应用地热能供热制冷的必要性与优势

夏热冬暖地区应用浅层地热能供热制冷的必要性与

优势

解决环境污染和能源危机问题是当今全人类的共同课题。在中国能源消耗中,建筑耗能的比例相当高,中国传统的空调系统,北方一般以燃煤锅炉解决冬季取暖问题,南方以自来水或环境空气为冷源的制冷机组解决夏季制冷问题。根据近年的统计,我国采暖和空调的能耗占建筑总能耗的55%,建筑能耗是相同气候条件发达国家的2-3倍。建设部提出,我国新建建筑全面执行节能标准,建筑能耗减少50%。近年来,空调负荷增长迅速,炎夏季节多数电网高峰负荷约有1/3用于空调制冷,使许多地区用电高度紧张,拉闸限电频繁。目前,中国房间空调器和单元式空调机的产量已达世界第一,中国建筑业发展迅速,每年城市新增8-9亿平方米的住宅建筑和公共建筑,随着经济发展和人民生活水平提高,建筑耗能逐年大幅度上升。如2004年广西的建筑能耗已经超过全社会总能耗的20%,夏季空调高峰负荷已相当于在建的龙滩水电站540万千瓦的满负荷出力。如果不加控制,广西2010年的建筑能耗将比2004增加1倍,空调高峰负荷将近2个龙滩电站的满负荷出力,需要增加电力建设投资数百亿元。而目前美国每年安装约4万套地源热泵系统,这个规模意味着每年可以节约

8.79×1011瓦的能量,相当于162个龙滩水电站。

1. 夏热冬暖地区对供热制冷需求的特点

1.1生活热水

夏热冬暖地区地处亚热带,气候潮湿、冬季气温变化大(有时10℃以下数天后又突然转暖为20℃左右)、夏季炎热,因此,热水洗澡天数占全年80%以上。长期以来,各种热水锅炉和家庭热水器为南方人解决生活热水问题,既有其便利之处,又有各方面不足和局限。燃煤锅炉成本低,但污染严重,一些城市已下文禁止使用燃煤锅炉要求改用燃油锅炉,但随着燃油价格的不断上涨,很多宾馆难以承受其运行成本;一些小型宾馆采用燃气热水器,但其安全性令人担忧,出现煤气中毒造成人员伤亡的事故时有发生;采用太阳能+电热辅助的形式,许多单位上了系统但在冬季却停止了使用,问题的焦点是,夏季气温高时热水用量少,此时太阳能提供的热水充足有余,到了深秋、冬季、早春季节气候寒凉,太阳光照弱,热水温度不够,特别是每年的1、2、3月气候寒冷潮湿,阴雨连绵,而此时是需要热水量最多的时期,太阳能几乎不起作用,却只能以电加热为主,但其耗电很大,经济上让大家难以承受。

1.2夏季空调制冷

夏热冬暖地区尤其是两广地区夏季炎热,制冷空调已成为城市家庭和办公的基本设施,但随着空调的普及,温室气体的排量越来越大,使得城市的环境温度升高,一方面,室外更加酷热高温,空气质量下降。另一方面,环境温度升高使得空气源热泵的能效下降,能耗更大,造成恶性循环。减排温室气体、提高制冷能效比是当前节能环保的迫切要求。

1.3冬季采暖

16摄氏度是人体对寒冷忍受程序的一个界限,低于这一界限,人就感觉舒适性差。进入冬季以后,南方绝大多数地方的气温都会降至16℃以下,尤其南方冬季的寒冷,是一种湿冷,

使人感到寒冷刺骨。随着人们生活水平的提高,南方冬季采暖需求越来越旺,近年来电取暖器在南方呈畅销势头。但电取暖器和空气源空调取暖能耗都较高,而且舒适性差。但南方取暖负荷相对北方要小得多,冬季供暖时间也较短。因此,南方地区采用地源热泵技术供暖其成本及实现条件要求都较低,是较佳的能源利用方式。

1.4农业温控需求

随着农业科学种养殖技术的不断普及和提高,高附加值的养殖业、种植业发展越来越快,如温控农业大棚、牧禽鱼养殖等,这些农业技术,迫切需要能源消耗成本低的温控系统。 因此,寻求能实现制冷、采暖和供生活热水的稳定的节能环保系统,是南方城市与农村发展的迫切需要。

浅层地热能、太阳能属于低品位能源,按照分级用能原则,最适合满足生活用能的需要。地源热泵技术是既开发利用了可再生的新能源——浅层地热源,又显著节能的不可多得的新技术,具有开源和节能的双重效果。被称为二十一世纪的“绿色空调技术”。因此,利用浅层地热能(或与太阳能耦合)解决南方建筑制冷采暖空调、热水供应、温控农业,对替代常规商品能源,改善能源结构,保障能源安全,建设资源节约型、环境友好型社会以及实现可持续发展具有重要战略意义。

2.地源热泵的特点及优势

(1)、可再生能源利用形式 利用储存于地表浅层的低温热源和太阳能,它不受地域、资源、季节、气候、日夜时段等限制,真正是量大面广、稳定可靠而且清洁无污染的一种可再生能源。符合可持续发展的战略要求。

(2)、高效节能 制热系数高达3~4.5,而锅炉仅为0.7~0.9,可比锅炉节省70%以上的能源和30%~50%运行费用;制冷时要比普通空调节能15%~20%。

(3)、美观 传统空调系统的换热器置于暴露的空气中,破坏建筑的外观;而地源热泵把换热器埋于地下,保持建筑物外观的完美。

(4)、保护环境 设备的运行不需锅炉,没有燃油、燃煤污染。土壤源地源热泵只从地下取热或散热,不取地下水,没有地下水位下降、地面沉降等问题,是真正的生态合理利用可再生能源的方式。

(5)、多功能、系统控制和管理方便 —套系统可以替换原有的供热锅炉、制冷空调和生活热水加热的三套装置或系统。

(6)、寿命长、效益显著 热泵寿命一般15年左右,而地源热泵的地下换热器由于采用高强度惰性材料,埋地寿命至少50年。

3.地源热泵的应用条件

3.1地源热泵系统简介

地源热泵GSHP(ground-source heat pumps)技术是一种利用浅层地热资源的既可供热又可制冷的高效节能的空调技术。热泵的理论基础源于卡诺循环,与制冷机相同,按照逆循环工作。即热泵消耗较少量的高质能W通过循环从低温环境(温度为T0)中吸取大量的低温热QL,输出热量为QH=W+QL(用热温度为T2),从而回收利用了低温热QL(见图1)。由于全年地温波动小,冬暖夏凉,因此,冬季从地表浅层吸取低温热量,夏季向底下排放热量(吸取冷量),通过循环把热量从低温位提升到高温位,为用户提供冬季供暖、夏季制冷以及全年热水供应。系统只需消耗少量的高品位能源(如电能),就能获得高于输入能量数倍的热能效果,是一种高效、环保、节能的温控系统。

地源热泵系统,由室内部分和室外部分组成,室内部分包括热泵机组和风道系统或风机盘管系统,与传统空调系统相似。室外部分是地热能热交换部分,有埋地管系统、地表水系统和地下水系统三种形式。埋地管将闭环循环水埋于地表浅层土壤中,循环水经水管壁面直接与土壤进行热量交换。夏季循环水将制冷机组吸收的热量向土壤散热,冬季从土壤吸热并将热量经热泵机组传递至室内。埋地管系统有垂直埋管、水平埋管和螺纹盘管三种(见图2)。

图1热泵原理图

图2地源热泵系统的一般形式

3.2我国浅层地热能资源概况

从土壤类型和土壤温度看,我国具有丰富的低温环境资源。1999年,瑞士学者Rybach指出,中国是世界上直接利用地热潜力最大的国家,名列世界第一,原因有2个:一是中国国土辽阔,近地表低温地热资源丰富;二是中国人口众多,采暖和制冷工业的基础相对薄弱,将来需求量无可比拟。

地源热泵技术所利用的能源是常温土壤中的能量,并不需要特殊的地热田或地下热水。它只要有足够进行热交换的浅层土壤(-3.5℃以上的土壤或地下水)就可满足地热泵所要求的技术条件。中国城市中约有30%~50%的建筑物具备此条件。从气候区上看,从寒冷的黑龙江到炎热的海南岛都可使用,尤其南方气候条件是夏热冬暖,需要较多的供热和空调装置。

3.3夏热冬暖地区的土壤特点

土壤属于多孔介质,是由矿物质和有机质构成其固相骨架、水和空气充填其中孔隙的三相体。土壤传输地热的能力及存储热能的能力与土壤的含湿量、地下水的流动有很大的关系。因此土壤的传热是由土壤中固相导热、液相导热及液体对流传热组成。当土壤中富含水分和有地下水流动存在时,土壤总的传热热阻大大减小,使得土壤具有较高的热交换效率。

夏热冬暖地区尤其是两广地区,雨水丰富,水源充足。丰富的水资源使得我国南方大部分地域属于富水土壤,土壤的含水率极高,且地下水位较高,为土壤热交换器闭式地源热泵系统应用提供了得天独厚的条件。

4.国内外地源热泵技术应用状况分析

4.1国外应用状况

美国能源部(DOE)和美国环境保护署(EPA)均已确认,地源热泵系统是目前效率最高、对环境最有利的热水、取暖和制冷系统。1998年,美国暖通空调工程师学会的ASHRAE技术奖就颁发给一地源热泵系统。

