第六章高密度饱和盐水钻井液

第六章 高密度饱和盐水钻井液技术

第一节 高密度饱和盐水钻井液概述

一、饱和盐水钻井液的作用和发展概况

凡NaCl含量超过1%(质量分数,Cl-含量约为6000 mg/l)的钻井液统称为盐水钻井液。一般将其分为以下三种类型:

(一)欠饱和盐水钻井液

其Cl-含量自6000 mg/l直至饱和之前均属于此类。

(二)和盐水钻井液

是指含盐量达到饱和,即常温下NaCl浓度为3.15×105 mg/l(Cl-含量为1.89×105mg/l)左右的钻井液。注意NaCl溶解度随温度变化而变化。

(三)海水钻井液

是指用海水配制而成的含盐钻井液。体系中不仅含有约3×104 mg/l的NaCl,还含有一定量的Ca2+和Mg2+。

根据含盐量的多少,在国外出版的专著中又将盐水钻井液分为以下几种类型:含盐量在1%~2%时为微咸水钻井液,在2%~4%时为海水钻井液,在4%与近饱和之间时为非饱和盐水钻井液,在含盐量达最大值31.5%时则被称为饱和盐水钻井液。

如前所述,为了防止盐膏层发生塑性变形和盐溶而造成缩径或井塌等复杂情况的发生,

—154—

提高所用钻井液的密度是非常有效和必要的,这一点已被国内外盐膏层钻井的实践所证实。例如,华北油田新家4井使用油包水乳化钻井液钻3630~4518m的盐膏层井段,当钻井液密度为1.90~1.95 g/cm3时,在盐岩或含盐膏泥岩处,起下钻均会遇阻。而钻井液密度提高至2.03~2.04g/cm3时,井下情况正常,下钻仅轻微遇阻,不需划眼就可通过。因此,为保证安全顺利钻穿盐膏层,必须提高钻井液密度至能够控制盐岩蠕变和塑性变形所需范围。所需密度应根据井深、井温及盐岩蠕变规律来确定,同时还要根据已钻井实际资料和岩心实测试验数据来进行修正,钻井过程中还需根据该井段的实际情况随时进行调整,以确保钻井作业的顺利进行。钻井液密度的具体确定方法和应用图版已在第四、五章详细介绍过,在此不再赘述。

一般情况下,盐的溶解是造成盐膏层钻井过程中各种井下复杂情况的主要原因。因此,要想顺利钻穿盐膏层,就必须采取有效的措施以控制盐的溶解速率。当钻遇盐岩层、盐膏层或盐膏与泥页岩互层时,盐的溶解会使钻井液的粘度、切力上升,滤失量剧增,因此会进一步增加盐膏层钻井的难度。若在钻井液中预先加入工业食盐,可使水基钻井液具有更强的抗盐能力和抑制性。由于饱和盐水钻井液矿化度极高,因此抗污染能力强,对地层中粘土的水化膨胀和分散有极强的抑制作用。钻遇盐膏层时,由于体系中的盐已达饱和,使盐的溶解受到抑制,因此可使盐膏层中盐的溶解减至最小程度,避免大肚子井眼的形成和井塌等复杂情况的发生,从而使井眼规则,确保钻井过程的顺利进行。

在20世纪80年代中期,我国就研究成功饱和盐水钻井液体系,使其顺利钻进盐膏层,基本解决了盐膏层的盐溶、缩径、井塌及卡钻等井下复杂情况。因此,现已形成了较成熟的饱和盐水钻井液体系和针对不同地层的饱和盐水钻井液配方。如胜利油田在新东风10井使用聚合物复合钾盐饱和盐水钻井液顺利通过含盐膏的红层,钻达5344.71m;青海油田在狮20井使用新型的三磺饱和盐水钻井液钻进;中原油田使用了磺化沥青三磺盐水钻井液钻进。这些井的钻井实践表明,只要根据地层实际情况对饱和盐水钻井液的配方进行适当调整,就可以顺利钻穿盐膏层。

对于高密度饱和盐水钻井液体系,不仅能尽可能减少盐岩的溶解,而且由于其“高密度”(2.0~2.5 g/cm3),因此可以有效控制盐岩的蠕变和塑性变形,从而解决了盐膏层两大主要原因引起的复杂情况。同时由于体系中加入了抗盐、抗高温和强抑制性的处理剂,如磺化酚醛树脂、氯化钾和硅酸盐等,因此可以保证井壁稳定,并可在深井和超深井中使用。

