直流脉宽调速实验原理

第3章 直流脉宽调速实验原理

一 适用于直流脉宽调速控制电路的IC 芯片

一.SG3525A 脉宽调制器控制电路简介

SG3525A 系列脉宽调制器控制电路可以改进为各种类型的开关电源的控制性能和使用较少的外部零件。在芯片上的5.1V 基准电压调定在±1%,误差放大器有一个输入共模电压范围。它包括基准电压,这样就不需要外接的分压电阻器了。一个到振荡器的同步输入可以使多个单元成为从电路或一个单元和外部系统时钟同步。在C T 和放电脚之间用单个电阻器连接即可对死区时间进行大范围的编程。在这些器件内部还有软起动电路,它只需要一个外部的定时电容器。一只断路脚同时控制软起动电路和输出级。只要用脉冲关断,通过PWM (脉宽调制)锁存器瞬时切断和具有较长关断命令的软起动再循环。当V CC 低于标称值时欠电压锁定禁止输出和改变软起动电容器。输出级是推挽式的可以提供超过200mA 的源和漏电流。SG3525A 系列的NOR (或非)逻辑在断开状态时输出为低。

²工作范围为8.0V 到35V ²5.1V ±1.0%调定的基准电压 ²100Hz 到400KHz 振荡器频率 ²分立的振荡器同步脚

二.SG3525A 内部结构和工作特性

(1)基准电压调整器

基准电压调整器是输出为5.1V ,50mA ,有短路电流保护的电压调整器。它供电给所有内部电路,同时又可作为外部基准参考电压。若输入电压低于6V 时,可把15、16脚短接,这时5V 电压调整器不起作用。

(2)振荡器

3525A 的振荡器,除C T 、R T 端外,增加了放电7、同步端3。R T 阻值决定了内部恒流值对C T 充电,C T 的放电则由5、7端之间外接的电阻值R D 决定。把充电和放电回路分开,有利于通过R D 来调节死区的时间,因此是重大改进。这时3525A 的振荡频率可表为:

f S =

1

C T (0. 7R T +3R D )

(3.1)

在3525A 中增加了同步端3专为外同步用,为多个3525A 的联用提供了方便。同步脉冲的频率应比振荡频率f S 要低一些。

50

误差放大器是差动输入的放大器。它的增益标称值为80dB ,其大小由反馈或输出负载决定,输出负载可以是纯电阻,也可以是电阻性元件和电容的元件组合。该放大器共模输入电压范围在1.8~3.4V ,需要将基准电压分压送至误差放大器1脚(正电压输出)或2脚(负电阻输出)。

3524的误差放大器、电流控制器和关闭控制三个信号共用一个反相输入端,3525A 改为增加一个反相输入端,误差放大器与关闭电路各自送至比较器的反相端。这样避免了彼此相互影响。有利于误差放大器和补偿网络工作精度的提高。

(4)闭锁控制端10

利用外部电路控制10脚电位,当10脚有高电平时,可关闭误差放大器的输出,因此,可作为软起动和过电压保护等。

(5)有软起动电路

比较器的反相端即软起动控制端8,端8可外接软起动电容。该电容由内部V ref 的50

2. 5V

μA 恒流源充电。达到2.5V 所经的时间为t = ⋅C 8。点空比由小到大(50%)变化。

50μA

(6)增加PWM 锁存器使关闭作用更可靠

比较器(脉冲宽度调制)输出送到PWM 锁存器。锁存器由关闭电路置位,由振荡器输出时间脉冲复位。这样,当关闭电路动作,即使过流信号立即消失,锁存器也可维持一个

51

周期的关闭控制,直到下一周期时钟信号使倘存器复位为止。

另外,由于PWM 锁存器对比较器来的置位信号锁存,将误差放大器上的噪音、振铃及系统所有的跳动和振荡信号消除了。只有在下一个时钟周期才能重新置位,有利于可靠性提高。

(7)增设欠压锁定电路

电路主要作用是当IC 块输入电压小于8V 时,集成块内部电路锁定,停止工作(其准源及必要电路除外),使之消耗电流降到很小(约2mA )。

(8)输出级

由两个中功率NPN 管构成,每管有抗饱和电路和过流保护电路,每组可输出100mA 。组间是相互隔离的。电路结构改为确保其输出电平或者是高电平或者是低电平的一个电平状态中。为了能适应驱动快速的场效应功率管的需要,末级采用推拉式电路,使关断速度更快。

