如图,设A 、B 两点在河的两岸,要测量两点之间的距离,测量者在A 的同侧,在所在的河岸边选定一点C ,测出AC 的距离是55 m ,∠BAC =51°,∠ACB =75°.求A 、B 两点的距离.(精确到0.1

m

师(启发提问)1:△ABC

中,根据已知的边和对应角,运用哪个定理比较恰当? 师(启发提问)2

:运用该定理解题还需要哪些边和角呢?请学生回答.

生 从题中可以知道角A 和角C ,所以角B 就可以知道,又因为AC 可以量出来,所以应该用正弦定理.

生 这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题,题目条件告诉了边AB 的对角,AC 为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC 的对角,应用正弦定理算出AB

边.

解:

根据正弦定理,得

AB AC =, sin

∠ACB sin ∠ABC

AB =AC sin ∠ACB 55sin ∠ACB 55sin 75︒55sin 75︒≈65.7(

m ===sin ∠ABC sin ∠ABC sin(180︒-51︒-75︒) sin 54︒

答:A 、B 两点间的距离为65.7

[

知识拓展

变题:两灯塔A 、B 与海洋观察站C 的距离都等于A km , 灯塔A 在观察站C 的北偏东30°,灯塔B 在观察站C 南偏东60°,则A 、B 之间的距离为多少?

老师

指导学生画图,建立数学模型.

解略:2a km

【例2】如图,A 、B 两点都在河的对岸(不可到达),设计一种测量A 、B 两点间距离的方法

[

教师精讲

这是例1的变式题,研究的是两个不可到达的点之间的距离测量问题.首先需要构造三角形,所以需要确定C 、D 两点.根据正弦定理中已知三角形的任意两个内角与一边即可求出另两边的方法,分别求出AC 和BC ,再利用余弦定理可以计算出A 、B 的距离.

解:测量者可以在河岸边选定两点C 、D ,测得CD =A ,并且在C 、D 两点分别测得∠BCA =α,∠ACD =β,∠CDB =γ,∠BDA =δ,在△ADC 和△BDC

中,应用正弦定理得

AC

=a sin(γ+δ) a sin(γ+δ) =, sin[180︒-(β+γ+δ)]sin(β+γ+δ)

BC =a

sin γa sin γ=sin[180︒-(α+β+γ)]sin(α+β+γ)

计算出AC 和BC 后,再在△ABC 中,应用余弦定理计算出A 、B 两点间的距离

AB =AC 2+BC 2-2AC ⨯BC cos α.

[

活动与探究

还有没有其他的方法呢?师生一起对不同方法进行对比、分析.

[

知识拓展

若在河岸边选取相距40米的C 、D 两点,测得∠BCA =60°,∠ACD =30°,∠CDB =45°,∠BDA =60°, 略解:将题中各已知量代入例2推出的公式,得AB

[

教师精讲

师 可见,在研究三角形时,灵活根据两个定理可以寻找到多种解决问题的方案,但有些过程较繁复,如何找到最优的方法,最主要的还是分析两个定理的特点,结合题目条件来选择

最佳的计算方式.

〔学生阅读课本14页,了解测量中基线的概念,并找到生活中的相应例子〕

师 解三角形的知识在测量、航海、几何、物理学等方面都有非常广泛的应用, 如果我们抽去每个应用题中与生产生活实际所联系的外壳, 就暴露出解三角形问题的本质, 这就要提高分析问题和解决问题的能力及化实际问题为抽象的数学问题的能力

下面, 我们再看几个例题来说明解斜三角形在实际中的一些应用

【例3】如下图是曲柄连杆机构的示意图,当曲柄CB 绕C 点旋转时,通过连杆AB 的传递,活塞做直线往复运动,当曲柄在CB 0位置时,曲柄和连杆成一条直线,连杆的端点A 在A 0处,设连杆AB 长为340 mm ,曲柄CB 长为85 mm ,曲柄自CB 0按顺时针方向旋转80°,求活塞移动的距离(即连杆的端点A 移动的距离A 0A ). (精确到1 mm )

师 用实物模型或多媒体动画演示,让学生观察到B 与B 0重合时,A 与A 0重合,故A 0C =AB +CB =425 mm ,且A 0A =A 0C -AC

通过观察你能建立一个数学模型吗?

生 问题可归结为:已知△ABC 中, BC =85 mm ,AB =34 mm ,∠C =80°,求AC

. 师 如何求AC

呢?

生 由已知AB 、∠C 、BC ,可先由正弦定理求出∠A ,再由三角形内角和为180°求出∠B ,最后由正弦定理求出AC .