地源热泵供暖空调的优势使其成为近年来世界可再生能源利用及建筑节能领域中增长最快的产业之一。在过去的10年中,大约30个国家的地源热泵年增长率达到了10%。它的主要优点是用普通的地温或地下水温,这在世界各国都可利用。地源热泵发展最快的是欧洲和美国,其他国家如日本和土耳其也正在积极发展地源热泵产业。目前世界安装的地源热泵系统的总容量和产热量达9500 MW 和52000TJ/y(14400GWh/yr),实际安装地源热泵的数量为80万套,世界主要国家安装地源热泵的情况见表1。

表1 至今世界主要国家安装地源热泵的情况

1985年美国全国共有1.4万台地源热泵,而1997年就安装了4.5万台,到2001年,美国达到安装40万台地源热泵的目标,降低温室气体(如CO2等)排放100万吨,相当于减少50万辆汽车的污染物排放或种植404686公顷(100万英亩)树的效果,年节约能源费用可达

4.2亿美元。而且每年以10%的速度稳步增长。1998年美国商业建筑中地源热泵系统已占空调总保有量的19%,其中新建筑中占30%。据1999年的统计,在家用的供热装置中,地源热泵所占比例为:瑞士为96%,奥地利为38%,丹麦为27%。

Douglas Cane等对25个加拿大和美国的应用地源热泵的实例进行了跟踪调查,并按建筑类型统计了各个实例的年均费用,其中,最早投入运营的实例在1981年,最晚的为1995年,并且有20个实例是在1990年及之后投入运营。与传统空调系统相比,地源热泵系统在运行费用(主要包括能耗费用和维护费用)方面有较大优势。如在商业应用中,节能达到17%;住宅应用中的能耗则减少32.4%。

4.2国内应用状况

中国地源热泵的研究和应用虽刚刚起步,但其对地方缓解能源压力、推动经济的作用正日益受到认同,地源热泵作为生态环境保护、高效节能和自然资源再利用的21世纪可持续发展的新技术和建筑环境供热制冷系统的换代产品,体现出旺盛市场需求的势头。国外的技术已相当成熟,为此,我们一方面要积极借鉴国外的先进技术和成熟经验;另一方面切忌生搬硬套、盲目引进,应该因地制宜、把握优势合理的利用浅层地热能,避免出现新的生态环境失衡。

我国从1995年开始学习和引进欧洲产品,直到1997年才出现有规模的地源热泵采暖工程项目,美国特别看好中国市场,美国能源部和中国科技部于1997年11月签署了中美能源效率及可再生能源合作议定书,其中一项内容就是地源热泵发展战略。该项目拟在中国的北京、杭州和广州3个城市各建一座采用地源热泵供暖空调的商业建筑,以推广运用这种“绿色技术”,缓解中国对煤炭和石油的依赖程度,从而达到能源资源多元化的目的。到1999年底,

地源热泵供暖空调的优势使其成为近年来世界可再生能源利用及建筑节能领域中增长最快的产业之一。在过去的10年中,大约30个国家的地源热泵年增长率达到了10%。它的主要优点是用普通的地温或地下水温,这在世界各国都可利用。地源热泵发展最快的是欧洲和美国,其他国家如日本和土耳其也正在积极发展地源热泵产业。目前世界安装的地源热泵系统的总容量和产热量达9500 MW 和52000TJ/y(14400GWh/yr),实际安装地源热泵的数量为80万套,世界主要国家安装地源热泵的情况见表1。

表1 至今世界主要国家安装地源热泵的情况

1985年美国全国共有1.4万台地源热泵,而1997年就安装了4.5万台,到2001年,美国达到安装40万台地源热泵的目标,降低温室气体(如CO2等)排放100万吨,相当于减少50万辆汽车的污染物排放或种植404686公顷(100万英亩)树的效果,年节约能源费用可达

4.2亿美元。而且每年以10%的速度稳步增长。1998年美国商业建筑中地源热泵系统已占空调总保有量的19%,其中新建筑中占30%。据1999年的统计,在家用的供热装置中,地源热泵所占比例为:瑞士为96%,奥地利为38%,丹麦为27%。

Douglas Cane等对25个加拿大和美国的应用地源热泵的实例进行了跟踪调查,并按建筑类型统计了各个实例的年均费用,其中,最早投入运营的实例在1981年,最晚的为1995年,并且有20个实例是在1990年及之后投入运营。与传统空调系统相比,地源热泵系统在运行费用(主要包括能耗费用和维护费用)方面有较大优势。如在商业应用中,节能达到17%;住宅应用中的能耗则减少32.4%。

4.2国内应用状况

中国地源热泵的研究和应用虽刚刚起步,但其对地方缓解能源压力、推动经济的作用正日益受到认同,地源热泵作为生态环境保护、高效节能和自然资源再利用的21世纪可持续发展的新技术和建筑环境供热制冷系统的换代产品,体现出旺盛市场需求的势头。国外的技术已相当成熟,为此,我们一方面要积极借鉴国外的先进技术和成熟经验;另一方面切忌生搬硬套、盲目引进,应该因地制宜、把握优势合理的利用浅层地热能,避免出现新的生态环境失衡。

我国从1995年开始学习和引进欧洲产品,直到1997年才出现有规模的地源热泵采暖工程项目,美国特别看好中国市场,美国能源部和中国科技部于1997年11月签署了中美能源效率及可再生能源合作议定书,其中一项内容就是地源热泵发展战略。该项目拟在中国的北京、杭州和广州3个城市各建一座采用地源热泵供暖空调的商业建筑,以推广运用这种“绿色技术”,缓解中国对煤炭和石油的依赖程度,从而达到能源资源多元化的目的。到1999年底,

全国大约有100套供暖/制冷系统,而且全部为开式循环系统。2000年12月由日本政府无偿援助,日本地热工程株式会社负责,长春市地热开发有限公司和吉林大学参与,在长春完成了一个1000m2建筑面积的地源热泵供暖/制冷示范项目,为国内第一个闭式循环系统。2001年,重庆大学、北京工业大学、山东建筑工程学院也纷纷建成了各自的封闭循环系统示范工程。

近两年来,在我国北方,已成功建立了一批上规模的地源热泵应用示范工程。山东建工学院、北京工业大学等具有较雄厚的理论基础并建立了典型的示范工程,但这些示范工程以采暖为主;在南方,以广州能源所为代表,主要以是地下水式地源热泵应用技术为主,土壤源的地源热泵应用技术在南方还非常薄弱。

目前,我国实施地源热泵工程主要有两大类:

(1)地下水源方式 我国目前实际应用的地源热泵工程大部分是利用地下水源方式。事实表明,打井抽水虽然实施地下水回灌,由于循环消耗,仍不可避免的要损失相当一部分水源,加上抽水时虽有过滤网,但一些细纱粒移位或随水一起抽上来,日长月久会破坏地层结构,有些地方在抽水井附近出现了莫名的坍塌。我国一些地方也出现开式地源热泵系统运行短短几个月,就造成回灌通路细纱堵塞甚至无法回灌造成废井的状况。因此,打井抽水在一些城市是受到严格控制甚至禁止的。

(2)土壤换热器的闭式系统 我国闭式系统的土壤换热器以垂直U型埋管居多,实用经验还非常有限。北方地区实施的大多数采暖工程属于贫水土壤,由于干性土壤传热性能差,垂直埋管深度一般要超过60米,而换热量则一般小于50W/m,使得埋管的总埋深较大,往往造成初期投资大,效果不够理想,一般用户难以接受。一些地方没有经过长期地温变化监测,实施几万平方米甚至十几万平方米的大型地源热泵取暖系统,很难预计,几年后或十多年后这样的系统其效率和对周围的地温影响如何,北方已有些系统在运行两三年后出现效率明显下降的情况。

5.两广地区土壤源地源热泵技术研发及应用情况

5.1技术成果水平

2005年3月,广西科技厅组织专家对广西大学完成的“亚热带及温带地区地源热泵供热制冷节能系统技术研发”科技项目进行了技术鉴定。专家的鉴定意见为“该项目针对我国南方亚热带及温带气候,采用了地源热泵-冷却塔混合型冷热源应用技术,有效地实现了自然资源的互补利用,在地源热泵系统配置、能源优化和自动控制方面取得了较大的研究进展,在对地源热泵技术的系统集成与优化应用方面有较大的创新。该项目针对亚热带及温带地区在利用浅层埋管技术、优化埋地换热器及系统节能方面达到国内领先水平。”

产品质量检测单位是国家空调设备质量监督检验中心,经现场检测,范例工程南宁市三中空调-热水系统在运行两年多后,其机组制热水工况的能效系数COP达4.5,系统的能效系数COP达4.0,换热量大于60w/m。

5.2 知识产权情况

广西大学已申请地源热泵相关设备发明专利1项,实用新型专利2项,自主开发地源热泵系统设计软件一套。其中“太阳能-地源热泵空调热水设备” 已经获得国家实用新型专利(专利号:ZL[1**********]2.8),该技术有别于国外以太阳能集热通过储热罐方式作为热泵的辅助热源的形式,克服其效率低、体积庞大弱点,本专利采用独特的太阳能吸热方式,大大提高太阳能的吸热效率和减少了集热面积,而且浅层地热能-太阳能互补利用,使系统始终保持高效节能运转,制热能效比在1:4以上。“多用途节能型热泵孵化机”已经获得国家实用新型专利(专利号;ZL03246721.4),与电热孵化系统相比节能50%以上。