11端(或14端)的拉电流和灌电流,达100mA 。在状态转换中,由于存在开闭滞后,使流出和吸收间出现重迭导通。在重迭处有一个电流尖脉冲,其持续时间约100ns 。使用时V C 接一个0.1μf 电容可以滤去尖峰。

另一个不足处是吸电流时,如负载电流达到50mA 以上时,管饱和压降较高(约1V )。

三.IC 芯片的工作

直流电源V S 从15号脚引入分两路:一路加到或非门;另一路送到基准电压稳压器的输入端,产生稳定的+5.1V 基准电压,+5.1V 再送到内部(或外部)电路的其它元件作为电源。振荡器5号脚需外接电容C r ,6号脚需外接电阻R r 。选用不同的C r 、R r ,即可调节振荡器的频率。振荡器的输出分为两路:一路以时钟脉冲形式送至双稳态触发器及二个或非门;另一路以锯齿波形式送至比较器的同相端。比较器的反相端连向误差放大器。误差放大器实际上是个差分放大器,它有两个输入端:1号脚为反相输入端;2号脚为同相输入端,这两个输入端可根据应用需要连接。例如,一端可连到开关电源输出电压V 0的取样电路上(取样信号电压约2.5V ),另一端连到16号脚的分压电路上(应取得2.5V 的电压),误差放大器输出9号脚与地之间可接上电阻与电容,以进行频率补偿。误差放大器的输出与锯齿波电压在比较器中进行比较,从而在比较器的输出端出现一个随误差放大器输出电压的高低而改变宽度的方波脉冲,再将此方波脉冲送到或非门的一个输入端。或非门另二输入端分别为触发器、振荡锯齿波。最后,在晶体管A 和B 上分别出现脉冲宽度随V 0变化而变化的脉冲波,但两者相位相差180°。

四.1525A 的参数

极限参数

52

53

54

二.直流脉宽调速主电路

一.可逆PWM 变换器

动作,其驱动电压U b2=Ub3= -U b1。它们的波形示于图3-3。

在一个开关周期内,当0≤t <t on 时,U b1和U b4为正,功率场效应管VT 1和VT 4导通;而U b2和U b3为负,VT 2和VT 3截止。这时,+U s 加在电枢AB 两端,U AB =U s ,电枢电流i d 沿回路1流通。 t on ≤t <T 时,U b1和U b4变负,VT 1和VT 4截止;U b2、U b3变正,但VT 2、VT 3并不能立即导通,因为在电枢电感释放储能的作用下,i d 沿回路2经VD 2、VD 3续流,在VD 2、VD 3上的压降使VT 2和VT 3c~e极承受着反压,这时,U AB =-U b 。U AB 在一个周期内正负相间,这是双极式PWM 变换器的特征,其电压、电流波形示于图3-3。

由于电压U AB 的正、负变化,使电流波形存在两种情况,如图3-3中的i d1和i d2。i d1

相当于电动机负载较重的情况,这时平均负载电流大,在续流阶段电流仍维持正方向,电机始终工作在第一个象限的电动状态。i d2相当于负载很轻的情况,平均电流小,在续流阶段电流很快衰减到零,于是VT 2和VT3两端失去反压,在负的电源电压(-U s )和电枢反电动势的合成作用下导通,电枢电流反向,沿回路3流通,电机处于制动状态。与此相仿,在0≤t <t on 期间,当负载轻时,电流也有一次倒向。

这样看来,双极式可逆PWM 变换器的电流波形和不可逆但有制动电流通路的PWM 变换器也差不多,怎样才能反映出“可逆”的作用呢?这要视正、负脉冲电压的宽窄而定。当正脉冲较宽时,t on >T /2,则电枢两端的平均电压为正,在电动运行时电动机正转。当正脉冲较窄时,t on <T /2,平均电压为负,电动机反转。如果正、负脉冲宽度相等,t on =T /2,平均电压为零,则电动机停止。图3-3所示的电压、电流波形都是在电动机正转时的情况。