—155—

二、盐的重结晶及其预防措施

值得注意的是,盐的溶解度会随温度上升而有所增加(见表6-1-1)。因此在地面配制的饱和盐水钻井液,当循环到井底时就变得不饱和了,而当循环至地面时又会发生盐的重结晶。这样,使用饱和盐水钻井液钻进对下部盐膏层仍会因盐溶而带来各种井下复杂情况,而盐的重结晶会给钻井工作带来困难,还会增加泵压、磨损钻具和泵的部件。此外,如在大段裸眼盐层中钻进时,盐的重结晶会使上部盐层缩径,造成起下钻遇阻卡。例如江汉油田的王深二井,表层套管下至366m,裸眼钻至5163m。该井从900m就进入盐层,全井共钻穿纯盐层1925m,当钻深部井段时,起下钻经常在2000~3400m盐层处遇阻卡。上下活动钻具比原悬重增减10~30t,因缩径,下钻时钻头受很大测向力,钻头在最薄处产生裂缝,新钻头下钻至井底没有钻进,起钻后就发现钻头直径缩小8mm。此井段在刚钻穿时,电测井径均大于钻头直径,但钻深部井段时,曾多次对上部盐层进行测井,发现盐层段井径一次小于一次,后来竟小于钻头直径,但泥岩井径变化不大,而在3400~3900m井段的盐层,井径扩大。上述上部盐层由钻开时的扩径,随时间推移而变为缩径,主要是由于盐的重结晶引起的。此外,盐层本身塑性变形随时间增长而增大亦会造成缩径。

目前,用于抑制盐的重结晶比较有效的方法就是在钻井液中加入适量盐重结晶抑制剂,这样就可以配制在井下高温条件下处于饱和状态的钻井液,而上返至地面时,随温度下降,盐也不会从钻井液中结晶出来,从而解决了上部钻杆、接头及地面循环系统中因重结晶盐粒造成的泵压增加、钻具磨损带来的操作困难。由于井底的盐处于饱和状态而使盐溶解度减小,因此在饱和盐水钻井液中加入重结晶抑制剂使其成为过饱和盐水钻井液是非常必要的。另外,配制饱和盐水钻井液时最好选用抗盐粘土,但含量不宜太高。其配制和维护技术将在本章第三节详细介绍。

表6-1-1 几种无机盐在不同温度下的溶解度

—156—

三、高密度饱和盐水钻井液的类型、特点和应用范围

各油田在钻井实践中,已应用成功4种典型的高密度饱和盐水钻井液体系,即聚合物饱和盐水钻井液、氯化钾聚磺饱和盐水钻井液、氯化钠/氯化钾过饱和盐水钻井液和复合饱和盐聚合醇硅酸盐钻井液。尽管它们组成有所不同,但它们都具有以下特点:

1.由于矿化度极高,因此具有很强的抑制性,能有效抑制泥页岩水化,保证井壁稳定; 2.不仅具有很强的抗盐侵的能力,而且能够有效地抗钙侵和抗高温,适于钻穿大段盐膏层,并可在深井和超深井中使用;

3.由于其滤液性质与地层原生水比较接近,因此对油气层的损害较小; 4.饱和盐水钻井液还能有效地抑制地层造浆,流动性好,性能稳定。

因此,高密度饱和盐水钻井液适于钻穿埋藏较深、厚度较大的大段深、厚盐层及岩性复杂的复合盐膏层。但由于该体系矿化度高,对钻具腐蚀性较大,维护工艺较复杂,耗盐量大导致配制成本较高,因此在一定程度上限制了它的广泛使用。但总的来说,高密度饱和盐水钻井液是钻进复合盐层和深层大段纯盐层的理想钻井液体系,可以在欠饱和盐水钻井液无法对付的盐膏层中使用。

—157—

第二节 高密度饱和盐水钻井液体系设计和主要技术指标

一、高密度饱和盐水钻井液的设计原则

盐膏层对钻井液体系的选择和使用提出了非常严格的要求,因此高密度饱和盐水钻井液体系设计应遵循以下原则:

