初二数学证明题

1、如图,AB=AC,∠BAC=90°,BD⊥AE于D,CE⊥AE于E.且BD>CE

,证明BD=EC+ED

.解答:证明:∵∠BAC=90°,CE⊥AE,BD⊥AE,

∴∠ABD+∠BAD=90°,∠BAD+∠DAC=90°,∠ADB=∠AEC=90°.

∴∠ABD=∠DAC.

又∵AB=AC,

∴△ABD≌△CAE(AAS).

∴BD=AE,EC=AD.

∵AE=AD+DE,

∴BD=EC+ED.

2、△ABC是等要直角三角形。∠ACB=90°,AD是BC边上的中线,过C做AD的垂线,交AB于点E,交AD于点F,求证∠ADC=∠BDE

解:作CH⊥AB于H交AD于P,

∵在Rt△ABC中AC=CB,∠ACB=90°,

∴∠CAB=∠CBA=45°.

∴∠HCB=90°-∠CBA=45°=∠CBA.

又∵中点D,

∴CD=BD.

又∵CH⊥AB,

∴CH=AH=BH.

又∵∠PAH+∠APH=90°,∠PCF+∠CPF=90°,∠APH=∠CPF,

∴∠PAH=∠PCF.

又∵∠APH=∠CEH,

在△APH与△CEH中

∠PAH=∠ECH,AH=CH,∠PHA=∠EHC,

∴△APH≌△CEH(ASA).

∴PH=EH,

又∵PC=CH-PH,BE=BH-HE,

∴CP=EB.

在△PDC与△EDB中

PC=EB,∠PCD=∠EBD,DC=DB,

∴△PDC≌△EDB(SAS).

∴∠ADC=∠BDE.

2

证明:作OE⊥AB于E,OF⊥AC于F,

∵∠3=∠4,

∴OE=OF. (问题在这里。理由是什么埃我有点不懂)

∵∠1=∠2,

∴OB=OC.

∴Rt△OBE≌Rt△OCF(HL).

∴∠5=∠6.

∴∠1+∠5=∠2+∠6.

即∠ABC=∠ACB.

∴AB=AC.

∴△ABC是等腰三角形

过点O作OD⊥AB于D

过点O作OE⊥AC于E

再证Rt△AOD≌ Rt△AOE(AAS)

得出OD=OE

就可以再证Rt△DOB≌ Rt△EOC(HL)

得出∠ABO=∠ACO

再因为∠OBC=∠OCB

得出∠ABC=∠ABC

得出等腰△ABC

4

1.E是射线AB的一点,正方形ABCD、正方形DEFG有公共顶点D,问当E在移动时,∠FBH的大小是一个定值吗?并验证

(过F作FM⊥AH于M,△ADE全等于△MEF证好了)

2.三角形ABC,以AB、AC为边作正方形ABMN、正方形ACPQ

1)若DE⊥BC,求证:E是NQ的中点

2)若D是BC的中点,∠BAC=90°,求证:AE⊥NQ

3)若F是MP的中点,FG⊥BC于G,求证:2FG=BC

3.已知AD是BC边上的高,BE是∠ABC的平分线,EF⊥BC于F,AD与BE交于G

求证:1)AE=AG(这个证好了) 2)四边形AEFG是菱形

1、如图,AB=AC,∠BAC=90°,BD⊥AE于D,CE⊥AE于E.且BD>CE

,证明BD=EC+ED

.解答:证明:∵∠BAC=90°,CE⊥AE,BD⊥AE,

∴∠ABD+∠BAD=90°,∠BAD+∠DAC=90°,∠ADB=∠AEC=90°.

∴∠ABD=∠DAC.

又∵AB=AC,

∴△ABD≌△CAE(AAS).

∴BD=AE,EC=AD.

∵AE=AD+DE,

∴BD=EC+ED.

2、△ABC是等要直角三角形。∠ACB=90°,AD是BC边上的中线,过C做AD的垂线,交AB于点E,交AD于点F,求证∠ADC=∠BDE

解:作CH⊥AB于H交AD于P,

∵在Rt△ABC中AC=CB,∠ACB=90°,

∴∠CAB=∠CBA=45°.

∴∠HCB=90°-∠CBA=45°=∠CBA.

又∵中点D,

∴CD=BD.

又∵CH⊥AB,

∴CH=AH=BH.

又∵∠PAH+∠APH=90°,∠PCF+∠CPF=90°,∠APH=∠CPF,

∴∠PAH=∠PCF.

又∵∠APH=∠CEH,

在△APH与△CEH中

∠PAH=∠ECH,AH=CH,∠PHA=∠EHC,

∴△APH≌△CEH(ASA).

∴PH=EH,

又∵PC=CH-PH,BE=BH-HE,

∴CP=EB.

在△PDC与△EDB中

PC=EB,∠PCD=∠EBD,DC=DB,

∴△PDC≌△EDB(SAS).

∴∠ADC=∠BDE.

2

证明:作OE⊥AB于E,OF⊥AC于F,

∵∠3=∠4,

∴OE=OF. (问题在这里。理由是什么埃我有点不懂)

∵∠1=∠2,

∴OB=OC.

∴Rt△OBE≌Rt△OCF(HL).

∴∠5=∠6.

∴∠1+∠5=∠2+∠6.