双极式可逆PWM 变换器电枢平均端电压用公式表示为: U d =

t on T U s -

T -t on

T

U s =(

2t on T

-1) U s (3-2)

仍以ρ=U d /U s 来定义PWM 电压的占空比,则ρ与t on 的关系与前面不同了,现在 ρ=

2t on T

-1 (3-3)

调速时,ρ的变化范围变成-1≤ρ≤1。当ρ为正值时,电动机正转;ρ为负值时,电动机反转;ρ=0时,电动机停止。在ρ=0时,虽然电机不动,电枢两端的瞬时电压和瞬时电流却都不是零,而是交变的。这个交变电流平无值为零,不产生增均转矩,徒然增大电机的损耗。但它的好处是使电机带有高频的微振,起着所谓“动力润滑”的作用,消除正、反向时的静摩擦死区。

双极式PWM 变换器的优点如下:(1)电流一定连续;(2)可使电动机在四象限运行;(3)电机停止时有微振电流,能消除静摩擦死区;(4)低速时,每个功率场效应管的驱动脉冲仍较宽,有利于保证功率场效应管可靠导通;(5)低速平稳性好,调速范围可达20000左右。

56

式变换器相比有所不同。当负载较重因而电流方向连续不变时各管的开关情况和电枢电压的状况列于表3-1中,同时列出双极式变换器的情况以资比较。负载较轻时,电流在一个周期内也会来回变向,这时各管导通和截止的变化还要多些,可以自行分析。

表3-1中单极式变换器的U AB 一栏表明,在电动机朝一个方向旋转时,PWM 变换器只在一个阶段中输出某一极性的脉冲电压,在另一阶段中U AB =0,这是它所以称作“单极性”变换器的原因。正因为如此,它的输出电压波形和占空比的公式又和不可逆变换器一样了。

57

载较重,电流i d 在一个方向内连续变化,所有的电压、电流波形都和一般单极式变换器一样。但是,当负载较轻时,由于有两个功率场效应管一直处于截止状态,不可能导通,因而不会出现电流变向的情况,在续流期间电流衰减到零后,波形便中断了,这时电枢两端

58

电压跳变到U AB =E ,如图3-3所示。这种轻载电流断续的现象将使变换器的外特性变软,和V -M 系统中的情况十分相似。它使PWM 调速系统的静、动态性能变差,换来的好处则是可靠性的提高。

电流断续时,电枢电压的提高把平均电压也提高了,成为U d =ρU s +≈U d ,则U d ≈(

T t d

) ρU s =ρ'U s 由此求出新的负载电流系数: T t d

ρ (3-3)

T -t d

T

E 令E

ρ'=

由于T ≥t d ,因而ρ'≥ρ,但ρ'之值仍在-1~+1之间变化。

三 脉宽调速系统的开环机械特性

在稳态情况下,脉宽调速系统中电动机所承受的电压仍为脉冲电压,因此尽管有高频电感的平波作用,电枢电流和转速还是脉动的。所谓稳态,只是指电机的平均电磁转矩与负载转矩相平衡的状态,电枢电流实际上是周期性变化的,只能算作是“准稳态”。脉宽调速系统在准稳态下的机械特性是其平均转速与平均转矩(电流)的关系。

不论是带制动电流通路的不可逆PWM 电路,还是双极式和单极式的可逆PWM 电路,其准稳态的电压、电流波形都是相似的。由于电路中具有反向电流通路,在同一转向下电流可正可负,无论是重载还是轻载,电流波形都是连续的,这就使机械特性的关系式简单得多。只有受限单极式可逆电路例外,后面将单独讨论。

对于带制动作用的不可逆电路和单极式可逆电路,其电压方程已如下: U s =R i d +L 0=R i d +L

d i d dt

+E (0≤t <t on )

d i d dt

+E (t on ≤t <T )

对于双极式可逆电路,只有第二个方程中的电源电压改为-U s ,其余不变

U s =R i d +L -U s =R i d +L

d i d dt

d i d dt

+E (0≤t <t on ) (3-4) +E (t on ≤t <T ) (3-5)