5.3技术研发及实际应用情况

2004年12月广西大学科学技术研究重点项目“地源热泵-太阳能复合型节能环保冷热源系统的研究和开发”立项。2004年5月广西大学与广东工业大学签订了关于“地源热泵复合型节能环保冷热源系统”项目合作研究协议和应用工程合作协议。2005年1月广西大学与广东工业大学签定了“共建广东工业大学地源热泵实验室”合作研究协议并挂牌成立,2005年5月实验室已安装地源热泵-冷却塔混合型空调-热水系统和实验测试系统并投入运行工作。2005年7月两校“地源热泵技术研究开发”合作被列为九加二泛珠江三角洲的区域合作,由两校校长于在广州签定。2005年两校合作申报了广州市科技攻关引导项目“地源热泵-太阳能-冷却塔耦合型节能环保联供系统”并获得立项。2006年8月由两校共建的地源热泵实验室实施广东工业大学龙洞校区学生公寓的太阳能+地源热泵系统示范工程(改造原有的太阳能+燃油锅炉热水系统),现工程已安装完毕,正在调试运行,试运行效果表明系统技术可行,有效实现了两种可再生能源的互补利用。

目前广西大学和广东工业大学根据南方土壤和气候实际,已形成了一套由土壤换热器(同时可灵活组合冷却塔、太阳能集热器)、热泵机组、控制系统等科学集成的工程系统技术。拥有富水土壤换热器垂直浅埋管技术、自然能源优化互补利用技术、夏季工况热量多级分流技术、自动控制等多项自主创新技术。不需抽取地下水、因地制宜、设计灵活,避免了过度取热形成冻土或排热量过大形成干燥土壤所引起的新的生态环境失衡等种种弊端。真正体现了可再生能源良性的、生态的合理利用。

广西大学和广东工业大学已在两广地区实施了近二十项地源热泵、空气源热泵工程,已实施的典型工程概况见表2。

表2 已实施的典型工程情况

主要技术特点及优势如下:

(1)充分利用南方富水土壤的传热优势,换热效率高 根据南方亚热带及温带地区土壤特性:地下水位高,土壤含水量丰富、液相对流传热起重要作用等,提出相应的土壤换热器设计理论和方法,实施土壤换热器垂直U型管的浅埋方式。经实际运行测试表明:富水土壤垂直U型管的换热器采用浅埋方式行之有效,在埋管深度比常规大大减少的情况下(约减少50%),仍获得换热效率明显高于我国北方地区在干性土壤实施工程的效果。范例工程——南宁市三中的地源热泵系统,在埋管深度<32米时,获得>60w/m的换热量;地源热泵机组制热水工况的性能系数>4.5,系统制热性能系数达4.0。制热水与电锅炉比节能70%以上。因此,根据该项目技术的优势,项目产品的主要覆盖范围为南方亚热带地区,并可依靠广西的区位优势扩展到东南亚一带。

(2)充分利用南方暖气候优势,自然能源互补利用 南方常年需要生活热水,本项目技术充分利用亚热带及温带地区暖气候优势,系统热源侧采用垂直管浅埋方式的土壤换热器并灵活组合冷却塔、太阳能集热器等。制热供暖工况采用土壤热源与空气热源间歇或互补运行方式,避免了国内一些地源热泵系统由于过度取热,运行一段时间后出现效率下降的问题。在空调供冷和供热水的冷热联供工况下,采取二次能源利用、热量多级分流技术,利用部分空

调废热制热水,可显著降低土壤换热器的散热负荷,综合能效比达1:7以上。这样,根据全年冷热动态负荷来智能控制及合理匹配系统,不但可有效平衡浅层土壤的冷热负荷,解决南方冷负荷大于热负荷问题,而且可减少系统地下埋管换热长度30%以上。

(3)空调工况热量多级分流,能源利用率高 南方夏季冷负荷大,制冷所需的埋地盘管长度要远大于加热所需的盘管长度。本技术采取热量多级分流技术方案,将制冷产生的热量用于制热水、向土壤和冷却塔散热,空调工况制热水不耗能,大大提高了能源利用率,并减少了制冷所需的埋地盘管长度,降低了系统的初期投资。

(4)工程投资成本低 由于富水土壤可以采用垂直埋管的浅埋技术方案和独特的回填方式,显著降低了土壤换热器的成本,大大降低了实施难度,扩大了市场的可容纳程度;系统匹配功率低,例如南宁市三中2500多人的学生公寓,其地源热泵热水系统运行匹配功率小于60KW,不到原来设计电热水锅炉功率的1/10,大大减少了电扩容投资。因此,工程投资可比国内同类技术减少10%以上。

(5)运行成本低 由于综合采用上述多项技术,系统节能效果突出,系统投资通常能在2-3年内从节省的能源开支中回收,以后便进入低成本运行状态,用户满意认可。

(6)一机多用、自动化控制程度高 系统集成程度高,一套系统实现了供热水、采暖和供冷多重功效。系统运行参数实时数字显示,可随时根据需要进行调整和监控,而且配置远程控制接口,可实现远程控制,利于最佳能耗自动控制。

(7)系统稳定可靠、技术成熟 实施的系统有多个已连续运行几年,有的长达4年,反复经历了春、夏、秋、冬四季各种气候条件和多种工况的考验,均能满足生活热水、采暖及供冷的需要。运行效果证明该系统技术成熟。

(8)环保性好 系统不抽取地下水,不存在影响地下水源和破坏地层结构的问题;没有向大气排热、排冷和排烟等污染问题,真正的绿色环保能源利用。

6、两广地区地源热泵技术应用实例

6.1土壤换热器与冷却塔并联的冷热联供混合型地源热泵系统

图3为作者自主设计实施的广西南宁市第三中学混合型地源热泵系统原理图,采用土壤换热器与冷却塔并联形式。系统由两台水冷式热泵机组组成,分别为1#和2#热泵机组。每台热泵机组的额定功率为24.8KW,制冷剂为R22。另外,有2个循环水泵并联安装,可根据情况选择使用;与土壤换热器并联的冷却塔的额定功率为2KW,系统最大运行功率为59.1KW;土壤热器采用U型垂直埋管方式,材料为PPR管φ20mm×4m,平均钻井深度为28.29m,地下水位为8m,总钻井埋管深度为1159.89m。由于地下水位较高,土壤含水量丰富,在埋管深度较浅的情况下,热泵机组冬季制热水工况的COP达4.5,单位埋管深度换热量达66w/m。 土壤换热器与冷却塔并联形成了3种运行模式:当环境温度低于一定温度时,使用1#水泵,混合型地源热泵系统的低温热源主要是土壤热源,主要原因是环境温度太低冷却塔无法正常工作;当环境温度高于一定温度时,使用2#水泵,单独使用冷却塔吸收空气中的热量,这时冷却塔的换热效率高于土壤换热器。当温度处于一定范围之内时可以同时利用土壤热源和

空气热源,可以减少和防止土壤换热器由于过度取热而导致系统性能下降。系统夏季每天供应50℃左右的生活热水约65吨,冬季每天供应生活热水量约为110吨。系统于2003年元月开始运行,经历了三年多春、夏、秋、冬四季连续运行,系统一直能保持高效运行,满足学生公寓的生活热水需要。同时,还能实现部分房间的冬季供暖和夏季供冷。夏季实现冷热联供,即利用制热水产生的冷量给部分房间供冷,实现能源二次利用,综合能效比大于1:7。

图3 土壤换热器与冷却塔并联的冷热联供混合

型地源热泵系统原理图

图4 土壤源与空气源并联的混合型地源热泵系统原理图

6.2土壤源与空气源并联的混合型地源热泵系统

图4是作者自主设计实施的广西大学研究生公寓楼混合型地源热泵系统原理图,采用土壤源与空气源并联形式。系统由一台热泵机组组成,热泵机组的额定功率各为5.4KW,制冷剂为R22;循环水泵的额定功率为0.75KW;土壤换热器采用U型垂直埋管方式,材料为PPR管φ20mm×4m;钻井平均深度为23.87m,地下水位为6m,总钻井埋深为405.8m。土壤源和空气源并联组成三种运行方式:当环境温度低于一定温度时,混合型地源热泵系统的低温热源主要是土壤热源,此时采用土壤源的制热能效比高于空气源;当环境温度高于一定温度时,空气源的换热效率高于土壤换热器,所以单独使用风扇吸收空气中的热量;当环境温度处在一定范围之内时,可以同时综合利用土壤热源和空气热源。这样可以防止或减少出现土壤换热器由于过度取热而导致系统性能下降的现象。系统于2004年9月5日开始运行,经历了春、夏、秋、冬四季,连续两年多的运行,均能保持稳定高效运行,满足该栋公寓学生的生活热水需要。

6.3太阳能-冷却塔耦合型地源热泵系统

图5为作者自主设计实施的广东工业大学龙洞校区学生公寓太阳能-冷却塔耦合型地源热泵系统原理图(改造原有的太阳能+燃油锅炉热水系统),采用土壤换热器与太阳能(或冷却塔)耦合方式,系统主要由热泵机组、太阳能集热器、冷却塔保温水箱等组成,通过自动控制系统,可根据情况选择多热源或单热源,有效地实现了太阳能和浅层地热能两种可再生能源的互补利用。热泵机组的额定功率为8.2KW,制冷剂为R22。土壤热器采用U型垂直埋管方式,材料为PPR管φ20mm×4m,平均钻井深度为28.67m,地下水位为4.5m,土质基本为细质沙土,含水量极为丰富。土壤换热器总钻井埋管深度为401.38m。该系统充分利用了南方太阳日照充沛、暖气候(采用冷却塔吸热)和富水土壤的优势,能保证全年不同气候条件下稳定的高换热效率(COP>4.0)。

