平行线的判定证明题

1)两条平行线被第三条直线所截,同位角相等;(2)两条平行线被第三条直线所截,内错角相等;(3)两条平行线被第三条直线所截,同旁内角互补。 (1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;(3)两条直线被第三条直线所截,如果同旁内角相等,那么这两条直线平行。按这个判定,绝对没错。这两种的第一条都没有办法判定,而后两条就完全可以按照第一条来判定,最后的结果一定是对的。

2

平行线的性质:(1)两条平行线被第三条直线所截,同位角相等;(2)两条平行线被第三条直线所截,内错角相等;(3)两条平行线被第三条直线所截,同旁内角互补。 平行线的判定定理:(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;(3)两条直线被第三条直线所截,如果同旁内角相等,那么这两条直线平行。

平行线的性质:在同一平面内永不相交的两条直线叫做平行线。平行线的判定定理:(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;(3)两条直线被第三条直线所截,如果同旁内角相等,那么这两条直线平行。

3

光学原理。

延长GE角CD于Q

因为∠2=∠3,所以AB∥CD

由AB∥CD可得∠1=∠GQD

又∠1=∠4

所以∠4=∠GQD

所以GQ∥FH 即:GE∥FH

因为∠2=∠3

所以AB∥CD

所以角CFE=角FEB

所以大角HFE=大角FEG

所以HF∥GE

4

)要证明AB∥GD,只要证明∠1=∠BAD即可,根据∠1=∠2,只要再证明∠2=∠BAD即可证得;

(2)根据AB∥CD,∠1:∠2:∠3=1:2:3即可求得三个角的度数,再根据∠EBA与∠ABD互补,可求得∠EBA的度数,即可作出判断.解答:解:(1)证明:∵AD⊥BC,EF⊥BC(已知)

∴∠EFB=∠ADB=90°(垂直的定义)

∴EF∥AD(同位角相等,两直线平行)(2分)

∴∠2=∠BAD(两直线平行,同位角相等)(3分)

∵∠1=∠2,(已知)

∴∠1=∠BAD(等量代换)

∴AB∥DG.(内错角相等,两直线平行)(4分)

(2)判断:BA平分∠EBF(1分)

证明:∵∠1:∠2:∠3=1:2:3

∴可设∠1=k,∠2=2k,∠3=3k(k>0)

∵AB∥CD

∴∠2+∠3=180°(2分)

∴2k+3k=180°

∴k=36°

∴∠1=36°,∠2=72°(4分)

∴∠ABE=72°(平角定义)

∴∠2=∠ABE

∴BA平分∠EBF(角平分线定义).(5分)

1)两条平行线被第三条直线所截,同位角相等;(2)两条平行线被第三条直线所截,内错角相等;(3)两条平行线被第三条直线所截,同旁内角互补。 (1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;(3)两条直线被第三条直线所截,如果同旁内角相等,那么这两条直线平行。按这个判定,绝对没错。这两种的第一条都没有办法判定,而后两条就完全可以按照第一条来判定,最后的结果一定是对的。

2

平行线的性质:(1)两条平行线被第三条直线所截,同位角相等;(2)两条平行线被第三条直线所截,内错角相等;(3)两条平行线被第三条直线所截,同旁内角互补。 平行线的判定定理:(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;(3)两条直线被第三条直线所截,如果同旁内角相等,那么这两条直线平行。

平行线的性质:在同一平面内永不相交的两条直线叫做平行线。平行线的判定定理:(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;(3)两条直线被第三条直线所截,如果同旁内角相等,那么这两条直线平行。

3

光学原理。

延长GE角CD于Q

因为∠2=∠3,所以AB∥CD

由AB∥CD可得∠1=∠GQD

又∠1=∠4

所以∠4=∠GQD

所以GQ∥FH 即:GE∥FH

因为∠2=∠3

所以AB∥CD

所以角CFE=角FEB

所以大角HFE=大角FEG

所以HF∥GE

4

)要证明AB∥GD,只要证明∠1=∠BAD即可,根据∠1=∠2,只要再证明∠2=∠BAD即可证得;

(2)根据AB∥CD,∠1:∠2:∠3=1:2:3即可求得三个角的度数,再根据∠EBA与∠ABD互补,可求得∠EBA的度数,即可作出判断.解答:解:(1)证明:∵AD⊥BC,EF⊥BC(已知)