无论是上述哪一种情况,一个周期内电枢两端的平均电压都是U d =ρU s (只是ρ值与t on 和T 的关系不同),平均电流用I d 表示,平均电磁转矩为T eav =C m I d ,而电枢回路电感两端电压L

di d dt

的平均值为零。于是,式(3-4)、(3-5)的平均值方程都可写成

ρU s =RI d +E =RI d +C e n (3-6)

59

或用转矩表示 n =

ρU s C e

-

R C e C m

T eav =n 0-

R C e C m

T eav (3-8)

(3-7)

其中理想空载转速n 0=ρU s /C e , 与占空比ρ成正式。图3-5绘出了第一、二象限的机械特性,它适用于带制动作用的不可逆电路,可逆电路的机械特性与此相仿,只是扩展到第三、四象限而已。

对于受限单极式可逆电路,电机在同一旋转方向下电流不能反向,轻载时将出现电流断续情况,平均电压方程式(3-6)便不能成立,机械特性方程要复杂得多。但是,由图3-4的电压波形可以定性地看出,当占空比一定时,负载越轻,即平均电流越小,则电流中断(此时U AB =E )的时间越长。照此趋势,在理想空载时,I d =0,只有转速升高到使E =U S 才行。因此不论ρ为何值,理想空载转速都会上翘到n os =Us /Ce 。

四.直流脉宽调速逻辑延时环节

在可逆PWM 变换器中,跨接在电源两端的上、下两个功率场效应管经常交替工作(见图3-2)由于功率场效应管的关断过程中有一段存储时间t s 和电流下降时间t 1,总称关断时间t off 。在这段时间内功率场效应管并未完全关断。如果在此期间另一个功率场效应管已经导通,则将造成上下两管直通,从而使电源正负极短路。为了避免发生这种情况,设置了由R 、C 电路构成的逻辑延时环节DLD ,保证在对一个管子发生关闭脉冲后,延时t 1d 后再发出对另一个管子的开通脉冲(如U b2)。由于功率场效应管导通时也存在开通时间,延时时间t 1d 只要大于功率场效应管的存储时间t s 就可以了。

在逻辑延时环节中还可以引入保护信号,例如瞬时动作的限流保护信号,一旦桥臂电流超过允许最大电流值时,使VT 1、VT 4(或VT 2、VT 3)两管同时封锁,以保护功率场效应管。

60

第3章 直流脉宽调速实验原理

一 适用于直流脉宽调速控制电路的IC 芯片

一.SG3525A 脉宽调制器控制电路简介

SG3525A 系列脉宽调制器控制电路可以改进为各种类型的开关电源的控制性能和使用较少的外部零件。在芯片上的5.1V 基准电压调定在±1%,误差放大器有一个输入共模电压范围。它包括基准电压,这样就不需要外接的分压电阻器了。一个到振荡器的同步输入可以使多个单元成为从电路或一个单元和外部系统时钟同步。在C T 和放电脚之间用单个电阻器连接即可对死区时间进行大范围的编程。在这些器件内部还有软起动电路,它只需要一个外部的定时电容器。一只断路脚同时控制软起动电路和输出级。只要用脉冲关断,通过PWM (脉宽调制)锁存器瞬时切断和具有较长关断命令的软起动再循环。当V CC 低于标称值时欠电压锁定禁止输出和改变软起动电容器。输出级是推挽式的可以提供超过200mA 的源和漏电流。SG3525A 系列的NOR (或非)逻辑在断开状态时输出为低。

²工作范围为8.0V 到35V ²5.1V ±1.0%调定的基准电压 ²100Hz 到400KHz 振荡器频率 ²分立的振荡器同步脚

二.SG3525A 内部结构和工作特性

(1)基准电压调整器

基准电压调整器是输出为5.1V ,50mA ,有短路电流保护的电压调整器。它供电给所有内部电路,同时又可作为外部基准参考电压。若输入电压低于6V 时,可把15、16脚短接,这时5V 电压调整器不起作用。

(2)振荡器

3525A 的振荡器,除C T 、R T 端外,增加了放电7、同步端3。R T 阻值决定了内部恒流值对C T 充电,C T 的放电则由5、7端之间外接的电阻值R D 决定。把充电和放电回路分开,有利于通过R D 来调节死区的时间,因此是重大改进。这时3525A 的振荡频率可表为:

f S =

1

C T (0. 7R T +3R D )

(3.1)