图5 太阳能-冷却塔耦合型地源热泵系统图

7.国家的相关政策

国家大力提倡和鼓励可再生、可持续发展能源—地热的发展利用,相继出台了一系列法规和政策。

《中华人民共和国节约能源法》第四条规定:“国家鼓励开发利用新能源和可再生能源”,而地源热泵所使用的地热能正是属于可再生能源。

建设部《民用建筑节能管理规定》第四条规定:“国家鼓励发展太阳能、地热等可再生能源的应用技术和设备”。

国家经贸委《2000-2015年新能源和可再生能源产业发展规划要点》指出:“积极推广地热采暖和地热发电技术”,“加快地源热泵技术的引进和开发,加速国产化。要大力开拓地热采暖市场,到2005、2010、2015年地热采暖面积分别达到1500万、2250万、3000万平方米。要积极推动地热的综合利用”。

夏热冬冷地区居住建筑节能设计标准(JGJ134—2001,J116—2001)第6.0.7条:具备有地面水资源(如江河、湖水等),有适合水资源热泵运行温度的废水等水源条件时,居住建筑采暖、空调设备宜采用水源热泵。当采用地下井水为水源时,应确保有回灌措施,确保水源不被污染,并应符合当地有关规定;具备可供地热源热泵机组埋管用的土壤面积时,宜采用埋管式地热源热泵。”

《建设部建筑节能“十五”计划纲要》中明确指出“十五”期间建筑节能工作的重点之一是:“大力推进太阳能、河水、湖水、海水与地下能源及其他可再生能源在建筑中利用的工作。

建设部关于贯彻《国务院关于加强节能工作的决定》的实施意见(建科[2006]231号)指出“到“十一五”期末,太阳能、浅层地能等可再生能源应用面积占新建建筑面积比例达25%以上。”

8. 夏热冬暖地区应用地源热泵技术的前景

学校、宾馆、医院、写字楼、住宅小区等是需要集中供暖(水)、制冷的大户,是可再生能源应用的市场主体。以全广西有660个大户,每个大户解决制热供冷5000平方米(共约330万平方米),每平方投资300元计,即每个大户投资150万元,便有近十亿元的市场容量。2004年广西电能耗456亿千瓦小时,炎夏季节多数电网高峰负荷约有1/3用于空调制冷,即空调能耗大于50.16亿千瓦小时;热水能耗方面,如按广西宾馆床位50%,每人每天100公斤热水计算(根据有关资料,广西现有宾馆6.73万张),在校大学、中学生人数按60万人计算(每人每天30公斤热水)。根据优化利用地热源和空气源,空调和采暖平均节省能耗30%,地源热泵制热水比电锅炉节省70%以上,则空调、采暖和热水能耗年节省16.1亿千瓦小时,每年可为广西节省17%以上的建筑能耗。如每年推广应用50万平方米,“十一五”将可实施250万平方米,将为广西每年节约大约36300吨标准煤。

浅层地热能的应用开发,对高产、高附加值的大棚农业、畜牧业及生态旅游业的发展也有非常可观的经济和社会效益前景。以广西80多个县,每个县有20个应用点,以每个点投资8万元为计,市场容量近1.3亿元。

广西和广东附近的南方省份如湖南、云南、海南、贵州、四川,有许多地方有着与两广相似的气候和土壤条件,可以吸收消化并完善现有技术进行开发利用浅层地热能,粗略估计其市场容量接近100亿元。

广西是中国唯一与东盟既有陆地接壤又有海上通道的省区,目前已建成与东盟国家交通的陆、海、空立体交通网络。东南亚国家地处亚热带地区,有着与广西(中国南方)相似的土壤特点,气候条件也相似。所以在东南亚可以有着众多的至少相当于广西的本项目产品的潜在用户。目前,已有越南、新加坡等国家的多方客户与课题组洽谈应用合作意向。所以,广西可再生能源(浅层地热能+太阳能)的技术和产业,面向东南亚市场,有着天时地利的优势。

地源热泵空调可形成独立的产业,先供给城镇居民制冷采暖、生活热水,根据可能再相继发展烘干、温室、养殖等地源热泵综合利用产业,可成为乡镇地区的带头产业。地下换热器的设计寿命为50年,其余设备寿命在15年以上,而投资节能所产生的效益较大,一般2-4年可收回投资,属低风险、高效益的节能环保投资。

可见,根据夏热冬暖地区水土资源的有利条件和现有独特的技术优势,如抓住有利时机,加快地源热泵产业化步伐,实现地源热泵设备、太阳能-地源热泵复合系统设备、自动控制系统、技术实施智能化软件的商品化、系列化,建立一套适应南方气候和土层结构的地源热泵设备、施工及应用的标准体系及规程,相信在国内乃至国际市场都将具有较强的竞争优势。

参考资料

[1] Drown D C , Den Braven K R. Effect of soil conditionsand thermal conductivity on heat transfer in ground sourceheat pumps[A]. Proceedings of the ASME JSES KSESInternational Solar Energy Conference [C]. Hawaii: Maui,1992,(4)

[2] Deng Y , Fedler C B. Multi-layered soil effects on verticalground-coupled heat pump design [J]. Transaction of ASAE, 1992,35(2)

[3] W H Leong, V R Tarnawski, A Aittomaki. Effect of soiltype and moisture content on ground heat pump performance [J]. Int. J.Refig . 1998,21(8)

[4] 黄奕沄,陈光明,张 玲 地源热泵研究与应用现状 制冷空调与电力机械 2003第1期,第24卷

[5] 张佩芳 地源热泵在国外的发展概况及其在我国应用前景初探 制冷与空调 2003年第3期,第3卷

[6] 柳晓雷,王德林,方肇洪 垂直埋管地源热泵的圆柱面传热模型及简化计算 山东建筑工程学院学报2001年第1期,第16卷

[7] 李凡,于立强,张晶明 U型垂直埋管式土壤源热泵制冷性能的实验研究 建筑热能通风空调 2000年第3期

[8] 吴永华,何雪冰,刘宪英等 U型垂直换热器地源热泵夏季供冷测试及传热模型 建筑热能通风空调2003年第1期

[9] 李凡,仇中柱,于立强 U型垂直埋管式土壤源热泵埋管周围温度场的理论研究 暖通空调 2002年第1期,第32卷

[10] 赵军,袁伟峰,朱强等 地源热泵的套管式地下换热器传热研究 天津大学学报 2002年 第3期,第35卷

[11] 丁力行,陈季芬,彭梦珑 土壤源热泵垂直单埋管换热性能影响因素研究 流体机械 2002年第3期,第30卷

[12] 张林华,曲云霞,方肇洪等 地源热泵机组压缩机的合理匹配 流体机械 2003年第7期,第31卷

[14] 毕月虹,陈林根 太阳能-土壤热源热泵的性能研究 太阳能学报2000年第2期,第21卷

[15] 杨卫波,董 华,胡 军 太阳能土壤源热泵系统(SESHPS)及其研究开发 能源技术 2003年第4期,第24卷

[16] M.Inalli Design Parameter Solar Heating System with an Underground Cylindrical

夏热冬暖地区应用浅层地热能供热制冷的必要性与

优势

解决环境污染和能源危机问题是当今全人类的共同课题。在中国能源消耗中,建筑耗能的比例相当高,中国传统的空调系统,北方一般以燃煤锅炉解决冬季取暖问题,南方以自来水或环境空气为冷源的制冷机组解决夏季制冷问题。根据近年的统计,我国采暖和空调的能耗占建筑总能耗的55%,建筑能耗是相同气候条件发达国家的2-3倍。建设部提出,我国新建建筑全面执行节能标准,建筑能耗减少50%。近年来,空调负荷增长迅速,炎夏季节多数电网高峰负荷约有1/3用于空调制冷,使许多地区用电高度紧张,拉闸限电频繁。目前,中国房间空调器和单元式空调机的产量已达世界第一,中国建筑业发展迅速,每年城市新增8-9亿平方米的住宅建筑和公共建筑,随着经济发展和人民生活水平提高,建筑耗能逐年大幅度上升。如2004年广西的建筑能耗已经超过全社会总能耗的20%,夏季空调高峰负荷已相当于在建的龙滩水电站540万千瓦的满负荷出力。如果不加控制,广西2010年的建筑能耗将比2004增加1倍,空调高峰负荷将近2个龙滩电站的满负荷出力,需要增加电力建设投资数百亿元。而目前美国每年安装约4万套地源热泵系统,这个规模意味着每年可以节约