即∠ABC=∠ACB.

∴AB=AC.

∴△ABC是等腰三角形

过点O作OD⊥AB于D

过点O作OE⊥AC于E

再证Rt△AOD≌ Rt△AOE(AAS)

得出OD=OE

就可以再证Rt△DOB≌ Rt△EOC(HL)

得出∠ABO=∠ACO

再因为∠OBC=∠OCB

得出∠ABC=∠ABC

得出等腰△ABC

4

1.E是射线AB的一点,正方形ABCD、正方形DEFG有公共顶点D,问当E在移动时,∠FBH的大小是一个定值吗?并验证

(过F作FM⊥AH于M,△ADE全等于△MEF证好了)

2.三角形ABC,以AB、AC为边作正方形ABMN、正方形ACPQ

1)若DE⊥BC,求证:E是NQ的中点

2)若D是BC的中点,∠BAC=90°,求证:AE⊥NQ

3)若F是MP的中点,FG⊥BC于G,求证:2FG=BC

3.已知AD是BC边上的高,BE是∠ABC的平分线,EF⊥BC于F,AD与BE交于G

求证:1)AE=AG(这个证好了) 2)四边形AEFG是菱形


相关内容

  • 初二数学期末复习计划
  • 2015下学期八年级数学期末复习计划 人教版八年级数学下学期教材涵盖了<二次根式>.<勾股定理>.<平行四边形>.<一次函数>.<数据的分析>五章内容,内容多,难度大,加上本次复习时间短,只有不到两周的复习时间.根据实际情况,特制订如下计划 ...

  • 初二数学实习听课记录2
  • 教育实习听课记录表 科目 班级 数学 初二(14)班 课题 听课 时间 等腰三角形 2010 年 10 月 授课教师 8日 第 三 节 孙阳 成绩 一.回顾.提问:轴对称图形的定义.垂直平分线的定义.性质.判定. 二.新授课 1. 请同学们翻开课本 P49,完成课本上的探究. 1) 检查同学们的完成 ...

  • 初一学生暑假学习计划
  • 亲爱的同学们:   再过一个月,我们将面临初二年级的学习。初二是关键,它具有承上启下之作用,学习基础薄弱的同学可以利用这一年好好学习,改变自己“后进的面貌”;学习比较好的同学,利用这一年可以快马扬鞭、乘胜追击,继续保持“先进的状态”。初二又是学生学习成绩的一个分水岭,初二这一年所学的知识点难度比较大 ...

  • 怎样顺利度过初二
  • 初二是整个初中的过渡时期,起着承上启下的作用.对于一个初中生,初二意味着以下几点: 1.两极分化和成绩的定型期: 2.核心竞争力的最佳训练期: 3.签约名校资本的积累时期: 4.个人习惯和素质的养成期: 5.心理状态和性格的成型期. 可以看到,无论从中考还是更长远的成长生涯来看,这个时期就是一个积累 ...

  • 初二数学暑假学习计划要点
  • 初二数学暑假学习计划要点 09-08-21 16:59 来源:应用文写作网 作者:佚名 [打印] [ 初二数学暑假学习计划要点如下: 新课标数学教材在内容安排上有如下的特点:初一知识点多,初二难点多,初三考点多.同时,新课标数学突出考查学生的"数学思维能力"和"数学应用 ...

  • 开学第一课(初二)
  • 初二第一学期开学第一课 张迎春 一.介绍初二数学知识体系及具体内容 第11章三角形 我们在几何初步已经学习了三角形的定义,本章我们将继续学习与三角形有关的线段,三角形的高线.中线.角平分线,通过画图寻找这些线段的特殊性质.与三角形有关的角,我们将证明三角形内角和为什么是180度,三角形的外角,多边形 ...

  • 初二上学期数学学科工作计划
  • 2014-2015学年度八年级上学期数学教学计划 一.学情分析: 本学期担任八年级3.4班的数学教学,从上学期期末成绩来看,学生数学基础差,虽然学生基本形成数学思维模式,具备一定的应用数学知识解决实际问题的能力,但在知识灵活应用上还是很欠缺.八年级是初中学习过程中的过渡时期,学生成绩的好坏,直接影响 ...

  • 初二数学期中考试复习计划表1
  • 初一数学期中考试复习计划 年级 复习内容 几何证明 第十六章 二次根式 第一节:二次根式的概念和性质 (1)二次根式:代数式 性质 1: ( 初二 学科 数学 期中 二次根式的概念和性质.二次根式的运算.一元二次方程的概念.一元二次方程的解法. a (a  0) 叫做二次根式. 性质 2: a ) ...

  • 初二数学教案线段的垂直平分线
  • 1.教材分析(1)知识结构(2)重点.难点分析本节内容的重点是线段垂直平分线定理及其逆定理. 定理反映了线段垂直平分线的性质,是证明两条线段相等的依据; 逆定理反映了线段垂直平分线的判定,是证明某点在某条直线上及一条直线是已知线段的垂直平分线的依据. 本节内容的难点是定理及逆定理的关系. 垂直平分线 ...

  • 初二数学试讲
  • 第十八章 勾股定理 18.1 勾股定理(一) 一.教学目标 1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理. 2.培养在实际生活中发现问题总结规律的意识和能力. 3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习. 二.重点.难点 1.重点:勾股 ...