[热质交换原理]传热传质报告

传热传质过程报告

[ 摘要] 本文分析了热管式间接蒸发冷却器的传热传质机理。及工程实际的应用。运用能量守恒定律及传热学的研究方法, 对热管间接蒸发冷却器进行传热传质实验研究,

[ 关键词] 热管式, 间接蒸发冷却, 传热传质,

1引言

间接蒸发冷却技术主要利用自然环境空气中的干球温 度与露点温度之差取得冷量, 从而造成或扩大传热温差的特殊的空气- 空气换热器。它是一种被动式供冷技术, 最大的优点是可以利用低品位能量去完成机械制冷系统中必须用高品位能量才能完成的工作。可见间接蒸发冷却器是蒸发冷却空调的核心装置, 蒸发冷却技术的发展依赖于间接蒸发冷却技术的突破与进展。开发用于间接蒸发冷却的低成本高效换热器, 优化间接蒸发冷却器的结构尺寸。

目前间接蒸发冷却器的主要形式有板式和管式两种。板式间接蒸发冷却器虽然结构紧凑, 换热效率高, 但由于流道狭窄容易堵塞, 导致流动阻力增大, 能耗增加, 换热效率降低。管式间接蒸发冷却器一般由一组或多组的管芯组成, 管外可包有吸水性能良好的纤维织物薄套。管式间接蒸发冷却器具有布水均匀, 容易形成稳定水膜, 有利于蒸发冷却的进行; 流道较宽不会产生堵塞, 因而流动阻力小; 但体积较庞大。

2 .平置吸液芯热管式间接蒸发冷却器的传热传质机理

本文研究的是平置吸液芯热管式换热器, 见图1。热管水平放置, 当氨蒸汽在冷凝段放热, 氨蒸汽液化, 依靠吸液芯的毛细作用将冷凝液输送到蒸发段, 氨液在蒸发段吸热汽化, 蒸发段压力增大, 氨蒸汽在压力的作用下输送到冷凝段, 维持管内工质的连续循环。由于本文采用的是吸液芯热管, 冬夏季冷凝段、蒸发段自行转换, 非常适合全年性能量回收的场合。

式换热器冬季不仅是高效的热回收装置, 夏季又可作为间接蒸发冷却器。因此, 我们主要分析夏季在热管冷凝段喷淋时的传热传质机理过程。平置吸液芯热管式间接蒸发冷却器( 图1b) 分为蒸发段( 冷端) 和冷凝段( 热端) , 中间被隔板分开。氨蒸汽通过在冷凝段放热液化释放热量, 通过管壁将热量传递给水膜, 水膜再与饱和空气边界层进行热量交换和质传递, 最后二次空气与饱和空气边界层进行热量交换, 并将热量带出室外。在热管冷凝段喷淋循环水, 热管管壁上形成水膜, 由于水分子的无规则运动, 在紧靠水膜处存在一个温度等于水温的饱和空气边界层, 相对湿度为100% 。因此, 二次空气与水膜之间的热质交换相当于二次空气与饱和空气边界层之间的热质交换, 同时发生显热交换和潜热交换, 即二次空气干球温度变化时, 湿球温度也发生变化。尤其在相界面上由于水分蒸发产生的相变改变了一、二次空气的热传递特性, 使热管式间接蒸发冷却器既区别于一般的气 气换热器, 又不同于冷却塔的绝热蒸发过程。

图1平置吸液芯热管式间接蒸发冷却器原理图

二次空气与水在冷凝段发生的热湿交换过程比较复杂, 通过传热学知识分析, 空气和水膜是在温差和水蒸汽分压差的共同作用下, 即在焓差的推动下进行热湿交换, 具体表现为等焓加湿和等湿升温两个过程的复合。二次空气干球温度降低, 湿球温度升高, 含湿量增大, 但排风的焓值总体是增加的。说明二次空气不仅有显热交换, 也存在部分的潜热交换。而一次空气在蒸发段管外横掠管束流过, 与热管内

