遗传算法的基本原理

遗传算法的基本原理

遗传算法类似于自然进化,通过作用于染色体上的基因寻找好的染色体来求解问题。与自然界相似,遗传算法对求解问题的本身一无所知,它所需要的仅是对算法所产生的每个染色体进行评价,并基于适应值来选择染色体,使适应性好的染色体有更多的繁殖机会。在遗传算法中,通过随机方式产生若干个所求解问题的数字编码,即染色体,形成初始群体;通过适应度函数给每个个体一个数值评价,淘汰低适应度的个体,选择高适应度的个体参加遗传操作,经过遗传操作后的个体集合形成下一代新的种群。对这个新种群进行下一轮进化。这就是遗传算法的基本原理。

下面就是遗传算法思想:

(1) 初始化群体;

(2) 计算群体上每个个体的适应度值;

(3) 按由个体适应度值所决定的某个规则选择将进入下一代的个体;

(4) 按概率PX进行交叉操作;

(5) 按概率PM进行突变操作;

(6) 没有满足某种停止条件,则转第(2)步,否则进入(7)。

(7) 输出种群中适应度值最优的染色体作为问题的满意解或最优解。

程序的停止条件最简单的有如下二种:完成了预先给定的进化代数则停止;种群中的最优个体在连续若干代没有改进或平均适应度在连续若干代基本没有改进时停止。 根据遗传算法思想可以画出如右图所示的简单遗传算法框图:

图 3.22 简单遗传算法框图

遗传算法的选择算子

选择即从当前群体中选择适应值高的个体以生成交配池的过程. 遗传算法中最常用的选择方式是轮盘赌(Roulette Wheel)选择方式, 也称比例选择或复制. 在该方法中, 各个个体被选择的概率和其适应度值成比例. 设群体规模大小为N, 个体i 的适应度值为Fi , 则这个个体

被选择的概率为:显然, 个体适应度越大, 其被选择的概率越高, 反之亦然.遗传算法另一种常用的选择方式是锦标赛选择方式, 其基本思想是将上一代群体中的个体和本次遗传操作产生的所有新个体放到一起按适值从大到小的顺序排队, 然后取排在前面的N 个(N 为群体规模)个体组成新一代群体.遗传算法的交叉算子作用于某2 个父代个体时, 会产生2 个子代个体, 父子2 代共4 个个体平等竞争, 淘汰2 个低适值个体, 保留2 个高适值个体. 遗传算法的变异算子作用于某一父代个体时,会产生一个子代个体, 如果子代个体的适值比父代个体的高, 则用子代个体取代父代个体; 否则保

留父代个体淘汰子代个体, 这就是父子竞争选择.遗传算法初始群体中的个体一般是随机产生的, 初始群体中的个体均匀地分布于整个串空间.在遗传迭代的早期, 群体中个体适值差别很大, 按上述3 种选择方式容易出现的问题是: 在选择下一代群体时, 适值低的个体被选中的机会很小, 最佳个体在下一代的生存机会将显著增加, 而最差个体的生存机会将被剥夺,低适值个体淘汰太快容易使算法收敛于局部最优解. 群体中的最佳个体

快速充满整个群体, 导致群体多样性降低, GA 也过早地丧失了进化能力. 而到了遗传迭代的晚期,群体中个体适值差别不大, 算法收敛速度慢. 此外,遗传算法只有在引入了最优保持操作后才是全局收敛的. 因此, 我们提出改进的选择策略, 先对群体中个体的适值进行变换, 再按个体适值大小的比例进行选择. 具体方法是: 先将参与选择的X 个个体按适值从小到大顺序编号(相同适值的个体可随意排列), 然后以个体的序号作为其变换后的适值, 即X 个个体的适值分别变换为1, 2, 3,⋯, X. 编号为m 的个体被选中的概率为p=m /X , 1≤m≤

X. 显然, 这种改进的选择与个体的适应值无直接关系, 仅仅与个体之间的适应值相对大小有关. 这种策略一方面通过对群体中个体适值的变换, 使群体中的个体在遗传迭代的整个过程中都能保持良好的多样性, 既保证了算法具有较快的收敛速度, 又能防止算法收敛于局部最优解; 另一方面能使上一代的最优个体一定会被选择到下一代, 即这种选择策略隐含了最优保持操作, 保证了算法的全局收敛性. 由于选择概率比较容易控制, 所以

适用于动态调整选择概率, 根据进化效果适时改变群体选择压力.