8.79×1011瓦的能量,相当于162个龙滩水电站。

1. 夏热冬暖地区对供热制冷需求的特点

1.1生活热水

夏热冬暖地区地处亚热带,气候潮湿、冬季气温变化大(有时10℃以下数天后又突然转暖为20℃左右)、夏季炎热,因此,热水洗澡天数占全年80%以上。长期以来,各种热水锅炉和家庭热水器为南方人解决生活热水问题,既有其便利之处,又有各方面不足和局限。燃煤锅炉成本低,但污染严重,一些城市已下文禁止使用燃煤锅炉要求改用燃油锅炉,但随着燃油价格的不断上涨,很多宾馆难以承受其运行成本;一些小型宾馆采用燃气热水器,但其安全性令人担忧,出现煤气中毒造成人员伤亡的事故时有发生;采用太阳能+电热辅助的形式,许多单位上了系统但在冬季却停止了使用,问题的焦点是,夏季气温高时热水用量少,此时太阳能提供的热水充足有余,到了深秋、冬季、早春季节气候寒凉,太阳光照弱,热水温度不够,特别是每年的1、2、3月气候寒冷潮湿,阴雨连绵,而此时是需要热水量最多的时期,太阳能几乎不起作用,却只能以电加热为主,但其耗电很大,经济上让大家难以承受。

1.2夏季空调制冷

夏热冬暖地区尤其是两广地区夏季炎热,制冷空调已成为城市家庭和办公的基本设施,但随着空调的普及,温室气体的排量越来越大,使得城市的环境温度升高,一方面,室外更加酷热高温,空气质量下降。另一方面,环境温度升高使得空气源热泵的能效下降,能耗更大,造成恶性循环。减排温室气体、提高制冷能效比是当前节能环保的迫切要求。

1.3冬季采暖

16摄氏度是人体对寒冷忍受程序的一个界限,低于这一界限,人就感觉舒适性差。进入冬季以后,南方绝大多数地方的气温都会降至16℃以下,尤其南方冬季的寒冷,是一种湿冷,

使人感到寒冷刺骨。随着人们生活水平的提高,南方冬季采暖需求越来越旺,近年来电取暖器在南方呈畅销势头。但电取暖器和空气源空调取暖能耗都较高,而且舒适性差。但南方取暖负荷相对北方要小得多,冬季供暖时间也较短。因此,南方地区采用地源热泵技术供暖其成本及实现条件要求都较低,是较佳的能源利用方式。

1.4农业温控需求

随着农业科学种养殖技术的不断普及和提高,高附加值的养殖业、种植业发展越来越快,如温控农业大棚、牧禽鱼养殖等,这些农业技术,迫切需要能源消耗成本低的温控系统。 因此,寻求能实现制冷、采暖和供生活热水的稳定的节能环保系统,是南方城市与农村发展的迫切需要。

浅层地热能、太阳能属于低品位能源,按照分级用能原则,最适合满足生活用能的需要。地源热泵技术是既开发利用了可再生的新能源——浅层地热源,又显著节能的不可多得的新技术,具有开源和节能的双重效果。被称为二十一世纪的“绿色空调技术”。因此,利用浅层地热能(或与太阳能耦合)解决南方建筑制冷采暖空调、热水供应、温控农业,对替代常规商品能源,改善能源结构,保障能源安全,建设资源节约型、环境友好型社会以及实现可持续发展具有重要战略意义。

2.地源热泵的特点及优势

(1)、可再生能源利用形式 利用储存于地表浅层的低温热源和太阳能,它不受地域、资源、季节、气候、日夜时段等限制,真正是量大面广、稳定可靠而且清洁无污染的一种可再生能源。符合可持续发展的战略要求。

(2)、高效节能 制热系数高达3~4.5,而锅炉仅为0.7~0.9,可比锅炉节省70%以上的能源和30%~50%运行费用;制冷时要比普通空调节能15%~20%。

(3)、美观 传统空调系统的换热器置于暴露的空气中,破坏建筑的外观;而地源热泵把换热器埋于地下,保持建筑物外观的完美。

(4)、保护环境 设备的运行不需锅炉,没有燃油、燃煤污染。土壤源地源热泵只从地下取热或散热,不取地下水,没有地下水位下降、地面沉降等问题,是真正的生态合理利用可再生能源的方式。

(5)、多功能、系统控制和管理方便 —套系统可以替换原有的供热锅炉、制冷空调和生活热水加热的三套装置或系统。

(6)、寿命长、效益显著 热泵寿命一般15年左右,而地源热泵的地下换热器由于采用高强度惰性材料,埋地寿命至少50年。

3.地源热泵的应用条件

3.1地源热泵系统简介

地源热泵GSHP(ground-source heat pumps)技术是一种利用浅层地热资源的既可供热又可制冷的高效节能的空调技术。热泵的理论基础源于卡诺循环,与制冷机相同,按照逆循环工作。即热泵消耗较少量的高质能W通过循环从低温环境(温度为T0)中吸取大量的低温热QL,输出热量为QH=W+QL(用热温度为T2),从而回收利用了低温热QL(见图1)。由于全年地温波动小,冬暖夏凉,因此,冬季从地表浅层吸取低温热量,夏季向底下排放热量(吸取冷量),通过循环把热量从低温位提升到高温位,为用户提供冬季供暖、夏季制冷以及全年热水供应。系统只需消耗少量的高品位能源(如电能),就能获得高于输入能量数倍的热能效果,是一种高效、环保、节能的温控系统。

地源热泵系统,由室内部分和室外部分组成,室内部分包括热泵机组和风道系统或风机盘管系统,与传统空调系统相似。室外部分是地热能热交换部分,有埋地管系统、地表水系统和地下水系统三种形式。埋地管将闭环循环水埋于地表浅层土壤中,循环水经水管壁面直接与土壤进行热量交换。夏季循环水将制冷机组吸收的热量向土壤散热,冬季从土壤吸热并将热量经热泵机组传递至室内。埋地管系统有垂直埋管、水平埋管和螺纹盘管三种(见图2)。

图1热泵原理图

图2地源热泵系统的一般形式

3.2我国浅层地热能资源概况

从土壤类型和土壤温度看,我国具有丰富的低温环境资源。1999年,瑞士学者Rybach指出,中国是世界上直接利用地热潜力最大的国家,名列世界第一,原因有2个:一是中国国土辽阔,近地表低温地热资源丰富;二是中国人口众多,采暖和制冷工业的基础相对薄弱,将来需求量无可比拟。

地源热泵技术所利用的能源是常温土壤中的能量,并不需要特殊的地热田或地下热水。它只要有足够进行热交换的浅层土壤(-3.5℃以上的土壤或地下水)就可满足地热泵所要求的技术条件。中国城市中约有30%~50%的建筑物具备此条件。从气候区上看,从寒冷的黑龙江到炎热的海南岛都可使用,尤其南方气候条件是夏热冬暖,需要较多的供热和空调装置。

3.3夏热冬暖地区的土壤特点

土壤属于多孔介质,是由矿物质和有机质构成其固相骨架、水和空气充填其中孔隙的三相体。土壤传输地热的能力及存储热能的能力与土壤的含湿量、地下水的流动有很大的关系。因此土壤的传热是由土壤中固相导热、液相导热及液体对流传热组成。当土壤中富含水分和有地下水流动存在时,土壤总的传热热阻大大减小,使得土壤具有较高的热交换效率。

夏热冬暖地区尤其是两广地区,雨水丰富,水源充足。丰富的水资源使得我国南方大部分地域属于富水土壤,土壤的含水率极高,且地下水位较高,为土壤热交换器闭式地源热泵系统应用提供了得天独厚的条件。

4.国内外地源热泵技术应用状况分析

4.1国外应用状况

美国能源部(DOE)和美国环境保护署(EPA)均已确认,地源热泵系统是目前效率最高、对环境最有利的热水、取暖和制冷系统。1998年,美国暖通空调工程师学会的ASHRAE技术奖就颁发给一地源热泵系统。

地源热泵供暖空调的优势使其成为近年来世界可再生能源利用及建筑节能领域中增长最快的产业之一。在过去的10年中,大约30个国家的地源热泵年增长率达到了10%。它的主要优点是用普通的地温或地下水温,这在世界各国都可利用。地源热泵发展最快的是欧洲和美国,其他国家如日本和土耳其也正在积极发展地源热泵产业。目前世界安装的地源热泵系统的总容量和产热量达9500 MW 和52000TJ/y(14400GWh/yr),实际安装地源热泵的数量为80万套,世界主要国家安装地源热泵的情况见表1。

表1 至今世界主要国家安装地源热泵的情况

1985年美国全国共有1.4万台地源热泵,而1997年就安装了4.5万台,到2001年,美国达到安装40万台地源热泵的目标,降低温室气体(如CO2等)排放100万吨,相当于减少50万辆汽车的污染物排放或种植404686公顷(100万英亩)树的效果,年节约能源费用可达

4.2亿美元。而且每年以10%的速度稳步增长。1998年美国商业建筑中地源热泵系统已占空调总保有量的19%,其中新建筑中占30%。据1999年的统计,在家用的供热装置中,地源热泵所占比例为:瑞士为96%,奥地利为38%,丹麦为27%。

Douglas Cane等对25个加拿大和美国的应用地源热泵的实例进行了跟踪调查,并按建筑类型统计了各个实例的年均费用,其中,最早投入运营的实例在1981年,最晚的为1995年,并且有20个实例是在1990年及之后投入运营。与传统空调系统相比,地源热泵系统在运行费用(主要包括能耗费用和维护费用)方面有较大优势。如在商业应用中,节能达到17%;住宅应用中的能耗则减少32.4%。

4.2国内应用状况

中国地源热泵的研究和应用虽刚刚起步,但其对地方缓解能源压力、推动经济的作用正日益受到认同,地源热泵作为生态环境保护、高效节能和自然资源再利用的21世纪可持续发展的新技术和建筑环境供热制冷系统的换代产品,体现出旺盛市场需求的势头。国外的技术已相当成熟,为此,我们一方面要积极借鉴国外的先进技术和成熟经验;另一方面切忌生搬硬套、盲目引进,应该因地制宜、把握优势合理的利用浅层地热能,避免出现新的生态环境失衡。