的工质进行热交换,

另外, 热管式间接蒸发冷却器具有无需外部动力来促使流体循环, 较常规换热器更安全、可靠, 可长期连续运行, 且冷热段结构位置布置灵活, 具有传热效率高, 结构紧凑, 流动阻力小, 节能效果显著的特点。从流动阻力、制造成本、结构紧凑性、维护性能等综合考虑, 热管式换热器有较好的综合性能。热管工作时, 由于热管内部传热靠相变潜热, 因此蒸发段与冷凝段空气温差较小的应用领域中有其优势。

3 热管式间接蒸发冷却器的传热传质模型

本文运用能量守恒定律与传热学相关知识分析热管式间接蒸发冷却器热质交换过程, 总体上可分为三部分: 一次空气侧的传热过程; 二次空气与水膜湿表面间同时发生传热传质的交换过程; 一次空气侧与二次空气侧之间的能量平衡:

( 1) 系统无散热损失, 该换热器中整个热质交换过程为一稳态过程。

( 2) 一次空气侧的传热面表面温度均匀分布。

(3) 二次空气通道内湿表面温度也是均匀的, 二次空气- 水相界面的温度和焓值相对稳定。

( 4) 空调工况下, 水蒸汽在空气中扩散时, Le近似等于1。 忽略热管中蒸发段和冷凝段轴向上的温度梯, 并且其他参数在热管轴向方向上分布均匀。由于气体和液体之间的热量传递和质量传递关系非常复杂, 根据以上假设, 我们重点分析热管式间接蒸发冷

却器在冷凝段的热质交换过程如图2所

图2热管式间接蒸发冷却冷凝段热质交换过程示意图

4 热管式间接蒸发冷却器的工作过程

热管式间接蒸发冷却器的冷却效率除了本身的结构参数如管径大小、翅片间距、翅片高度、管间距、管排数、布水装置的均匀布水等决定外, 另一方面一次空气与二次空气温度差、风量比以及喷淋水温等都对其有很大的影响。因此, 在结构一定的情况下, 研究运行参数对冷却效率的影响, 对热管间接蒸发冷却器的高效运行具重要意义。

5结论

本文从热管式间接蒸发冷却器的传热传质基本原理出发, 建立了传热传质的数学模型。分析了热管式间接蒸发冷却器冷凝段喷淋热量交换的机理过程, 指出热管式间接蒸发冷却器作为蒸发冷却器时, 冷凝段的二次空气不仅有显热交换, 还有潜热交换, 并通过焓湿图

表现出二次空气干球温度降低, 湿球温度升高, 含湿量增大, 但排风的焓值总体是增加的。另外, 本文分析了热管式间接蒸发冷却器冷却效率的影响因素, 提出了优化设计热管式间接蒸发冷却器的方法以及方案。并通过实验得出二次空气、一次空气风量比为0.8 时冷却效率最高。

6 参考文献

参考文献

[1] 黄翔, 武俊梅, 等. 中国西北地区蒸发冷却技术应用状况的研

究[C]. 第11届全国暖通空调技术信息网大会论文集

[2] 武俊梅, 黄翔, 殷清海, 等. 直接蒸发冷却空调机性能研究

[J]. 建筑热能通风空调,2000,19(4): 12-14

[3] 宣永梅. 无机填料直接蒸发冷却空调机的理论与实验研究[D].

西安工程科技学院,2001

[4] 王补宣. 工程传热传质学(上下册)[M]. 北京: 科学出版社,

1982

[5]

[6] 陶文铨. 数值传热学[M]. 西安: 西安交通大学出版社, 2002 黄翔. 面向环保、节能、经济及室内空气品质联合挑战的蒸发

冷却技术. 建筑热能与通风空调, 2003

[7] 王芳 武俊梅 黄翔 汪周建. 管式间接蒸发冷却器传热、传质模

型的建立及验证,2009

[8] 鱼剑琳. 管式间接蒸发冷却器水平单管外对流传质的实验研究.