解:(如图)在△ABC

中,由正弦定理可得

sin A =BC

sin C 85⨯sin 80︒=AB 340

因为BC <AB ,所以A 为锐角

∴A =14°15′,∴ B =180°-(A +C

)=

又由正弦定理,

AC

=AB sin B 340⨯sin 85︒45'=sin C 0. 9848mm

∴A 0A =A 0C –AC =(AB +BC )-AC =(340+85)-344.3=80.7≈81(mm )

答:活塞移动的距离为81 mm

师 请同学们设AC =x ,用余弦定理解之,课后完成

[知识拓展]

变题:我舰在敌岛A 南偏西50°相距12海里的B 处,发现敌舰正由岛沿北偏西10°的方向以10海里/时的速度航行.问我舰需以多大速度、沿什么方向航行才能用2小时追上敌舰? 师

你能根据方位角画出图吗?

生(引导启发学生作图)

师 根据题意及画出的方位图请大家建立数学模型.

生 例题归结为已知三角形的两边和它们的夹角,求第三边及其余角

解:如图,在△ABC 中, 由余弦定理得

BC 2=AC 2+AB 2-2·AB ·AC ·cos ∠

BAC

=202+122-2×12×20×(-1

2

BC

∴我舰的追击速度为14海里/

又在△ABC 中,

由正弦定理得

AC BC AC sin A =, 即sin B ==sin B sin A BC 20⨯3=5∴∠

ABC =arcsin 5281414

答:我舰航行的方向为北偏东50°-arcsin 53

14

[

方法引导

你能归纳和总结解斜三角形应用题的一般方法与步骤吗?

分析:理解题意,分清已知与未知,画出示意图.

②建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一

个解斜三角形的数学模型.

③求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解.

检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解.

即解斜三角形的基本思路:

解斜三角形应用题常见的会有哪几种情况?

生 实际问题经抽象概括后,已知与未知量全部集中在一个三角形中,一次可用正弦定理或

余弦定理解之.

生 实际问题经抽象概括后,已知量与未知量涉及两个三角形中,这时需按顺序逐步在两个三角形中求出问题的解.

生 实际问题经抽象概括后,涉及的三角形只有一个,但由题目已知条件解此三角形需连续使用正弦定理或余弦定理.

某人在M 汽车站的北偏西20°的方向上的A 处,观察到点C 处有一辆汽车沿公路向M 站行驶.公路的走向是M 站的北偏东40°.开始时,汽车到A 的距离为31千米,汽车前进20千米后,到A 的距离缩短了10千米.问汽车还需行驶多远,才能到达M 汽车站?

解:由题设,画出示意图,设汽车前进20千米后到达B 处.在△ABC 中,AC =31,BC =20,AB =21

,由余弦定理得

AC 2+BC 2-AB 223cos C == 2AC ∙BC 31

, 则sin C =1-cos C =22432, 231

sin C =

, 所以sin ∠M AC =sin (120°-C )=sin 120°cosC -cos 120°sinC =3162 在△M AC

中,由正弦定理得

MC =AC sin ∠MAC 31353=⨯=35,从而有M B = MC -BC sin ∠AMC 622

答:汽车还需要行驶15千米才能到达M 汽车站.

课堂小结

通过本节学习, 要求大家在了解解斜三角形知识在实际中的应用的同时, 掌握由实际问题向数学问题的转化, 并提高解三角形问题及实际应用题的能力 布置作业

课本第14页练习 1

1.2 应用举例

1.2.1

解决有关测量距离的问题

从容说课

解斜三角形知识在实际问题中有着广泛的应用,如测量、航海等都要用到这方面的知识.对于解斜三角形的实际问题,我们要在理解一些术语(如坡角、仰角、俯角、方位角、方向角等)的基础上,正确地将实际问题中的长度、角度看成三角形相应的边和角,创造可解的条件,综合运用三角函数知识以及正弦定理和余弦定理来解决.学习这部分知识有助于增强学生的数学应用意识和解决实际问题的能力.

本节的例1、例2是两个有关测量距离的问题. 例1是测量从一个可到达的点到一个不可到达的点之间的距离问题,例2是测量两个不可到达的点之间距离的问题. 对于例1可以引导学生分析这个问题实际上就是已知三角形两个角和一边解三角形的问题,从而可以用正弦定理去解决.对于例2首先把求不可到达的两点A 、B 之间的距离转化为应用余弦定理求三角形的边长的问题,然后把求未知的BC 和AC 的问题转化为例1中测量可到达的一点与不

可到达的一点之间的距离问题.

教学重点 分析测量问题的实际情景,从而找到测量距离的方法.