我国从1995年开始学习和引进欧洲产品,直到1997年才出现有规模的地源热泵采暖工程项目,美国特别看好中国市场,美国能源部和中国科技部于1997年11月签署了中美能源效率及可再生能源合作议定书,其中一项内容就是地源热泵发展战略。该项目拟在中国的北京、杭州和广州3个城市各建一座采用地源热泵供暖空调的商业建筑,以推广运用这种“绿色技术”,缓解中国对煤炭和石油的依赖程度,从而达到能源资源多元化的目的。到1999年底,

地源热泵供暖空调的优势使其成为近年来世界可再生能源利用及建筑节能领域中增长最快的产业之一。在过去的10年中,大约30个国家的地源热泵年增长率达到了10%。它的主要优点是用普通的地温或地下水温,这在世界各国都可利用。地源热泵发展最快的是欧洲和美国,其他国家如日本和土耳其也正在积极发展地源热泵产业。目前世界安装的地源热泵系统的总容量和产热量达9500 MW 和52000TJ/y(14400GWh/yr),实际安装地源热泵的数量为80万套,世界主要国家安装地源热泵的情况见表1。

表1 至今世界主要国家安装地源热泵的情况

1985年美国全国共有1.4万台地源热泵,而1997年就安装了4.5万台,到2001年,美国达到安装40万台地源热泵的目标,降低温室气体(如CO2等)排放100万吨,相当于减少50万辆汽车的污染物排放或种植404686公顷(100万英亩)树的效果,年节约能源费用可达

4.2亿美元。而且每年以10%的速度稳步增长。1998年美国商业建筑中地源热泵系统已占空调总保有量的19%,其中新建筑中占30%。据1999年的统计,在家用的供热装置中,地源热泵所占比例为:瑞士为96%,奥地利为38%,丹麦为27%。

Douglas Cane等对25个加拿大和美国的应用地源热泵的实例进行了跟踪调查,并按建筑类型统计了各个实例的年均费用,其中,最早投入运营的实例在1981年,最晚的为1995年,并且有20个实例是在1990年及之后投入运营。与传统空调系统相比,地源热泵系统在运行费用(主要包括能耗费用和维护费用)方面有较大优势。如在商业应用中,节能达到17%;住宅应用中的能耗则减少32.4%。

4.2国内应用状况

中国地源热泵的研究和应用虽刚刚起步,但其对地方缓解能源压力、推动经济的作用正日益受到认同,地源热泵作为生态环境保护、高效节能和自然资源再利用的21世纪可持续发展的新技术和建筑环境供热制冷系统的换代产品,体现出旺盛市场需求的势头。国外的技术已相当成熟,为此,我们一方面要积极借鉴国外的先进技术和成熟经验;另一方面切忌生搬硬套、盲目引进,应该因地制宜、把握优势合理的利用浅层地热能,避免出现新的生态环境失衡。

我国从1995年开始学习和引进欧洲产品,直到1997年才出现有规模的地源热泵采暖工程项目,美国特别看好中国市场,美国能源部和中国科技部于1997年11月签署了中美能源效率及可再生能源合作议定书,其中一项内容就是地源热泵发展战略。该项目拟在中国的北京、杭州和广州3个城市各建一座采用地源热泵供暖空调的商业建筑,以推广运用这种“绿色技术”,缓解中国对煤炭和石油的依赖程度,从而达到能源资源多元化的目的。到1999年底,

全国大约有100套供暖/制冷系统,而且全部为开式循环系统。2000年12月由日本政府无偿援助,日本地热工程株式会社负责,长春市地热开发有限公司和吉林大学参与,在长春完成了一个1000m2建筑面积的地源热泵供暖/制冷示范项目,为国内第一个闭式循环系统。2001年,重庆大学、北京工业大学、山东建筑工程学院也纷纷建成了各自的封闭循环系统示范工程。

近两年来,在我国北方,已成功建立了一批上规模的地源热泵应用示范工程。山东建工学院、北京工业大学等具有较雄厚的理论基础并建立了典型的示范工程,但这些示范工程以采暖为主;在南方,以广州能源所为代表,主要以是地下水式地源热泵应用技术为主,土壤源的地源热泵应用技术在南方还非常薄弱。

目前,我国实施地源热泵工程主要有两大类:

(1)地下水源方式 我国目前实际应用的地源热泵工程大部分是利用地下水源方式。事实表明,打井抽水虽然实施地下水回灌,由于循环消耗,仍不可避免的要损失相当一部分水源,加上抽水时虽有过滤网,但一些细纱粒移位或随水一起抽上来,日长月久会破坏地层结构,有些地方在抽水井附近出现了莫名的坍塌。我国一些地方也出现开式地源热泵系统运行短短几个月,就造成回灌通路细纱堵塞甚至无法回灌造成废井的状况。因此,打井抽水在一些城市是受到严格控制甚至禁止的。

(2)土壤换热器的闭式系统 我国闭式系统的土壤换热器以垂直U型埋管居多,实用经验还非常有限。北方地区实施的大多数采暖工程属于贫水土壤,由于干性土壤传热性能差,垂直埋管深度一般要超过60米,而换热量则一般小于50W/m,使得埋管的总埋深较大,往往造成初期投资大,效果不够理想,一般用户难以接受。一些地方没有经过长期地温变化监测,实施几万平方米甚至十几万平方米的大型地源热泵取暖系统,很难预计,几年后或十多年后这样的系统其效率和对周围的地温影响如何,北方已有些系统在运行两三年后出现效率明显下降的情况。

5.两广地区土壤源地源热泵技术研发及应用情况

5.1技术成果水平

2005年3月,广西科技厅组织专家对广西大学完成的“亚热带及温带地区地源热泵供热制冷节能系统技术研发”科技项目进行了技术鉴定。专家的鉴定意见为“该项目针对我国南方亚热带及温带气候,采用了地源热泵-冷却塔混合型冷热源应用技术,有效地实现了自然资源的互补利用,在地源热泵系统配置、能源优化和自动控制方面取得了较大的研究进展,在对地源热泵技术的系统集成与优化应用方面有较大的创新。该项目针对亚热带及温带地区在利用浅层埋管技术、优化埋地换热器及系统节能方面达到国内领先水平。”

产品质量检测单位是国家空调设备质量监督检验中心,经现场检测,范例工程南宁市三中空调-热水系统在运行两年多后,其机组制热水工况的能效系数COP达4.5,系统的能效系数COP达4.0,换热量大于60w/m。

5.2 知识产权情况

广西大学已申请地源热泵相关设备发明专利1项,实用新型专利2项,自主开发地源热泵系统设计软件一套。其中“太阳能-地源热泵空调热水设备” 已经获得国家实用新型专利(专利号:ZL[1**********]2.8),该技术有别于国外以太阳能集热通过储热罐方式作为热泵的辅助热源的形式,克服其效率低、体积庞大弱点,本专利采用独特的太阳能吸热方式,大大提高太阳能的吸热效率和减少了集热面积,而且浅层地热能-太阳能互补利用,使系统始终保持高效节能运转,制热能效比在1:4以上。“多用途节能型热泵孵化机”已经获得国家实用新型专利(专利号;ZL03246721.4),与电热孵化系统相比节能50%以上。

5.3技术研发及实际应用情况

2004年12月广西大学科学技术研究重点项目“地源热泵-太阳能复合型节能环保冷热源系统的研究和开发”立项。2004年5月广西大学与广东工业大学签订了关于“地源热泵复合型节能环保冷热源系统”项目合作研究协议和应用工程合作协议。2005年1月广西大学与广东工业大学签定了“共建广东工业大学地源热泵实验室”合作研究协议并挂牌成立,2005年5月实验室已安装地源热泵-冷却塔混合型空调-热水系统和实验测试系统并投入运行工作。2005年7月两校“地源热泵技术研究开发”合作被列为九加二泛珠江三角洲的区域合作,由两校校长于在广州签定。2005年两校合作申报了广州市科技攻关引导项目“地源热泵-太阳能-冷却塔耦合型节能环保联供系统”并获得立项。2006年8月由两校共建的地源热泵实验室实施广东工业大学龙洞校区学生公寓的太阳能+地源热泵系统示范工程(改造原有的太阳能+燃油锅炉热水系统),现工程已安装完毕,正在调试运行,试运行效果表明系统技术可行,有效实现了两种可再生能源的互补利用。

目前广西大学和广东工业大学根据南方土壤和气候实际,已形成了一套由土壤换热器(同时可灵活组合冷却塔、太阳能集热器)、热泵机组、控制系统等科学集成的工程系统技术。拥有富水土壤换热器垂直浅埋管技术、自然能源优化互补利用技术、夏季工况热量多级分流技术、自动控制等多项自主创新技术。不需抽取地下水、因地制宜、设计灵活,避免了过度取热形成冻土或排热量过大形成干燥土壤所引起的新的生态环境失衡等种种弊端。真正体现了可再生能源良性的、生态的合理利用。

广西大学和广东工业大学已在两广地区实施了近二十项地源热泵、空气源热泵工程,已实施的典型工程概况见表2。

表2 已实施的典型工程情况

主要技术特点及优势如下:

(1)充分利用南方富水土壤的传热优势,换热效率高 根据南方亚热带及温带地区土壤特性:地下水位高,土壤含水量丰富、液相对流传热起重要作用等,提出相应的土壤换热器设计理论和方法,实施土壤换热器垂直U型管的浅埋方式。经实际运行测试表明:富水土壤垂直U型管的换热器采用浅埋方式行之有效,在埋管深度比常规大大减少的情况下(约减少50%),仍获得换热效率明显高于我国北方地区在干性土壤实施工程的效果。范例工程——南宁市三中的地源热泵系统,在埋管深度<32米时,获得>60w/m的换热量;地源热泵机组制热水工况的性能系数>4.5,系统制热性能系数达4.0。制热水与电锅炉比节能70%以上。因此,根据该项目技术的优势,项目产品的主要覆盖范围为南方亚热带地区,并可依靠广西的区位优势扩展到东南亚一带。

(2)充分利用南方暖气候优势,自然能源互补利用 南方常年需要生活热水,本项目技术充分利用亚热带及温带地区暖气候优势,系统热源侧采用垂直管浅埋方式的土壤换热器并灵活组合冷却塔、太阳能集热器等。制热供暖工况采用土壤热源与空气热源间歇或互补运行方式,避免了国内一些地源热泵系统由于过度取热,运行一段时间后出现效率下降的问题。在空调供冷和供热水的冷热联供工况下,采取二次能源利用、热量多级分流技术,利用部分空

调废热制热水,可显著降低土壤换热器的散热负荷,综合能效比达1:7以上。这样,根据全年冷热动态负荷来智能控制及合理匹配系统,不但可有效平衡浅层土壤的冷热负荷,解决南方冷负荷大于热负荷问题,而且可减少系统地下埋管换热长度30%以上。

(3)空调工况热量多级分流,能源利用率高 南方夏季冷负荷大,制冷所需的埋地盘管长度要远大于加热所需的盘管长度。本技术采取热量多级分流技术方案,将制冷产生的热量用于制热水、向土壤和冷却塔散热,空调工况制热水不耗能,大大提高了能源利用率,并减少了制冷所需的埋地盘管长度,降低了系统的初期投资。

(4)工程投资成本低 由于富水土壤可以采用垂直埋管的浅埋技术方案和独特的回填方式,显著降低了土壤换热器的成本,大大降低了实施难度,扩大了市场的可容纳程度;系统匹配功率低,例如南宁市三中2500多人的学生公寓,其地源热泵热水系统运行匹配功率小于60KW,不到原来设计电热水锅炉功率的1/10,大大减少了电扩容投资。因此,工程投资可比国内同类技术减少10%以上。

(5)运行成本低 由于综合采用上述多项技术,系统节能效果突出,系统投资通常能在2-3年内从节省的能源开支中回收,以后便进入低成本运行状态,用户满意认可。

(6)一机多用、自动化控制程度高 系统集成程度高,一套系统实现了供热水、采暖和供冷多重功效。系统运行参数实时数字显示,可随时根据需要进行调整和监控,而且配置远程控制接口,可实现远程控制,利于最佳能耗自动控制。

(7)系统稳定可靠、技术成熟 实施的系统有多个已连续运行几年,有的长达4年,反复经历了春、夏、秋、冬四季各种气候条件和多种工况的考验,均能满足生活热水、采暖及供冷的需要。运行效果证明该系统技术成熟。

(8)环保性好 系统不抽取地下水,不存在影响地下水源和破坏地层结构的问题;没有向大气排热、排冷和排烟等污染问题,真正的绿色环保能源利用。

6、两广地区地源热泵技术应用实例

6.1土壤换热器与冷却塔并联的冷热联供混合型地源热泵系统

图3为作者自主设计实施的广西南宁市第三中学混合型地源热泵系统原理图,采用土壤换热器与冷却塔并联形式。系统由两台水冷式热泵机组组成,分别为1#和2#热泵机组。每台热泵机组的额定功率为24.8KW,制冷剂为R22。另外,有2个循环水泵并联安装,可根据情况选择使用;与土壤换热器并联的冷却塔的额定功率为2KW,系统最大运行功率为59.1KW;土壤热器采用U型垂直埋管方式,材料为PPR管φ20mm×4m,平均钻井深度为28.29m,地下水位为8m,总钻井埋管深度为1159.89m。由于地下水位较高,土壤含水量丰富,在埋管深度较浅的情况下,热泵机组冬季制热水工况的COP达4.5,单位埋管深度换热量达66w/m。 土壤换热器与冷却塔并联形成了3种运行模式:当环境温度低于一定温度时,使用1#水泵,混合型地源热泵系统的低温热源主要是土壤热源,主要原因是环境温度太低冷却塔无法正常工作;当环境温度高于一定温度时,使用2#水泵,单独使用冷却塔吸收空气中的热量,这时冷却塔的换热效率高于土壤换热器。当温度处于一定范围之内时可以同时利用土壤热源和

空气热源,可以减少和防止土壤换热器由于过度取热而导致系统性能下降。系统夏季每天供应50℃左右的生活热水约65吨,冬季每天供应生活热水量约为110吨。系统于2003年元月开始运行,经历了三年多春、夏、秋、冬四季连续运行,系统一直能保持高效运行,满足学生公寓的生活热水需要。同时,还能实现部分房间的冬季供暖和夏季供冷。夏季实现冷热联供,即利用制热水产生的冷量给部分房间供冷,实现能源二次利用,综合能效比大于1:7。

图3 土壤换热器与冷却塔并联的冷热联供混合

型地源热泵系统原理图

图4 土壤源与空气源并联的混合型地源热泵系统原理图

6.2土壤源与空气源并联的混合型地源热泵系统

图4是作者自主设计实施的广西大学研究生公寓楼混合型地源热泵系统原理图,采用土壤源与空气源并联形式。系统由一台热泵机组组成,热泵机组的额定功率各为5.4KW,制冷剂为R22;循环水泵的额定功率为0.75KW;土壤换热器采用U型垂直埋管方式,材料为PPR管φ20mm×4m;钻井平均深度为23.87m,地下水位为6m,总钻井埋深为405.8m。土壤源和空气源并联组成三种运行方式:当环境温度低于一定温度时,混合型地源热泵系统的低温热源主要是土壤热源,此时采用土壤源的制热能效比高于空气源;当环境温度高于一定温度时,空气源的换热效率高于土壤换热器,所以单独使用风扇吸收空气中的热量;当环境温度处在一定范围之内时,可以同时综合利用土壤热源和空气热源。这样可以防止或减少出现土壤换热器由于过度取热而导致系统性能下降的现象。系统于2004年9月5日开始运行,经历了春、夏、秋、冬四季,连续两年多的运行,均能保持稳定高效运行,满足该栋公寓学生的生活热水需要。

6.3太阳能-冷却塔耦合型地源热泵系统

图5为作者自主设计实施的广东工业大学龙洞校区学生公寓太阳能-冷却塔耦合型地源热泵系统原理图(改造原有的太阳能+燃油锅炉热水系统),采用土壤换热器与太阳能(或冷却塔)耦合方式,系统主要由热泵机组、太阳能集热器、冷却塔保温水箱等组成,通过自动控制系统,可根据情况选择多热源或单热源,有效地实现了太阳能和浅层地热能两种可再生能源的互补利用。热泵机组的额定功率为8.2KW,制冷剂为R22。土壤热器采用U型垂直埋管方式,材料为PPR管φ20mm×4m,平均钻井深度为28.67m,地下水位为4.5m,土质基本为细质沙土,含水量极为丰富。土壤换热器总钻井埋管深度为401.38m。该系统充分利用了南方太阳日照充沛、暖气候(采用冷却塔吸热)和富水土壤的优势,能保证全年不同气候条件下稳定的高换热效率(COP>4.0)。

图5 太阳能-冷却塔耦合型地源热泵系统图

7.国家的相关政策

国家大力提倡和鼓励可再生、可持续发展能源—地热的发展利用,相继出台了一系列法规和政策。

《中华人民共和国节约能源法》第四条规定:“国家鼓励开发利用新能源和可再生能源”,而地源热泵所使用的地热能正是属于可再生能源。

建设部《民用建筑节能管理规定》第四条规定:“国家鼓励发展太阳能、地热等可再生能源的应用技术和设备”。

国家经贸委《2000-2015年新能源和可再生能源产业发展规划要点》指出:“积极推广地热采暖和地热发电技术”,“加快地源热泵技术的引进和开发,加速国产化。要大力开拓地热采暖市场,到2005、2010、2015年地热采暖面积分别达到1500万、2250万、3000万平方米。要积极推动地热的综合利用”。

夏热冬冷地区居住建筑节能设计标准(JGJ134—2001,J116—2001)第6.0.7条:具备有地面水资源(如江河、湖水等),有适合水资源热泵运行温度的废水等水源条件时,居住建筑采暖、空调设备宜采用水源热泵。当采用地下井水为水源时,应确保有回灌措施,确保水源不被污染,并应符合当地有关规定;具备可供地热源热泵机组埋管用的土壤面积时,宜采用埋管式地热源热泵。”

《建设部建筑节能“十五”计划纲要》中明确指出“十五”期间建筑节能工作的重点之一是:“大力推进太阳能、河水、湖水、海水与地下能源及其他可再生能源在建筑中利用的工作。

建设部关于贯彻《国务院关于加强节能工作的决定》的实施意见(建科[2006]231号)指出“到“十一五”期末,太阳能、浅层地能等可再生能源应用面积占新建建筑面积比例达25%以上。”