西安交通大学学报, 1999

[9] 连之伟. 热质交换原理与设备(第三版). 中国建筑工业出版社,

2011

7体会

现在人们的生活越来越好,将来用空调的越来越多,在这其中用到传热传质的过程,所以掌握好传热传质过程越来越重要。我们必须要掌握最基础的一些知识原理,了解、掌握并控制相关复杂过程的传热、传质性能对于换热器的设计、性能优化和正确使用,为我们将来更好地从事建环工作打下基础。

传热传质过程报告

[ 摘要] 本文分析了热管式间接蒸发冷却器的传热传质机理。及工程实际的应用。运用能量守恒定律及传热学的研究方法, 对热管间接蒸发冷却器进行传热传质实验研究,

[ 关键词] 热管式, 间接蒸发冷却, 传热传质,

1引言

间接蒸发冷却技术主要利用自然环境空气中的干球温 度与露点温度之差取得冷量, 从而造成或扩大传热温差的特殊的空气- 空气换热器。它是一种被动式供冷技术, 最大的优点是可以利用低品位能量去完成机械制冷系统中必须用高品位能量才能完成的工作。可见间接蒸发冷却器是蒸发冷却空调的核心装置, 蒸发冷却技术的发展依赖于间接蒸发冷却技术的突破与进展。开发用于间接蒸发冷却的低成本高效换热器, 优化间接蒸发冷却器的结构尺寸。

目前间接蒸发冷却器的主要形式有板式和管式两种。板式间接蒸发冷却器虽然结构紧凑, 换热效率高, 但由于流道狭窄容易堵塞, 导致流动阻力增大, 能耗增加, 换热效率降低。管式间接蒸发冷却器一般由一组或多组的管芯组成, 管外可包有吸水性能良好的纤维织物薄套。管式间接蒸发冷却器具有布水均匀, 容易形成稳定水膜, 有利于蒸发冷却的进行; 流道较宽不会产生堵塞, 因而流动阻力小; 但体积较庞大。

2 .平置吸液芯热管式间接蒸发冷却器的传热传质机理

本文研究的是平置吸液芯热管式换热器, 见图1。热管水平放置, 当氨蒸汽在冷凝段放热, 氨蒸汽液化, 依靠吸液芯的毛细作用将冷凝液输送到蒸发段, 氨液在蒸发段吸热汽化, 蒸发段压力增大, 氨蒸汽在压力的作用下输送到冷凝段, 维持管内工质的连续循环。由于本文采用的是吸液芯热管, 冬夏季冷凝段、蒸发段自行转换, 非常适合全年性能量回收的场合。

式换热器冬季不仅是高效的热回收装置, 夏季又可作为间接蒸发冷却器。因此, 我们主要分析夏季在热管冷凝段喷淋时的传热传质机理过程。平置吸液芯热管式间接蒸发冷却器( 图1b) 分为蒸发段( 冷端) 和冷凝段( 热端) , 中间被隔板分开。氨蒸汽通过在冷凝段放热液化释放热量, 通过管壁将热量传递给水膜, 水膜再与饱和空气边界层进行热量交换和质传递, 最后二次空气与饱和空气边界层进行热量交换, 并将热量带出室外。在热管冷凝段喷淋循环水, 热管管壁上形成水膜, 由于水分子的无规则运动, 在紧靠水膜处存在一个温度等于水温的饱和空气边界层, 相对湿度为100% 。因此, 二次空气与水膜之间的热质交换相当于二次空气与饱和空气边界层之间的热质交换, 同时发生显热交换和潜热交换, 即二次空气干球温度变化时, 湿球温度也发生变化。尤其在相界面上由于水分蒸发产生的相变改变了一、二次空气的热传递特性, 使热管式间接蒸发冷却器既区别于一般的气 气换热器, 又不同于冷却塔的绝热蒸发过程。

图1平置吸液芯热管式间接蒸发冷却器原理图

二次空气与水在冷凝段发生的热湿交换过程比较复杂, 通过传热学知识分析, 空气和水膜是在温差和水蒸汽分压差的共同作用下, 即在焓差的推动下进行热湿交换, 具体表现为等焓加湿和等湿升温两个过程的复合。二次空气干球温度降低, 湿球温度升高, 含湿量增大, 但排风的焓值总体是增加的。说明二次空气不仅有显热交换, 也存在部分的潜热交换。而一次空气在蒸发段管外横掠管束流过, 与热管内