教学难点 实际问题向数学问题转化思路的确定,即根据题意建立数学模型,画出示意图. 教具准备 三角板、直尺、量角器等

三维目标

一、知识与技能

能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语,如:坡度、俯角、方向角、方位角等

二、过程与方法

1. 首先通过巧妙的设疑,顺利地引导新课,为以后的几节课做良好铺垫.其次结合学生的实际情况,采用―提出问题——引发思考——探索猜想——总结规律——反馈训练‖的教学过程,根据大纲要求以及教学内容之间的内在关系,铺开例题,设计变式,同时通过多媒体、图形观察等直观演示,帮助学生掌握解法,能够类比解决实际问题.对于例2这样的开放性

题目要鼓励学生讨论,引导学生从多角度发现问题并进行适当的指点和矫正.

2. 通过解三角形的应用的学习,

提高解决实际问题的能力

三、情感态度与价值观

1. 激发学生学习数学的兴趣, 并体会数学的应用价值;

2. 通过解斜三角形在实际中的应用, 要求学生体会具体问题可以转化为抽象的数学问题, 以及数学知识在生产、生活实际中所发挥的重要作用. 同时培养学生运用图形、数学符号表

达题意和应用转化思想解决数学问题的能力.

教学过程 导入新课

师 前面引言第一章―解三角形‖中,我们遇到这么一个问题,―遥不可及的月亮离我们地球究竟有多远呢?‖在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,比如可以应用全等三角形、相似三角形的方法,或借助解直角三角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会不能实施.如因为没有足够的空间,不能用全等三角形的方法来测量,所以,有些方法会有局限性.于是上面介绍的问题是用以前的方法所不能解决的.今天我们开始学习正弦定理、余弦定理在科学实践中的重要应用,首先研究如何测量距离. 推进新课

解决实际测量问题的过程一般要充分认真理解题意,正确作出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解 [例题剖析]

【例1】如图,设A 、B 两点在河的两岸,要测量两点之间的距离,测量者在A 的同侧,在所在的河岸边选定一点C ,测出AC 的距离是55 m ,∠BAC =51°,∠ACB =75°.求A 、B 两点的距离.(精确到0.1

m

师(启发提问)1:△ABC

中,根据已知的边和对应角,运用哪个定理比较恰当? 师(启发提问)2

:运用该定理解题还需要哪些边和角呢?请学生回答.

生 从题中可以知道角A 和角C ,所以角B 就可以知道,又因为AC 可以量出来,所以应该用正弦定理.

生 这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题,题目条件告诉了边AB 的对角,AC 为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC 的对角,应用正弦定理算出AB

边.

解:

根据正弦定理,得

AB AC =, sin

∠ACB sin ∠ABC

AB =AC sin ∠ACB 55sin ∠ACB 55sin 75︒55sin 75︒≈65.7(

m ===sin ∠ABC sin ∠ABC sin(180︒-51︒-75︒) sin 54︒

答:A 、B 两点间的距离为65.7

[

知识拓展

变题:两灯塔A 、B 与海洋观察站C 的距离都等于A km , 灯塔A 在观察站C 的北偏东30°,灯塔B 在观察站C 南偏东60°,则A 、B 之间的距离为多少?

老师

指导学生画图,建立数学模型.

解略:2a km

【例2】如图,A 、B 两点都在河的对岸(不可到达),设计一种测量A 、B 两点间距离的方法

[

教师精讲

这是例1的变式题,研究的是两个不可到达的点之间的距离测量问题.首先需要构造三角形,所以需要确定C 、D 两点.根据正弦定理中已知三角形的任意两个内角与一边即可求出另两边的方法,分别求出AC 和BC ,再利用余弦定理可以计算出A 、B 的距离.

解:测量者可以在河岸边选定两点C 、D ,测得CD =A ,并且在C 、D 两点分别测得∠BCA =α,∠ACD =β,∠CDB =γ,∠BDA =δ,在△ADC 和△BDC

中,应用正弦定理得

AC

=a sin(γ+δ) a sin(γ+δ) =, sin[180︒-(β+γ+δ)]sin(β+γ+δ)

BC =a

sin γa sin γ=sin[180︒-(α+β+γ)]sin(α+β+γ)

计算出AC 和BC 后,再在△ABC 中,应用余弦定理计算出A 、B 两点间的距离

AB =AC 2+BC 2-2AC ⨯BC cos α.

[

活动与探究

还有没有其他的方法呢?师生一起对不同方法进行对比、分析.