即轮盘赌选择方式、联赛选择方式和父子竞争选择方式, 前一种选择方式在引入了最优保持操作后能保证算法的全局收敛性, 但收敛速度较慢; 后2种选择方式不能保证算法的全局收敛性, 很可能收敛于局部最优解, 但有较快的收敛速度. 因此,

适当选择遗传算法的选择方式对提高算法的计算

遗传算法的基本原理

遗传算法类似于自然进化,通过作用于染色体上的基因寻找好的染色体来求解问题。与自然界相似,遗传算法对求解问题的本身一无所知,它所需要的仅是对算法所产生的每个染色体进行评价,并基于适应值来选择染色体,使适应性好的染色体有更多的繁殖机会。在遗传算法中,通过随机方式产生若干个所求解问题的数字编码,即染色体,形成初始群体;通过适应度函数给每个个体一个数值评价,淘汰低适应度的个体,选择高适应度的个体参加遗传操作,经过遗传操作后的个体集合形成下一代新的种群。对这个新种群进行下一轮进化。这就是遗传算法的基本原理。

下面就是遗传算法思想:

(1) 初始化群体;

(2) 计算群体上每个个体的适应度值;

(3) 按由个体适应度值所决定的某个规则选择将进入下一代的个体;

(4) 按概率PX进行交叉操作;

(5) 按概率PM进行突变操作;

(6) 没有满足某种停止条件,则转第(2)步,否则进入(7)。

(7) 输出种群中适应度值最优的染色体作为问题的满意解或最优解。

程序的停止条件最简单的有如下二种:完成了预先给定的进化代数则停止;种群中的最优个体在连续若干代没有改进或平均适应度在连续若干代基本没有改进时停止。 根据遗传算法思想可以画出如右图所示的简单遗传算法框图:

图 3.22 简单遗传算法框图

遗传算法的选择算子

选择即从当前群体中选择适应值高的个体以生成交配池的过程. 遗传算法中最常用的选择方式是轮盘赌(Roulette Wheel)选择方式, 也称比例选择或复制. 在该方法中, 各个个体被选择的概率和其适应度值成比例. 设群体规模大小为N, 个体i 的适应度值为Fi , 则这个个体

被选择的概率为:显然, 个体适应度越大, 其被选择的概率越高, 反之亦然.遗传算法另一种常用的选择方式是锦标赛选择方式, 其基本思想是将上一代群体中的个体和本次遗传操作产生的所有新个体放到一起按适值从大到小的顺序排队, 然后取排在前面的N 个(N 为群体规模)个体组成新一代群体.遗传算法的交叉算子作用于某2 个父代个体时, 会产生2 个子代个体, 父子2 代共4 个个体平等竞争, 淘汰2 个低适值个体, 保留2 个高适值个体. 遗传算法的变异算子作用于某一父代个体时,会产生一个子代个体, 如果子代个体的适值比父代个体的高, 则用子代个体取代父代个体; 否则保

留父代个体淘汰子代个体, 这就是父子竞争选择.遗传算法初始群体中的个体一般是随机产生的, 初始群体中的个体均匀地分布于整个串空间.在遗传迭代的早期, 群体中个体适值差别很大, 按上述3 种选择方式容易出现的问题是: 在选择下一代群体时, 适值低的个体被选中的机会很小, 最佳个体在下一代的生存机会将显著增加, 而最差个体的生存机会将被剥夺,低适值个体淘汰太快容易使算法收敛于局部最优解. 群体中的最佳个体

快速充满整个群体, 导致群体多样性降低, GA 也过早地丧失了进化能力. 而到了遗传迭代的晚期,群体中个体适值差别不大, 算法收敛速度慢. 此外,遗传算法只有在引入了最优保持操作后才是全局收敛的. 因此, 我们提出改进的选择策略, 先对群体中个体的适值进行变换, 再按个体适值大小的比例进行选择. 具体方法是: 先将参与选择的X 个个体按适值从小到大顺序编号(相同适值的个体可随意排列), 然后以个体的序号作为其变换后的适值, 即X 个个体的适值分别变换为1, 2, 3,⋯, X. 编号为m 的个体被选中的概率为p=m /X , 1≤m≤

X. 显然, 这种改进的选择与个体的适应值无直接关系, 仅仅与个体之间的适应值相对大小有关. 这种策略一方面通过对群体中个体适值的变换, 使群体中的个体在遗传迭代的整个过程中都能保持良好的多样性, 既保证了算法具有较快的收敛速度, 又能防止算法收敛于局部最优解; 另一方面能使上一代的最优个体一定会被选择到下一代, 即这种选择策略隐含了最优保持操作, 保证了算法的全局收敛性. 由于选择概率比较容易控制, 所以

适用于动态调整选择概率, 根据进化效果适时改变群体选择压力.