1.盐侵、抗高温,能有效抑制盐溶和水敏性地层水化膨胀,以保证井眼和钻井液性能的稳定;

2. 高温条件下,钻井液仍能保持良好的流变性能;

3.具有良好的防塌性、润滑性,并对岩屑具有较好的悬浮和携带能力;

4.具有抗高压、抗低渗含盐量较低的地层水污染的能力和抑制钻井液中盐重结晶的能力;

5.高温高压下仍具有较低的滤失量,能形成薄而韧、压缩性好的泥饼。

二、高密度饱和盐水钻井液的组成

高密度饱和盐水钻井液一般主要由以下组分组成:

—158—

(一)膨润土或抗盐土

主要用来提高饱和盐水钻井液的塑性粘度和动切力。一般情况下,钻井液中膨润土含量应控制在25~50g/l。如膨润土含量过低,则钻井液切力低,影响岩屑的携带与加重剂的悬浮;而膨润土含量过高则钻井液粘切过大,性能不稳定。钻井液中最佳膨润土含量应随钻井液密度与温度增高而下降。由于膨润土在盐水中不易水化,故应先将膨润土在淡水中进行预水化,然后再加盐或加到盐水钻井液中。而抗盐土可以直接加到盐水或饱和盐水钻井液中,但必须使用剪切枪使抗盐土在水中充分分散。

(二)盐类

一般选用氯化钠。在特殊情况下,亦选用氯化钾与氯化钠进行复配。对于石膏含量较高的地层,亦可选用硫酸胺,利用同离子效应来控制Ca2+对钻井液性能的不良影响。

(三)护胶剂与降滤失剂

通常选用野生植物胶、生物聚合物、羧甲基纤维素、预胶化淀粉、羧甲基淀粉、聚丙烯酸盐类(如水解聚丙烯腈、水解聚丙烯酰胺、PAC141、SK1104等)来使钻井液流变参数与滤失量达到钻井工程的要求。使用时,处理剂数量必须加足,才能保证性能稳定。上述处理剂抗温能力不同,因此需依据所钻井最高井底温度来选用护胶剂和降滤失剂,以确保在高温下仍具有良好的性能。钻进深部盐膏层时,为了降低高温高压滤失量,可加入磺化度高的磺化酚醛树脂或SPNH、SLSP等。

(四)降粘剂

对于未加重的饱和盐水钻井液,只要控制好膨润土含量,加足护胶剂和降滤失剂,通常不需要降粘剂。但对于加重的饱和盐水钻井液,尤其当密度大于1.8 g/cm3时,若膨润土含量过高,则往往需要加入饱和盐水以降低土含量,并加入降粘剂来调整流变参数。常用的降粘剂有铁铬木质素磺酸盐、磺化单宁、SK-3、XB-40、XY-27以及水解聚丙烯腈的盐类等。

—159—

(五)流型调整剂

饱和盐水钻井液往往动切力低,携带岩屑能力较差。可加入1%~2.5%改性石棉或海泡石。海泡石应预先配成10%预水化浆再加入井浆中。在高密度饱和盐水钻井液中加入改性石棉或海泡石之后的性能变化情况见表6-2。从表中数据可见,加入这两种流型调整剂以后,动塑比明显增加。

表6-2-1 饱和盐水钻井液加入改性石棉或海泡石后的性能变化

(六)磺化沥青类产品

对于层理裂隙发育的复合盐膏泥页岩层,为了防止井塌,可加入1%~2%的磺化沥青来封堵泥页岩的层理与裂隙。

(七)烧碱与纯碱

根据所选用处理剂的需要,可用纯碱除钙,用烧碱调整pH值。

(八)润滑剂

为了改善钻井液的润滑性能,应加入适量的润滑剂或原油、柴油等。

—160—

(九)重结晶抑制剂

为了抑制深井段因盐岩溶解而引起井径扩大,并避免出现井下复杂情况以及防止盐的重结晶,可在饱和盐水钻井液中加入适量的重结晶抑制剂,使其成为过饱和盐水钻井液。常用的重结晶抑制剂有氮—三乙酰胺、亚铁氰化钠、亚铁氰化钾、氯化镉和NTA。其中NTA是一种合成的氮氚三乙酰胺的衍生物盐抑制剂,除了具有抑制盐重结晶的作用外,还能提高钻井液的热稳定性,使滤失量略有下降,对钻井液流变性能影响不大,其加量一般为0.2%~0.4%(见表6-2-2)。