[

知识拓展

若在河岸边选取相距40米的C 、D 两点,测得∠BCA =60°,∠ACD =30°,∠CDB =45°,∠BDA =60°, 略解:将题中各已知量代入例2推出的公式,得AB

[

教师精讲

师 可见,在研究三角形时,灵活根据两个定理可以寻找到多种解决问题的方案,但有些过程较繁复,如何找到最优的方法,最主要的还是分析两个定理的特点,结合题目条件来选择

最佳的计算方式.

〔学生阅读课本14页,了解测量中基线的概念,并找到生活中的相应例子〕

师 解三角形的知识在测量、航海、几何、物理学等方面都有非常广泛的应用, 如果我们抽去每个应用题中与生产生活实际所联系的外壳, 就暴露出解三角形问题的本质, 这就要提高分析问题和解决问题的能力及化实际问题为抽象的数学问题的能力

下面, 我们再看几个例题来说明解斜三角形在实际中的一些应用

【例3】如下图是曲柄连杆机构的示意图,当曲柄CB 绕C 点旋转时,通过连杆AB 的传递,活塞做直线往复运动,当曲柄在CB 0位置时,曲柄和连杆成一条直线,连杆的端点A 在A 0处,设连杆AB 长为340 mm ,曲柄CB 长为85 mm ,曲柄自CB 0按顺时针方向旋转80°,求活塞移动的距离(即连杆的端点A 移动的距离A 0A ). (精确到1 mm )

师 用实物模型或多媒体动画演示,让学生观察到B 与B 0重合时,A 与A 0重合,故A 0C =AB +CB =425 mm ,且A 0A =A 0C -AC

通过观察你能建立一个数学模型吗?

生 问题可归结为:已知△ABC 中, BC =85 mm ,AB =34 mm ,∠C =80°,求AC

. 师 如何求AC

呢?

生 由已知AB 、∠C 、BC ,可先由正弦定理求出∠A ,再由三角形内角和为180°求出∠B ,最后由正弦定理求出AC .

解:(如图)在△ABC

中,由正弦定理可得

sin A =BC

sin C 85⨯sin 80︒=AB 340

因为BC <AB ,所以A 为锐角

∴A =14°15′,∴ B =180°-(A +C

)=

又由正弦定理,

AC

=AB sin B 340⨯sin 85︒45'=sin C 0. 9848mm

∴A 0A =A 0C –AC =(AB +BC )-AC =(340+85)-344.3=80.7≈81(mm )

答:活塞移动的距离为81 mm

师 请同学们设AC =x ,用余弦定理解之,课后完成

[知识拓展]

变题:我舰在敌岛A 南偏西50°相距12海里的B 处,发现敌舰正由岛沿北偏西10°的方向以10海里/时的速度航行.问我舰需以多大速度、沿什么方向航行才能用2小时追上敌舰? 师

你能根据方位角画出图吗?

生(引导启发学生作图)

师 根据题意及画出的方位图请大家建立数学模型.

生 例题归结为已知三角形的两边和它们的夹角,求第三边及其余角

解:如图,在△ABC 中, 由余弦定理得

BC 2=AC 2+AB 2-2·AB ·AC ·cos ∠

BAC

=202+122-2×12×20×(-1

2

BC

∴我舰的追击速度为14海里/

又在△ABC 中,

由正弦定理得

AC BC AC sin A =, 即sin B ==sin B sin A BC 20⨯3=5∴∠

ABC =arcsin 5281414

答:我舰航行的方向为北偏东50°-arcsin 53

14

[

方法引导

你能归纳和总结解斜三角形应用题的一般方法与步骤吗?

分析:理解题意,分清已知与未知,画出示意图.

②建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一

个解斜三角形的数学模型.

③求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解.

检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解.

即解斜三角形的基本思路:

解斜三角形应用题常见的会有哪几种情况?

生 实际问题经抽象概括后,已知与未知量全部集中在一个三角形中,一次可用正弦定理或

余弦定理解之.

生 实际问题经抽象概括后,已知量与未知量涉及两个三角形中,这时需按顺序逐步在两个三角形中求出问题的解.

生 实际问题经抽象概括后,涉及的三角形只有一个,但由题目已知条件解此三角形需连续使用正弦定理或余弦定理.

某人在M 汽车站的北偏西20°的方向上的A 处,观察到点C 处有一辆汽车沿公路向M 站行驶.公路的走向是M 站的北偏东40°.开始时,汽车到A 的距离为31千米,汽车前进20千米后,到A 的距离缩短了10千米.问汽车还需行驶多远,才能到达M 汽车站?