即轮盘赌选择方式、联赛选择方式和父子竞争选择方式, 前一种选择方式在引入了最优保持操作后能保证算法的全局收敛性, 但收敛速度较慢; 后2种选择方式不能保证算法的全局收敛性, 很可能收敛于局部最优解, 但有较快的收敛速度. 因此,

适当选择遗传算法的选择方式对提高算法的计算


相关内容

  • 关于遗传算法的研究 毕业论文
  • 摘要:在本篇论文主要讨论的是通过介绍生物的遗传问题,什么是遗传算法(genetic Algorithm ),遗传算法的性质,应用,传统遗传算法的基本步骤和遗传算法的目前的发展趋向等等内容,使大家得到关于遗传算法的比较深厚的了解. 中文关键词:遗传:遗传算法:染色体:基因:基因地点:基因特征值:适应度 ...

  • 蚁群算法基本原理及综述
  • 摘 要:虽然蚁群算法出现时间并不长,但由于其自身具有较好的鲁棒性,以及较强的正反馈机制,使得其在解决TSP问题中取得了较好的成果.在其他问题的解决中,由于其全局搜索性较差,极易出现局部收敛.文章通过对蚁群算法的基本原理与相关方法进行分析,以期对相关问题的改善提供借鉴与参考. 关键词:蚁群算法:基本原 ...

  • 数学建模十大经典算法
  • 1.蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,是比赛时必用的方法) 2.数据拟合.参数估计.插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab 作为工具) 3.线性规划. ...

  • Matlab遗传算法工具箱的应用
  • ^工●砷化聩件技m0.I.Automation2005年第24卷第6期Softwwe1khnjque2005.VbI.24.No.6文章蚺号l10D6一],76(2D05)06一0115一02 Matlab遗传算法工具箱的应用 曾日波 (江西财经大学电子学院,江西南昌330013) 摘要:Matla ...

  • 多目标优化的求解方法与发展
  • 多目标优化的求解方法与发展 耿玉磊 张翔 (福建农林大学机电工程学院,福州金山 350002) 摘要:本文首先介绍了传统多目标优化求解方法和改进:对遗传算法,模糊优化,神经网络等算法在多目标优化中的应用做了介绍:最后介绍了满意度. 关键词:多目标优化 遗传算法 神经网络 1前言 多目标优化(Mult ...

  • 传统多目标优化方法和多目标遗传算法的比较综述
  • 2010年第32卷第3期第48页 电气传动自动化 ELECTRlCDRIVE V01.32,No.3 AUT()MATIoN2010.32(3):48-50 传统多目标优化方法和多目标遗传算法的比较综述 马小妹L2,李宇龙3,严浪3 (1.西安电子科技大学计算机学院.陕西西安710071:2.天水师 ...

  • 数模-蚁群算法的应用研究与发展
  • 科技信息.本刊重稿o sc皿NCE&TECⅢ帕LoGY矾fD砌姒TION 2007年第28期 蚁群算法的应用研究与发展 杨海112王洪国3徐卫志1 (1.山东师范大学信息科学与工程学院山东济南250014: 2.山东交通学院信息工程系山东济南250023:3.山东省科技厅山东济南250011 ...

  • 路径规划的智能控制
  • (综述报告) 考 核 科 目 :机电系统智能控制 学生所在院(系):机电学院 学生所在学科 :机学生姓名 学号 : 学生类别 :工考 核 结 果 械制学 造 阅卷人 智能控制在机器人领域的应用 遗传算法在移动机器人路径规划上的研究 摘要:近些年来机器人技术飞速发展,对机器人运动的控制要求越来越高,机 ...

  • 禁忌搜索算法求解旅行商问题研究
  • 第!"卷第#期西南师范大学学报(自然科学版)!$$!年%月 &'()!"*')#+',-./('01',234562738./*'-9/(:.8;5-682 文章编号:>$$$?@">(!$$!)$#$#@>$? 禁忌搜索算法求解旅行商问题研究 ...