表6-2-2 NTA对钻井液性能的影响

实验表明,NTA不仅在饱和盐水钻井液中具有较好的抑制效果,而且在欠饱和盐水钻井液中亦能起到抑制盐的溶解的作用(见表6-2-3)。

表6-2-3 NTA抑制盐溶情况

—161—

NTA不仅在过饱和NaCl溶液中具有抑制重结晶的作用,而且在含有Ca2+、Mg2+的过饱和复合盐溶液中,亦有较好的抑制重结晶的作用(见表6-2-4)。

表6-2-4 NTA在过饱和复合盐溶液中的抑制作用

目前,NTA已在中原、江汉、长庆、新疆、青海、胜利等油田得到应用,取得较好的使用效果。如中原油田文东地区在饱和盐水钻井液中加入NTA后,盐层平均井径扩大率从10%降至5%以下,并消除了在钻具和地面循环系统中产生的盐重结晶现象。江汉油田钻进潜四下盐层时,使用NTA后有效地防止了因盐重结晶而引起的盐卡。

为了提高饱和盐水钻井液的热稳定性,还可加入适量的司盘-80、烷基苯磺酸钠或烷基磺酸钠、重铬酸钠等。

三、高密度饱和盐水钻井液的典型配方和性能

高密度饱和盐水钻井液各种主要性能的一般范围是:密度,2.0~2.30g/cm3;漏斗粘度,60~80s;塑性粘度,60~75mPa·s;动切力,10~20Pa;API滤失≤4ml/1.0mm;HTHP滤失≤10ml/3.0mm;膨润土含量,20~30g/l;[Cl-]≥190,000mg/l;pH值,9~10。

表6-2-5、6-2-6、6-2-7和6-2-8分别是应用比较成功的几种饱和盐水钻井液的配方和性能。

表6-2-5 中原油田文东地区使用的高密度聚合物饱和盐水钻井液配方

—162—

表6-2-6 中原油田文东地区使用的高密度聚合物饱和盐水钻井液的性能

—163—

表6-2-7 塔里木油田羊塔克地区使用的高密度KCl聚磺饱和盐水钻井液的

配方及性能

表6-2-8 塔里木油田克拉苏地区使用的高密度复合饱和盐聚合醇硅酸盐钻井液的

配方及性能

—165—

对于不同的高密度饱和盐水钻井液体系和配方不同,其适用的地层、应用效果和配制成本等也有所不同。因此,应根据实际地质特点和以往的钻井实践,并同时综合考虑成本和维护等方面的因素,对高密度饱和盐水钻井液体系及配方进行优化设计,使其能够达到所需的各项钻井液性能指标,以满足钻井、测井和固井对钻井液的要求,达到安全、顺利地钻穿复杂的盐岩层和盐膏层的目的。

第三节 高密度饱和盐水钻井液的配制和维护技术

一、配制高密度饱和盐水钻井液的一般方法

配制高密度饱和盐水钻井液的方法可大致分为两种。一种是在地面直接配好饱和盐水钻井液,在钻达盐层前将其替入井内,然后钻穿整个盐岩层。另一种方法是在上部地层使用淡水或一般盐水钻井液,然后在循环过程中提前进行加盐处理,使含盐量和钻井液性能逐渐达到要求,在进入盐岩层前转化为饱和盐水钻井液。然而,在现场实际操作中,有以下四种方法用于配制高密度饱和盐水钻井液。

(一)新浆转化

采用该方法配制高密度饱和盐水钻井液的一般步骤为:

—166—

1.配制预水化膨润土浆。

首先往清水中加入NaOH(约4.3kg/m3)与Na2CO3(约7kg/m3),沉除Ca2+与Mg2+后,调整pH至9~10。再加入钠膨润土110~150kg/m3。以上处理剂和配浆土的加量应依据钻井用水的总矿化度及各种离子含量和土的来源而定。