解:由题设,画出示意图,设汽车前进20千米后到达B 处.在△ABC 中,AC =31,BC =20,AB =21

,由余弦定理得

AC 2+BC 2-AB 223cos C == 2AC ∙BC 31

, 则sin C =1-cos C =22432, 231

sin C =

, 所以sin ∠M AC =sin (120°-C )=sin 120°cosC -cos 120°sinC =3162 在△M AC

中,由正弦定理得

MC =AC sin ∠MAC 31353=⨯=35,从而有M B = MC -BC sin ∠AMC 622

答:汽车还需要行驶15千米才能到达M 汽车站.

课堂小结

通过本节学习, 要求大家在了解解斜三角形知识在实际中的应用的同时, 掌握由实际问题向数学问题的转化, 并提高解三角形问题及实际应用题的能力 布置作业

课本第14页练习 1


相关内容

  • 2014最新解直角三角形的典型例题
  • 一.一周知识概述 1.仰角.俯角 仰角.俯角:视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角.如图所示. 说明:仰角.俯角一定是水平线与视线的夹角,即从观察点引出的水平线与视线所夹的锐角. 2.坡角和坡度 坡角:坡面与水平面的夹角叫做坡角,用字母α表示. 坡度(坡比):坡 ...

  • 1.2库仑定律说课稿
  • 库仑定律 各位老师:大家好!我的说课题目是库仑定律,它是高中物理选修3-1第一章第二节的内容.我将从以下五个环节进行说课. 一.说教材 1本节课在教材中的地位.作用和意义: 本单元教材的核心是库仑定律,它既是电荷间相互作用的基本规律,又是学习电场强度的基础.因此,在本单元教学中对电荷间的相互作用,不 ...

  • (J2360)手持式雷达测速仪器
  • 合同编号:RL-2015年01月13日s 邢台润联科技开发有限公司 销售合同范本 甲方(购货方): 乙方(供货方):邢台润联科技开发有限公司 合同签订日期:2015年01月13日y年2015年01月13日m月2015年01月13日d日 邢台润联科技开发有限公司销售合同 甲方: 乙方:邢台润联科技开发 ...

  • 必修五第一章1.2应用举例 第1课时 距离和高度问题
  • 1.2应用举例 第1课时 距离和高度问题 (教师用书独具) ●三维目标 1.知识与技能 (1)能够运用正弦定理.余弦定理等知识和方法解决一些有关测量距离.高度的实际问题: (2)掌握解三角形应用题的基本步骤和基本方法: (3)培养运用图形.数学符号表达题意和应用转化思想解决数学问题的能力. 2.过程 ...

  • 大学物理综合设计性实验(完整)
  • 综合设计性物理实验指导书 黑龙江大学普通物理实验室 目 录 绪论 实验1 几何光学设计性实验 实验2 LED 特性测量 实验3 超声多普勒效应的研究和应用 实验4 热辐射与红外扫描成像实验 实验5 实验6 实验7 实验8 实验9 实验10 实验11 实验12 实验13 多方案测量食盐密度 多种方法测 ...

  • 激光传感器
  • 激光传感器 摘要 激光传感器已经广泛应用于国防.生产.医学和非电测量等各方面,它正以自己独特的优势焕发勃勃生机,本文简单介绍了激光测距传感器的工作原理.应用.优势及前景 . 光电测量技术是以光电子学为基础,以光电子器件为主体,利用光电传感器 将被测量的量转换成光通量,再转换成电量,并综合利用信息传送 ...

  • 自行车里的数学 教学设计 教案
  • 教学准备 1. 教学目标 1. 知识与技能目标 巩固比例知识,了解普通自行车的速度与其内在结构的关系:变速自行车的能变化出多少种速度. 2. 过程与方法目标 经历"提出问题-分析问题-建立数学模型-求解-解释与应用"的解决问题的基本过程,获得运用数学解决实际问题的思考方法. 3. ...

  • 测量学实践报告
  • 测量学实习报告 地点:内蒙古科技大学高职院 实习时间:2011年5月3日--2011年5月13日 班组:给水排水二班 一组 组长:蔡元章 组员:李爱科.侯娜.石天明.路杰.特日棍 指导教师:陈步尚 编写人:李瑶 一.前言 由于地形测量学是一门实践性很强的学科,而地形测量实习对培养学生思维和动手能力. ...

  • 大地测量学基础作业与参考答案
  • 大地测量学基础作业与参考答案 第一章绪论 1.大地测量学的定义是什么? 答:大地测量学是关于测量和描绘地球形状及其重力场并监测其变化,为人类活动提供关于地球的空间信息. 2.大地测量学的地位和作用有哪些? 答:大地测量学是一切测绘科学技术的基础,在国民经济建设和社会发展中发挥着决定性的基础保证作用: ...