8. 夏热冬暖地区应用地源热泵技术的前景

学校、宾馆、医院、写字楼、住宅小区等是需要集中供暖(水)、制冷的大户,是可再生能源应用的市场主体。以全广西有660个大户,每个大户解决制热供冷5000平方米(共约330万平方米),每平方投资300元计,即每个大户投资150万元,便有近十亿元的市场容量。2004年广西电能耗456亿千瓦小时,炎夏季节多数电网高峰负荷约有1/3用于空调制冷,即空调能耗大于50.16亿千瓦小时;热水能耗方面,如按广西宾馆床位50%,每人每天100公斤热水计算(根据有关资料,广西现有宾馆6.73万张),在校大学、中学生人数按60万人计算(每人每天30公斤热水)。根据优化利用地热源和空气源,空调和采暖平均节省能耗30%,地源热泵制热水比电锅炉节省70%以上,则空调、采暖和热水能耗年节省16.1亿千瓦小时,每年可为广西节省17%以上的建筑能耗。如每年推广应用50万平方米,“十一五”将可实施250万平方米,将为广西每年节约大约36300吨标准煤。

浅层地热能的应用开发,对高产、高附加值的大棚农业、畜牧业及生态旅游业的发展也有非常可观的经济和社会效益前景。以广西80多个县,每个县有20个应用点,以每个点投资8万元为计,市场容量近1.3亿元。

广西和广东附近的南方省份如湖南、云南、海南、贵州、四川,有许多地方有着与两广相似的气候和土壤条件,可以吸收消化并完善现有技术进行开发利用浅层地热能,粗略估计其市场容量接近100亿元。

广西是中国唯一与东盟既有陆地接壤又有海上通道的省区,目前已建成与东盟国家交通的陆、海、空立体交通网络。东南亚国家地处亚热带地区,有着与广西(中国南方)相似的土壤特点,气候条件也相似。所以在东南亚可以有着众多的至少相当于广西的本项目产品的潜在用户。目前,已有越南、新加坡等国家的多方客户与课题组洽谈应用合作意向。所以,广西可再生能源(浅层地热能+太阳能)的技术和产业,面向东南亚市场,有着天时地利的优势。

地源热泵空调可形成独立的产业,先供给城镇居民制冷采暖、生活热水,根据可能再相继发展烘干、温室、养殖等地源热泵综合利用产业,可成为乡镇地区的带头产业。地下换热器的设计寿命为50年,其余设备寿命在15年以上,而投资节能所产生的效益较大,一般2-4年可收回投资,属低风险、高效益的节能环保投资。

可见,根据夏热冬暖地区水土资源的有利条件和现有独特的技术优势,如抓住有利时机,加快地源热泵产业化步伐,实现地源热泵设备、太阳能-地源热泵复合系统设备、自动控制系统、技术实施智能化软件的商品化、系列化,建立一套适应南方气候和土层结构的地源热泵设备、施工及应用的标准体系及规程,相信在国内乃至国际市场都将具有较强的竞争优势。

参考资料

[1] Drown D C , Den Braven K R. Effect of soil conditionsand thermal conductivity on heat transfer in ground sourceheat pumps[A]. Proceedings of the ASME JSES KSESInternational Solar Energy Conference [C]. Hawaii: Maui,1992,(4)

[2] Deng Y , Fedler C B. Multi-layered soil effects on verticalground-coupled heat pump design [J]. Transaction of ASAE, 1992,35(2)

[3] W H Leong, V R Tarnawski, A Aittomaki. Effect of soiltype and moisture content on ground heat pump performance [J]. Int. J.Refig . 1998,21(8)

[4] 黄奕沄,陈光明,张 玲 地源热泵研究与应用现状 制冷空调与电力机械 2003第1期,第24卷

[5] 张佩芳 地源热泵在国外的发展概况及其在我国应用前景初探 制冷与空调 2003年第3期,第3卷

[6] 柳晓雷,王德林,方肇洪 垂直埋管地源热泵的圆柱面传热模型及简化计算 山东建筑工程学院学报2001年第1期,第16卷

[7] 李凡,于立强,张晶明 U型垂直埋管式土壤源热泵制冷性能的实验研究 建筑热能通风空调 2000年第3期

[8] 吴永华,何雪冰,刘宪英等 U型垂直换热器地源热泵夏季供冷测试及传热模型 建筑热能通风空调2003年第1期

[9] 李凡,仇中柱,于立强 U型垂直埋管式土壤源热泵埋管周围温度场的理论研究 暖通空调 2002年第1期,第32卷

[10] 赵军,袁伟峰,朱强等 地源热泵的套管式地下换热器传热研究 天津大学学报 2002年 第3期,第35卷

[11] 丁力行,陈季芬,彭梦珑 土壤源热泵垂直单埋管换热性能影响因素研究 流体机械 2002年第3期,第30卷

[12] 张林华,曲云霞,方肇洪等 地源热泵机组压缩机的合理匹配 流体机械 2003年第7期,第31卷

[14] 毕月虹,陈林根 太阳能-土壤热源热泵的性能研究 太阳能学报2000年第2期,第21卷

[15] 杨卫波,董 华,胡 军 太阳能土壤源热泵系统(SESHPS)及其研究开发 能源技术 2003年第4期,第24卷

[16] M.Inalli Design Parameter Solar Heating System with an Underground Cylindrical


相关内容

  • 高温热泵技术及其在工程中的应用
  • 高温热泵技术及其在工程中的应用 摘要:本文重点介绍了我国地源热泵技术的现状和出水温度在60℃以上的高温地源热泵技术的特点和研究情况,并通过几个典型的工程实例介绍了高温地源热泵技术在工程中的实际应用情况. 关键字:高温热泵:地源热泵:节能 1.技术背景 1.1 建筑物供热及空调的节能问题亟待解决随着国 ...

  • 低温热的利用
  • 热泵概况: 第一类吸收式热泵(R H P ):也称增热型热泵,是利用少量的高温热源,产生大量能被利用的中温热能.即 利用高温热能驱动, 把低温热源的热能提高到中温,从而提高了热能的利用效率. 1)可利用的废热:使用温度在40℃左右的废热水 2)可提供的热媒:可获得比废热源温度高50℃左右,即90℃左 ...

  • 地源热泵的概念
  • 地源热泵的概念 地源热泵是一种以土壤.地下水作为低温热源的热泵空调技术.其原理是依靠消耗少量的电力驱动压缩机完成制冷循环,利用土壤温度相对稳定(不受外界气候变化的影响)的特点,通过深埋土壤的环闭管线系统进行热交换,夏天向地下释放热量,冬天向地下吸收热量,从而实现制冷或供暖的要求. 换而言之:地源.水 ...

  • 土壤源热泵特性分析及其在天津地区的应用
  • 土壤源热泵特性分析及其在天津地区的应用 论文上传:xueyeah 论文作者:李忠实王一飞 摘要:针对我国能量利用现状和建设绿色建筑的需求,本文着重介绍了土壤源热泵优缺点及其适用范围,并针对天津地区的现状和开发背景,提出了在天津地区发展土壤源热泵项目时特有的优势和应该注意的问题. 关键词:土壤源热泵适 ...

  • 中央电大土木工程(暖通)毕业设计论文(定稿)
  • XX广播电视大学 毕业论文(设计)定稿 题 目 地源热泵在建筑中的应用.经济性比对及发展潜力 姓 名 教育层次 本 科 学 号 省级电大 专 业 土木工程 市级电大 指导老师 教 学 点 地源热泵在建筑中的应用.经济性比对及发展潜力 内容摘要: 针对当前建筑供热策略应用不彻底的现状,本文对地源热泵. ...

  • 太阳能制冷讲座1太阳能空调制冷技术
  • E匪羽科普 SOLAR ENERGY 苑" 太阳能制冷讲座(1) 太阳能空调制冷技术 上海交通大学制冷与低温工程研究所 ■代彦军王如竹 摘要:太阳能用于空调制冷,最大的优点是季节匹配性好.利用太阳能实现制冷效应有多种技术途径, 其中将太阳辐射转变为热能,通过热能实现制冷的方式最具有应用前景 ...

  • 热泵技术简介
  • 热泵技术介绍 一.热泵知识 1.热泵概念 热泵技术问世已有上百年,可以追朔到1912年瑞士的一个专利. "热泵"这一术语是借鉴"水泵"一词而得来.水泵的通常作用是把水从低处抽送到高处的一种设备,而热泵是将低品位的热能转化成高品味热能的一种设备.那么,低品位能量 ...

  • 水源热泵的原理
  • 水源热泵的原理 地球表面浅层水源(一般在1000 米以内),如地下水.地表的河流.湖泊和海洋,吸收了太阳进入地球的相当的辐射能量,并且水源的温度一般都十分稳定.水源热泵技术的工作原理就是:通过输入少量高品位能源(如电能),实现低温位热能向高温位转移.水体分别作为冬季热泵供暖的热源和夏季空调的冷源,即 ...

  • 让地热能"热"起来:供热.制冷均大有可为
  • ■本报记者 贡晓丽 "地热能是非常好的一种能源,但却往往没有被认识到,国内的重视程度和普及面远远不够."<中国科学报>记者每次见到中国科学院院士汪集旸,都会听到他对地热能的殷切呼吁. "埋藏于地下的地热资源是地球的'本土'能源,它具有储量巨大.能源利用效率高 ...