2.配制饱和盐水胶液。

当下钻至技术套管鞋以上10~20m时,用清水替出老浆。再加入2/3所需的各种处理剂,待溶解后,加入NaCl至饱和。

3.将预水化膨润土浆与饱和盐水胶液混合。

按所需密度控制钻井液中膨润土的含量,其含量应随钻井液的密度增加而降低(参考表6-3-1)。然后加入剩下的1/3各种处理剂,循环至处理剂全部溶解。待钻井液性能稳定后,加盐至饱和。如果需要,再加入0.4%左右的盐重结晶抑制剂。

4.将钻井液加重至所需的密度。

表6-3-1 膨润土的推荐加量

(二)技术套管内用井浆转化

将钻具下至技术套管中,边加清水边放掉1/3 ~ 1/2井浆,按所需配浆密度调整钻井液中膨润土的含量,使其达到所需要的范围。然后按照与新浆转化同样的步骤加入各种处理

—167—

剂与盐。

(三)裸眼转化

在进入盐层之前,配好转化饱和盐水所需处理剂的胶液。然后根据室内试验确定胶液与井浆的混合比例,边混胶液边放掉多余的钻井液。完成替换之后,加盐至饱和,并补充部分处理剂,使其达到所需的性能,必要时加重并加入盐重结晶抑制剂。

(四)裸眼替浆

在地面按第一或第二种方法配制饱和盐水钻井液,然后将井浆全部替出放掉。

二、用抗盐粘土配制高密度饱和盐水钻井液的方法

如果条件允许,最好选用海泡石、凹凸棒石等抗盐粘土配制饱和盐水钻井液。如选用膨润土,则体系中总固相和膨润土含量均不宜过高,以防止在配浆过程中出现粘度、切力过高的情况。若饱和盐水钻井液体系是由井浆转化而成,应在加盐前先将固相含量及粘度、切力降下来。

用抗盐粘土配制饱和盐水钻井液的步骤如下:

(1)在每桶(0.159m3)淡水中加入125lbm(56.75kg)工业食盐,即可得到密度为1.13g/cm3的饱和盐水;

(2)在饱和盐水中加入28~30lbm/bbl(79.9~85.6kg/m3)优质抗盐粘土,即可配成漏斗粘度为36~38s的原浆;

(3)然后加入淀粉,边加边搅拌。当加量为4~5lbm/bbl(11.4~14.3kg/m3)时,一般可使滤失量降至15ml以下;而加量为8~10lbm/bbl(22.8~28.5kg/m3)时,可使滤失量控制在5ml以内。

—168—

三、配浆实例

塔里木羊塔克地区下第三系使用的高密度KCl聚磺饱和盐水钻井液体系的现场配制方法是,首先充分利用四级固控(特别是离心机的利用),尽可能清除老浆中的低密度、细分散的劣质固相,并准确测定转化前老浆的各项性能,特别是膨润土含量的测定,综合考虑高密度钻井液中膨润土含量和胶体颗粒的级配。在老浆中原有的处理剂存在并起作用的情况下,采用配制胶液的方法,加足烧碱,并加入抗高温降滤失剂、防塌剂、盐重结晶抑制剂、盐和氯化钾,调整基浆的性能,然后加重。最后所配制成的高密度饱和盐水钻井液配方为:胶液 + (6%~8%)SMP-2 + (3%~8%)柴油+ (1%~3%)SAS + (2%~4%)DH-1 + (1%~2%)RH-4 + (7%~8%)KCl + NaCl至饱和 + 铁矿粉至密度要求。

当然,在现场实际配制高密度饱和盐水钻井液时,应根据进入盐层井段前所使用的钻井液体系和处理剂以及现场的实际条件来选择合适的配制方法。如果能够直接由原来的钻井液体系进行转化,当然是既经济又省时的。但是,如果要求将原浆全部处理掉,则一定要做到一次性处理,否则原浆中有些处理剂仍然会起作用,受原浆性能影响,将会给钻井液体系的转化和改造工作带来困难,并直接影响转化后钻井液性能的稳定性,为复合盐层的顺利钻进留下隐患。例如,羊塔克5井在转化和改造原浆时,只放掉80m3钻井液,但在钻复合盐层过程中,钻井液性能极不稳定,其高温高压滤失量很高,流变性、抑制性及泥饼质量都较差。再加上井下地质条件复杂,使得井下阻卡严重,虽经几次大处理,但都未能根本扭转。究其原因,主要是因为转化原浆时放掉的钻井液太少,处理不彻底,从而使得钻井液越处理越复杂。据统计,几次大处理共放掉钻井液400多m3,这不仅没有节约成本和劳动强度,反而使钻井液成本和劳动强度大大增加,并且加重了废弃钻井液对环境的污染。而羊塔克2井在开始改造和转化原浆时,一下就放掉原浆的2/3,在此基础上对钻井液性能进行了调整,并在钻进时配合采取适当的维护措施,使钻井液的性能一直保持在稳定和良好的状态,未经任何大的处理就顺利钻穿了巨厚(512m)的复合盐层。