在3525A 中增加了同步端3专为外同步用,为多个3525A 的联用提供了方便。同步脉冲的频率应比振荡频率f S 要低一些。

50

误差放大器是差动输入的放大器。它的增益标称值为80dB ,其大小由反馈或输出负载决定,输出负载可以是纯电阻,也可以是电阻性元件和电容的元件组合。该放大器共模输入电压范围在1.8~3.4V ,需要将基准电压分压送至误差放大器1脚(正电压输出)或2脚(负电阻输出)。

3524的误差放大器、电流控制器和关闭控制三个信号共用一个反相输入端,3525A 改为增加一个反相输入端,误差放大器与关闭电路各自送至比较器的反相端。这样避免了彼此相互影响。有利于误差放大器和补偿网络工作精度的提高。

(4)闭锁控制端10

利用外部电路控制10脚电位,当10脚有高电平时,可关闭误差放大器的输出,因此,可作为软起动和过电压保护等。

(5)有软起动电路

比较器的反相端即软起动控制端8,端8可外接软起动电容。该电容由内部V ref 的50

2. 5V

μA 恒流源充电。达到2.5V 所经的时间为t = ⋅C 8。点空比由小到大(50%)变化。

50μA

(6)增加PWM 锁存器使关闭作用更可靠

比较器(脉冲宽度调制)输出送到PWM 锁存器。锁存器由关闭电路置位,由振荡器输出时间脉冲复位。这样,当关闭电路动作,即使过流信号立即消失,锁存器也可维持一个

51

周期的关闭控制,直到下一周期时钟信号使倘存器复位为止。

另外,由于PWM 锁存器对比较器来的置位信号锁存,将误差放大器上的噪音、振铃及系统所有的跳动和振荡信号消除了。只有在下一个时钟周期才能重新置位,有利于可靠性提高。

(7)增设欠压锁定电路

电路主要作用是当IC 块输入电压小于8V 时,集成块内部电路锁定,停止工作(其准源及必要电路除外),使之消耗电流降到很小(约2mA )。

(8)输出级

由两个中功率NPN 管构成,每管有抗饱和电路和过流保护电路,每组可输出100mA 。组间是相互隔离的。电路结构改为确保其输出电平或者是高电平或者是低电平的一个电平状态中。为了能适应驱动快速的场效应功率管的需要,末级采用推拉式电路,使关断速度更快。

11端(或14端)的拉电流和灌电流,达100mA 。在状态转换中,由于存在开闭滞后,使流出和吸收间出现重迭导通。在重迭处有一个电流尖脉冲,其持续时间约100ns 。使用时V C 接一个0.1μf 电容可以滤去尖峰。

另一个不足处是吸电流时,如负载电流达到50mA 以上时,管饱和压降较高(约1V )。

三.IC 芯片的工作

直流电源V S 从15号脚引入分两路:一路加到或非门;另一路送到基准电压稳压器的输入端,产生稳定的+5.1V 基准电压,+5.1V 再送到内部(或外部)电路的其它元件作为电源。振荡器5号脚需外接电容C r ,6号脚需外接电阻R r 。选用不同的C r 、R r ,即可调节振荡器的频率。振荡器的输出分为两路:一路以时钟脉冲形式送至双稳态触发器及二个或非门;另一路以锯齿波形式送至比较器的同相端。比较器的反相端连向误差放大器。误差放大器实际上是个差分放大器,它有两个输入端:1号脚为反相输入端;2号脚为同相输入端,这两个输入端可根据应用需要连接。例如,一端可连到开关电源输出电压V 0的取样电路上(取样信号电压约2.5V ),另一端连到16号脚的分压电路上(应取得2.5V 的电压),误差放大器输出9号脚与地之间可接上电阻与电容,以进行频率补偿。误差放大器的输出与锯齿波电压在比较器中进行比较,从而在比较器的输出端出现一个随误差放大器输出电压的高低而改变宽度的方波脉冲,再将此方波脉冲送到或非门的一个输入端。或非门另二输入端分别为触发器、振荡锯齿波。最后,在晶体管A 和B 上分别出现脉冲宽度随V 0变化而变化的脉冲波,但两者相位相差180°。