的工质进行热交换,

另外, 热管式间接蒸发冷却器具有无需外部动力来促使流体循环, 较常规换热器更安全、可靠, 可长期连续运行, 且冷热段结构位置布置灵活, 具有传热效率高, 结构紧凑, 流动阻力小, 节能效果显著的特点。从流动阻力、制造成本、结构紧凑性、维护性能等综合考虑, 热管式换热器有较好的综合性能。热管工作时, 由于热管内部传热靠相变潜热, 因此蒸发段与冷凝段空气温差较小的应用领域中有其优势。

3 热管式间接蒸发冷却器的传热传质模型

本文运用能量守恒定律与传热学相关知识分析热管式间接蒸发冷却器热质交换过程, 总体上可分为三部分: 一次空气侧的传热过程; 二次空气与水膜湿表面间同时发生传热传质的交换过程; 一次空气侧与二次空气侧之间的能量平衡:

( 1) 系统无散热损失, 该换热器中整个热质交换过程为一稳态过程。

( 2) 一次空气侧的传热面表面温度均匀分布。

(3) 二次空气通道内湿表面温度也是均匀的, 二次空气- 水相界面的温度和焓值相对稳定。

( 4) 空调工况下, 水蒸汽在空气中扩散时, Le近似等于1。 忽略热管中蒸发段和冷凝段轴向上的温度梯, 并且其他参数在热管轴向方向上分布均匀。由于气体和液体之间的热量传递和质量传递关系非常复杂, 根据以上假设, 我们重点分析热管式间接蒸发冷

却器在冷凝段的热质交换过程如图2所

图2热管式间接蒸发冷却冷凝段热质交换过程示意图

4 热管式间接蒸发冷却器的工作过程

热管式间接蒸发冷却器的冷却效率除了本身的结构参数如管径大小、翅片间距、翅片高度、管间距、管排数、布水装置的均匀布水等决定外, 另一方面一次空气与二次空气温度差、风量比以及喷淋水温等都对其有很大的影响。因此, 在结构一定的情况下, 研究运行参数对冷却效率的影响, 对热管间接蒸发冷却器的高效运行具重要意义。

5结论

本文从热管式间接蒸发冷却器的传热传质基本原理出发, 建立了传热传质的数学模型。分析了热管式间接蒸发冷却器冷凝段喷淋热量交换的机理过程, 指出热管式间接蒸发冷却器作为蒸发冷却器时, 冷凝段的二次空气不仅有显热交换, 还有潜热交换, 并通过焓湿图

表现出二次空气干球温度降低, 湿球温度升高, 含湿量增大, 但排风的焓值总体是增加的。另外, 本文分析了热管式间接蒸发冷却器冷却效率的影响因素, 提出了优化设计热管式间接蒸发冷却器的方法以及方案。并通过实验得出二次空气、一次空气风量比为0.8 时冷却效率最高。

6 参考文献

参考文献

[1] 黄翔, 武俊梅, 等. 中国西北地区蒸发冷却技术应用状况的研

究[C]. 第11届全国暖通空调技术信息网大会论文集

[2] 武俊梅, 黄翔, 殷清海, 等. 直接蒸发冷却空调机性能研究

[J]. 建筑热能通风空调,2000,19(4): 12-14

[3] 宣永梅. 无机填料直接蒸发冷却空调机的理论与实验研究[D].

西安工程科技学院,2001

[4] 王补宣. 工程传热传质学(上下册)[M]. 北京: 科学出版社,

1982

[5]

[6] 陶文铨. 数值传热学[M]. 西安: 西安交通大学出版社, 2002 黄翔. 面向环保、节能、经济及室内空气品质联合挑战的蒸发

冷却技术. 建筑热能与通风空调, 2003

[7] 王芳 武俊梅 黄翔 汪周建. 管式间接蒸发冷却器传热、传质模

型的建立及验证,2009

[8] 鱼剑琳. 管式间接蒸发冷却器水平单管外对流传质的实验研究.