四、高密度饱和盐水钻井液的现场维护技术

钻井液的维护,特别是高密度饱和盐水钻井液的维护,对维持钻井液性能的稳定以确保井下安全至关重要。如果一旦操作失误,将造成难以想象的后果。高密度饱和盐水钻井液在井下极易形成厚泥饼和假泥饼,从而造成井径缩小和钻头、扶正器泥包,再与盐、膏、

—169—

软泥岩的复杂情况交织在一起,会造成对井下阻卡原因的判断失误和操作处理不当。因此,对于高密度饱和盐水钻井液,必须运用科学方法和态度精心维护、正确处理,并严格控制其固相组成和各项性能参数,以形成优质泥饼,并具有良好的流变性能。

高密度饱和盐水钻井液的维护原则是以护胶为主,降粘为辅。这是因为在该类钻井液中,粘土颗粒不易形成端-端或端-面连接的网架结构,而特别容易发生面-面聚结,变成大颗粒而聚沉,因此需要大量的护胶剂维护其性能,否则在使用过程中常会出现粘度、切力下降和滤失量上升的现象。一旦出现以上异常情况,应及时补充护胶剂。添加预水化膨润土也能起到提粘和降滤失的作用,但加量不宜过大。

对于高密度饱和盐水钻井液体系,在维护处理时应注意以下几方面的问题:

1.高密度饱和盐水钻井液应具有优良的流变性能和合理的环空流型。

在盐膏层钻井过程中所发生的井径扩大与泥页岩坍塌等复杂情况,除与钻井液的密度、含盐量及配方有关外,还与钻井液的流变性能和环空流型紧密相关。环空紊流对盐岩层与泥页岩的冲蚀亦会引起井径扩大与井塌。例如,当中原油田使用油包水乳化钻井液钻进文东构造3000m左右的盐膏层时,钻井液的塑性粘度为30~42mPa·s,动切力为2~6Pa时,钻井液在环空中处于紊流,发生井塌,大的塌块重达70~80克。当提高油包水乳化钻井液的塑性粘度至35~55mPa·s,动切力至10~15Pa,使其在环空中处于层流时,则井下情况恢复正常。又如在美国威力斯顿盆地,曾采用饱和盐水钻井液钻进2000~3000m盐岩层。在222.25mm井眼中,泵量为1.2663m3/min时,171.45mm钻铤处Z值为2854,井壁受到严重冲蚀,平均井径高达762mm。但在另一口井,采用相同类型钻井液,泵量为1.0017m3/min,并适当提高钻井液的塑性粘度与动切力,177.8mm钻铤处的Z值为600~630,相同井段的平均井径降为304.8mm。据国外文献报道,为了能在盐膏层获得规则井眼,钻井液在环空中的Z值应低于600。为满足该条件,钻井液的流变参数必须与泵量相匹配,这样才能既保证钻井液在环空中处于层流,又使钻井液的塑性粘度、动切力不宜太高,以避免引起过大激动压力而造成井漏。泵量亦不能太小,以确保岩屑的携带。

2.当高密度饱和盐水钻井液的密度大于2.0g/cm3时,应优先使用铁矿粉(密度5.0g/cm3)加重,密度2.10g/cm3以上必须使用铁矿粉加重,不能使用重晶石加重。

3.高密度饱和盐水钻井液的膨润土含量必须严格控制,不宜过高。密度为

2.20~2.30g/cm3的钻井液,其MBT值一般应控制在20~30g/l为宜,并且膨润土必须经预水化之后再加入到钻井液中。如果膨润土粘土含量增高引起粘度、切力上升,可用离心机清