四.1525A 的参数

极限参数

52

53

54

二.直流脉宽调速主电路

一.可逆PWM 变换器

动作,其驱动电压U b2=Ub3= -U b1。它们的波形示于图3-3。

在一个开关周期内,当0≤t <t on 时,U b1和U b4为正,功率场效应管VT 1和VT 4导通;而U b2和U b3为负,VT 2和VT 3截止。这时,+U s 加在电枢AB 两端,U AB =U s ,电枢电流i d 沿回路1流通。 t on ≤t <T 时,U b1和U b4变负,VT 1和VT 4截止;U b2、U b3变正,但VT 2、VT 3并不能立即导通,因为在电枢电感释放储能的作用下,i d 沿回路2经VD 2、VD 3续流,在VD 2、VD 3上的压降使VT 2和VT 3c~e极承受着反压,这时,U AB =-U b 。U AB 在一个周期内正负相间,这是双极式PWM 变换器的特征,其电压、电流波形示于图3-3。

由于电压U AB 的正、负变化,使电流波形存在两种情况,如图3-3中的i d1和i d2。i d1

相当于电动机负载较重的情况,这时平均负载电流大,在续流阶段电流仍维持正方向,电机始终工作在第一个象限的电动状态。i d2相当于负载很轻的情况,平均电流小,在续流阶段电流很快衰减到零,于是VT 2和VT3两端失去反压,在负的电源电压(-U s )和电枢反电动势的合成作用下导通,电枢电流反向,沿回路3流通,电机处于制动状态。与此相仿,在0≤t <t on 期间,当负载轻时,电流也有一次倒向。

这样看来,双极式可逆PWM 变换器的电流波形和不可逆但有制动电流通路的PWM 变换器也差不多,怎样才能反映出“可逆”的作用呢?这要视正、负脉冲电压的宽窄而定。当正脉冲较宽时,t on >T /2,则电枢两端的平均电压为正,在电动运行时电动机正转。当正脉冲较窄时,t on <T /2,平均电压为负,电动机反转。如果正、负脉冲宽度相等,t on =T /2,平均电压为零,则电动机停止。图3-3所示的电压、电流波形都是在电动机正转时的情况。

双极式可逆PWM 变换器电枢平均端电压用公式表示为: U d =

t on T U s -

T -t on

T

U s =(

2t on T

-1) U s (3-2)

仍以ρ=U d /U s 来定义PWM 电压的占空比,则ρ与t on 的关系与前面不同了,现在 ρ=

2t on T

-1 (3-3)

调速时,ρ的变化范围变成-1≤ρ≤1。当ρ为正值时,电动机正转;ρ为负值时,电动机反转;ρ=0时,电动机停止。在ρ=0时,虽然电机不动,电枢两端的瞬时电压和瞬时电流却都不是零,而是交变的。这个交变电流平无值为零,不产生增均转矩,徒然增大电机的损耗。但它的好处是使电机带有高频的微振,起着所谓“动力润滑”的作用,消除正、反向时的静摩擦死区。

双极式PWM 变换器的优点如下:(1)电流一定连续;(2)可使电动机在四象限运行;(3)电机停止时有微振电流,能消除静摩擦死区;(4)低速时,每个功率场效应管的驱动脉冲仍较宽,有利于保证功率场效应管可靠导通;(5)低速平稳性好,调速范围可达20000左右。

56

式变换器相比有所不同。当负载较重因而电流方向连续不变时各管的开关情况和电枢电压的状况列于表3-1中,同时列出双极式变换器的情况以资比较。负载较轻时,电流在一个周期内也会来回变向,这时各管导通和截止的变化还要多些,可以自行分析。

表3-1中单极式变换器的U AB 一栏表明,在电动机朝一个方向旋转时,PWM 变换器只在一个阶段中输出某一极性的脉冲电压,在另一阶段中U AB =0,这是它所以称作“单极性”变换器的原因。正因为如此,它的输出电压波形和占空比的公式又和不可逆变换器一样了。

57

载较重,电流i d 在一个方向内连续变化,所有的电压、电流波形都和一般单极式变换器一样。但是,当负载较轻时,由于有两个功率场效应管一直处于截止状态,不可能导通,因而不会出现电流变向的情况,在续流期间电流衰减到零后,波形便中断了,这时电枢两端