西安交通大学学报, 1999

[9] 连之伟. 热质交换原理与设备(第三版). 中国建筑工业出版社,

2011

7体会

现在人们的生活越来越好,将来用空调的越来越多,在这其中用到传热传质的过程,所以掌握好传热传质过程越来越重要。我们必须要掌握最基础的一些知识原理,了解、掌握并控制相关复杂过程的传热、传质性能对于换热器的设计、性能优化和正确使用,为我们将来更好地从事建环工作打下基础。


相关内容

  • 冶金传输原理
  • 冶金三传原理及相似性 第一章 概述 1 冶金的分类 冶金:钢铁冶金.有色金属冶金. 共同特点:发生物态变化 固液态 物理化学变化 原料与产品的性质.化学成分截然不同 1.1钢铁冶金 原料是矿石 产品是钢铁 钢铁工艺流程:长流程 高炉-转炉-轧机 短流程 直接还原或熔融还原-电炉-轧机 (1)高炉炼 ...

  • 全热交换器的工作原理
  • 全热交换器的工作原理 2003年出现的SARS疫情,使我们人类的健康面临严峻的挑战,2009年又爆发了猪流感,于是关于人居环境的空气品质问题多有讨论,提出健康空调是今后空调的发展方向. 但究竟什么是健康的空调,怎样去实现健康舒适的空调,关于这个问题,舒适100也进行了一些分析,指出全空气系统是最佳的 ...

  • 化工原理名词解释
  • 化工原理1名词解释 流体黏性:流体所具有的这种阻碍两层流体相对运动速度的性质称为流体的黏性. 不可压缩流体:液体的密度几乎不随压强而变化,随温度略有改变,可视为不可压缩流体. 稳态流动:截面上流动参数(流速.压力等)仅随空间位置的改变而变化,而不随时间变化. 气缚:泵启动前泵壳内和管路中未充满液体, ...

  • 环境工程原理考试题
  • 1. 真空度,绝对压强,表压之间的关系: P真空度=P大气压-P绝对压强 P表压=P绝对压强-P大气压 2. 计算局部阻力的方法:3. 力越强. 4. Helfferich准数(He)对离子交换过程的意义及判断方法: 意义:判断离子交换过程是由液膜扩散还是颗粒内扩散控制 判断方法: He=1,表示液 ...

  • 化工原理认识实习报告
  • 一:认识实习的目的 通过本次认识实习,对我们以后<化工原理>课程的学习有很好的感性认识,有利于理论和实际更好的结合和理解.认识实习是我们专业教学计划中一个重要的实践教学环节,为学生由学校到工厂,由理论到实践之间架起的一座"桥梁".通过生产工艺及设备的参观实习使学生了解 ...

  • 化工原理谭天恩简答重点资料
  • 均相物系:物系内部各处均匀且无相界面,包括溶液.气体混合物等. 非均相物系:物系内部有不同相界面且界面两侧的物料性质有差异. 包括:气固系统(空气中的尘埃): 液固系统(液体中的固体颗粒):气液系统(气体中的液滴):液液系统(乳浊液中的微滴). 非均相物系分离的依据: 连续相与分散相具有不同的物理性 ...

  • 冶金传输原理知识点
  • 第一章动量传输的基本概念 1.流体的概念 物质不能抵抗切向力,在切向力的作用下可以无限地变形,这种变形称为流动,这类物质称为流体,其变形的速度即流动速度与切向力的大小有关,气体和液体都属于流体. 2 连续介质 流体是在空间上和时间上连续分布的物质. 3流体的主要物理性质 密度:比容(比体积):相对密 ...

  • 化工基础知识培训教材
  • 化工工艺基础知识概论 一.炼油工艺基本流程图 常压蒸馏 二. 化工基础概念介绍  由常压蒸馏分离过程引出以下概念: 分离: A 固液分离: 常见化工操作形式:离心操作,过滤操作,干燥 B 液液分离 常见化工操作形式:萃取操作,蒸馏,精馏, 1.萃取操作是向欲分离的液体混合和物(原料液)中,加入一种 ...

  • 华东理工大学化工原理简述题参考
  • 沉降 1. 流化床的压降与哪些因素有关? ∆℘= m (ρp -ρ) g A ρp 可知,流化床的压降等于单位界面床内固体的表观重量(即重量浮力),它与气速无关而始终保持定值. 2. 因某种原因使进入降尘室的含尘气体温度升高,若气体质量及含尘情况不变,降尘室出口气体的含尘量将有何变化?原因何在? 处 ...