∴∠EFB=∠ADB=90°(垂直的定义)

∴EF∥AD(同位角相等,两直线平行)(2分)

∴∠2=∠BAD(两直线平行,同位角相等)(3分)

∵∠1=∠2,(已知)

∴∠1=∠BAD(等量代换)

∴AB∥DG.(内错角相等,两直线平行)(4分)

(2)判断:BA平分∠EBF(1分)

证明:∵∠1:∠2:∠3=1:2:3

∴可设∠1=k,∠2=2k,∠3=3k(k>0)

∵AB∥CD

∴∠2+∠3=180°(2分)

∴2k+3k=180°

∴k=36°

∴∠1=36°,∠2=72°(4分)

∴∠ABE=72°(平角定义)

∴∠2=∠ABE

∴BA平分∠EBF(角平分线定义).(5分)


相关内容

  • 9正方形的判定
  • 9正方形的判定 强立新 教学目的 1.掌握正方形的判定方法. 2.通过运用正方形的判定解题,培养学生的分析能力和观察能力. 3.通过正方形有关知识的学习,感受完美的正方形的图形美和语言美 教学重点:正方形的判定方法. 教学难点:正方形判定方法的应用. 一.设疑自探 1.矩形.菱形是怎样的特殊平行四边 ...

  • "面面平行判定定理"教学的新构思
  • 作者:贺安生刘祥民 中学数学教学参考 1999年02期 一.教学目标 1.认知目标 引导学生在"线线平行"或"线面平行"的知识基础上"同化"和"索引"出"面面平行"的判定定理及其变式,并能运用它们解决 ...

  • 18.1平行四边形导学案
  • 18.1.1平行四边形及性质1 一.目标导学 1.理解平行四边形的定义及有关概念. 2.能根据定义探索并掌握平行四边形的对边相等.对角相等的性质.对角线互相平分. 3.了解平行四边形在实际生活中的应用,根据平行四边形的性质进行简单的计算和证明. 二.自主学习 1.平行四边形的定义:. 平行四边形用表 ...

  • 5.2.2平行线的判定教学设计
  • 5.2.2平行线的判定教案 教学目标: 知识与能力 理解推理.证明的格式.理解平行线判定公理的形成,第一个判定定理的证法.掌握平行线判定公理和第一个判定定理.应用会用判定公理及第一个判定定理进行简单的推理证. 数学思考 学会运用"转化"及"运动--变化"的数学 ...

  • 矩形的判定
  • 矩形的判定 [教学目标] 1.知识与技能 理解并掌握矩形的判定方法.使学生能运用矩形的定义.判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力. 2.过程与方法 通过证明性质定理的逆命题为真命题来证明判定定理. 3.情感.态度与价值观 培养逆向思维的能力. 重点与难点 1.重点:矩形的判 ...

  • 平行四边形与三角形中位线
  • 平行四边形 知识梳理 1. 平行四边形的定义: (1)定义:两组对边分别平行的四边形是平行四边形. (2)表示:平行四边形用符号""来表示. 如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作"ABCD", ...

  • 高二数学 家教备课
  • 领程教育一对一个性化辅导教案 一.判定两线平行的方法 1. 平行于同一直线的两条直线互相平行 2. 垂直于同一平面的两条直线互相平行 3. 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行 4. 如果两个平行平面同时和第三个平面相交,那么它们的交线平行 5. 在 ...

  • 1.3(7)平行四边.矩形.菱形.正方形的性质和判定教案
  • 1.3 平行四边形.矩形.菱形.正方形的性质和判定(7)教案 教学目标: 1.会证明菱形的判定定理 2.能运用菱形的判定定理进行计算与证明 3.逐步学会分析和综合的思考方法,发展演绎推理的能力. 教学重点:菱形判定定理的证明 教学难点:菱形判定定理的应用 教学方法: 讨论交流探究.讲练结合. 教学过 ...

  • 菱形的判定(说课
  • 菱形的判定(说课稿) 临西县第三初级中学 潘自清 各位专家好,我说课的课题是"菱形的判定".说课分为说教材.说学情.说教学方法.说教学过程四个部分. 一. 说教材 (一)地位.作用及编排 菱形的判定是人教版八年级数学下册第十九章第二节第2课时,第一课时学习的是菱形定义和性质.而菱 ...