58

电压跳变到U AB =E ,如图3-3所示。这种轻载电流断续的现象将使变换器的外特性变软,和V -M 系统中的情况十分相似。它使PWM 调速系统的静、动态性能变差,换来的好处则是可靠性的提高。

电流断续时,电枢电压的提高把平均电压也提高了,成为U d =ρU s +≈U d ,则U d ≈(

T t d

) ρU s =ρ'U s 由此求出新的负载电流系数: T t d

ρ (3-3)

T -t d

T

E 令E

ρ'=

由于T ≥t d ,因而ρ'≥ρ,但ρ'之值仍在-1~+1之间变化。

三 脉宽调速系统的开环机械特性

在稳态情况下,脉宽调速系统中电动机所承受的电压仍为脉冲电压,因此尽管有高频电感的平波作用,电枢电流和转速还是脉动的。所谓稳态,只是指电机的平均电磁转矩与负载转矩相平衡的状态,电枢电流实际上是周期性变化的,只能算作是“准稳态”。脉宽调速系统在准稳态下的机械特性是其平均转速与平均转矩(电流)的关系。

不论是带制动电流通路的不可逆PWM 电路,还是双极式和单极式的可逆PWM 电路,其准稳态的电压、电流波形都是相似的。由于电路中具有反向电流通路,在同一转向下电流可正可负,无论是重载还是轻载,电流波形都是连续的,这就使机械特性的关系式简单得多。只有受限单极式可逆电路例外,后面将单独讨论。

对于带制动作用的不可逆电路和单极式可逆电路,其电压方程已如下: U s =R i d +L 0=R i d +L

d i d dt

+E (0≤t <t on )

d i d dt

+E (t on ≤t <T )

对于双极式可逆电路,只有第二个方程中的电源电压改为-U s ,其余不变

U s =R i d +L -U s =R i d +L

d i d dt

d i d dt

+E (0≤t <t on ) (3-4) +E (t on ≤t <T ) (3-5)

无论是上述哪一种情况,一个周期内电枢两端的平均电压都是U d =ρU s (只是ρ值与t on 和T 的关系不同),平均电流用I d 表示,平均电磁转矩为T eav =C m I d ,而电枢回路电感两端电压L

di d dt

的平均值为零。于是,式(3-4)、(3-5)的平均值方程都可写成

ρU s =RI d +E =RI d +C e n (3-6)

59

或用转矩表示 n =

ρU s C e

-

R C e C m

T eav =n 0-

R C e C m

T eav (3-8)

(3-7)

其中理想空载转速n 0=ρU s /C e , 与占空比ρ成正式。图3-5绘出了第一、二象限的机械特性,它适用于带制动作用的不可逆电路,可逆电路的机械特性与此相仿,只是扩展到第三、四象限而已。

对于受限单极式可逆电路,电机在同一旋转方向下电流不能反向,轻载时将出现电流断续情况,平均电压方程式(3-6)便不能成立,机械特性方程要复杂得多。但是,由图3-4的电压波形可以定性地看出,当占空比一定时,负载越轻,即平均电流越小,则电流中断(此时U AB =E )的时间越长。照此趋势,在理想空载时,I d =0,只有转速升高到使E =U S 才行。因此不论ρ为何值,理想空载转速都会上翘到n os =Us /Ce 。

四.直流脉宽调速逻辑延时环节

在可逆PWM 变换器中,跨接在电源两端的上、下两个功率场效应管经常交替工作(见图3-2)由于功率场效应管的关断过程中有一段存储时间t s 和电流下降时间t 1,总称关断时间t off 。在这段时间内功率场效应管并未完全关断。如果在此期间另一个功率场效应管已经导通,则将造成上下两管直通,从而使电源正负极短路。为了避免发生这种情况,设置了由R 、C 电路构成的逻辑延时环节DLD ,保证在对一个管子发生关闭脉冲后,延时t 1d 后再发出对另一个管子的开通脉冲(如U b2)。由于功率场效应管导通时也存在开通时间,延时时间t 1d 只要大于功率场效应管的存储时间t s 就可以了。

在逻辑延时环节中还可以引入保护信号,例如瞬时动作的限流保护信号,一旦桥臂电流超过允许最大电流值时,使VT 1、VT 4(或VT 2、VT 3)两管同时封锁,以保护功率场效应管。

60


相关内容

  • 电力拖动基础
  • 电力拖动基础 Basis of Electric Drive 课程编号:04300320 总学时:56 课堂教学:44 实验:12 学分:3.5 课程性质:技术基础课 选课对象:自动化专业必修.电气工程及其自动化专业必修 先修课程:<电工基础>.<电路>.<电机学> ...

  • 电力拖动学习心得体会
  • <电力拖动自动控制系统>学习心得 进入到大四我们接触到了一门新的课程叫<电力拖动自动控制系统>,几次课上下来发现 这门课包含的内容实在是太多了,涉及到了自动控制原理.电机拖动.电力电子和高数等多 门学科的知识,让我觉得学起来有点吃力.但经过老师的细细梳理,使我慢慢对这门课程有 ...

  • 方波调速系统
  • 实验九 基于DSP 的方波无刷 直流电动机(BLDCM )调速系统 一.实验目的 1.掌握方波无刷直流电动机(BLDCM )的组成.工作原理及性能特点. 2.熟悉DSP 控制的(BLDCM )调速系统的组成及工作原理. 3.了解无转子位置传感器实现电动机转子位置检测的工作原理.特点与实现方法. 4. ...

  • 转速闭环控制调速系统
  • 长春建筑学院电气信息学院 课程设计 课程名称:电子系统仿真实习 设计题目:转速闭环控制直流调速系统仿真 姓 名: 学 号: 专业班级: 指导教师: 起止日期: 设计鉴定 总评 目录 目录 ........................................................ ...

  • 电机拖动基础综述心得
  • <电机及拖动基础> 综述报告 专业及班级 电子系 09级自动化(1)班 姓 名 王典 学 号 0905072002 授 课 老 师 _ 孙强 完 成 时 间 _ 课程综述评分表 注:课程综述评分标准可参见<学生课程综述应包含的内容及评分标准> <电机及拖动基础>综 ...

  • 电动机运行参数测量系统的设计
  • 摘要 本文所研究的是交流异步电动机的参数及机械特性的测量.交流异步电动机是各行各业中使用最广泛的电动机.因为其构造简单,运行可靠,效率较高,价格低廉以成为各种轻.重工业企业不可缺少的机电设备.从广义上讲电动机就是电能转化成机械能的机电设备.在它的发展历程中,经历了漫长的时期.电动机的总类也繁多,按用 ...

  • 电力电子技术实验教程(审)
  • 电 工 电 子 实 验 中 心 实 验 指 导 书 电力电子技术 实验教程 二零零九 年 三 月 高等学校电工电子实验系列 电力电子技术实验教程 主编 王利华 周荣富 攀枝花学院电气信息工程学院 电工电子实验中心 内 容 简 介 本书是根据高等院校理工科本(专) 科的电力电子技术实验课程的基本要求编 ...

  • 直流电动机启动.调速控制线路
  • <电机与拖动>实验报告 实验题目名称:直流电动机启动.调速控制线路 实验室名称:电机及自动控制 实验组号:指导教师: 报告人:学号: 实验地点:实验时间: 指导教师评阅意见与成绩评定 1. 掌握并励直流电动机电枢电路串电阻起动的方法. 2. 掌握并励直流电动机改变电枢电阻和改变励磁电流调 ...

  • 皮带传动实验
  • 实验五 皮带传动实验 一. 实验目的 利用计算机的人机交负性能,使学生可在软件界面说明文件的指导下,独立自主地进行实验,培养学生的动手能力. 1.了解带传动实验台的组成和工作原理,观察带传动中的弹性滑动和打滑现象. 2.了解初拉力的改变对传动的影响. 3.掌握带传动扭矩.转速和转速差的测量方法,测绘 ...

  • 船舶电力推进系统控制方法
  • 船舶电力推进系统控制方法 大连海事大学轮机工程学院 聂延生黄鹏程李伟光 汪涌泉 [内容提要]此文对当前在船舶推进方面发展迅速 电动机,通过调节发电机励磁电流,就能改变发电机的输出电压,从而调节推进电机的转速:改变发电机励磁电流方向,则改变发电机输出电压极性,实现推进电机的正反转.这样船速控制就是通过 ...