—170—

除膨润土与钻屑,或加入饱和盐水、饱和盐水胶液并同时加重的方法来降低钻井液中的膨润土含量,必要时亦可配合加入降粘剂来调整钻井液的粘度和切力。如果因为膨润土含量过低而出现动切力低、携砂能力差、滤失量大且泥饼厚等情况,则可适量补充预水化膨润土浆或抗盐土浆。

4.高密度饱和盐水钻井液应严格控制低密度固相含量小于3.0%,严禁人为在全井钻井液中混入低密度固相材料(如堵漏材料),控制钻井液中钻屑含量不大于两倍膨润土的含量。

5.一般情况下,不能在高密度饱和盐水钻井液中直接加入处理剂干粉,而应配成胶液,在充分溶解后再加入。由于高密度饱和盐水钻井液中的自由水含量很少,液相中处理剂的浓度相对较高,如果在钻井液中直接加入处理剂干粉,会导致溶解不充分,不能充分发挥作用。此时,相当于在钻井液中加入了低密度固相材料,从而会导致粘切升高,流变性失控。

6.室内实验和现场实践证明,SMP-2和SPC具有较好的控制滤失量和维持钻井液胶体稳定性的作用,其中SMP-2具有更好的抗盐和护胶能力,在高密度饱和盐水钻井液中取得了很好的应用效果,推荐加量为6~8%。

7.高密度饱和盐水钻井液一般采用FCLS(铁铬木质素磺酸盐)碱液进行流变性控制。铁铬木质素磺酸盐以降粘为主,同时也起降滤失作用。因为它可以通过吸附作用来削弱和拆散钻井液中粘土颗粒间形成的网架结构,同时对粘土也有一定的聚结稳定作用。其缺点是有时会使钻井液所形成的泥饼摩阻系数较大,并严格要求钻井液的pH范围在9~10。

8.高密度饱和盐水钻井液应强化泥饼的质量和对润滑性的改善,并提高泥饼的可压缩性。一般可选择3%粉状磺化沥青和2~3%超细碳酸钙(QS-2)来调节固体颗粒的级配。同时可混入3~8%柴油及少量表面活性剂来改善泥饼的润滑性。

9.对于高密度饱和盐水钻井液,要特别重视钻井液pH的变化,并注意对钻井液滤液甲基橙碱度Pf和酸碱度Mf的测定和分析,以便能够及时地避免阴离子CO32-和HCO3-对钻井液造成的污染。由于高密度饱和盐水钻井液中的固相含量高,以及大量的加重材料和钻遇的盐膏层都会消耗大量的烧碱,同时,降粘剂铁铬木质素磺酸盐也要消耗一定量的烧碱。所以要重视pH值的变化,一旦发现pH值有下降趋势,应及时补充烧碱,以避免由此引起的处理剂效能降低和钻井液性能变坏。

10.高密度饱和盐水钻井液的固相控制问题十分重要。由于钻井液密度高,给固控工作增加了难度。这种情况下,除泥器和除砂器的使用效率降低,离心机又不便于多用。所

—171—

以一定要注意振动筛的管理使用,尽量用细目筛布。另外,由于使用了强分散性的降粘剂铁铬木质素磺酸盐,因此不可避免地加大了钻井液中细分散颗粒的浓度,严重时还可能会造成井下阻卡。因此,必须保证固控设备处于良好的状态,井内返出的钻井液应严格经过四级固控设备,以最大限度地除去无用固相。最好配备414、518型两级离心机,即用414型离心机进行一级分离,再用518星离心机进行分离以清除低密度无用固相。

11.为了维持饱和盐水钻井液中的盐始终处于饱和状态,除使用盐重结晶抑制剂外,还需要定期地补充一定量的细盐,使其在地面条件下保持3~5kg/m3过量盐。过量盐的含量通常用以下方法进行测定。

(1)测定钻井液滤液中的Cl-浓度,换算成NaCl(mg/l);

(2)取1ml井浆,加10ml蒸馏水,测Cl-浓度,换算成NaCl(mg/l);

(3)用干馏法测定固相含量与水的体积百分数。

过量盐(mg/l)= Sm – Sf (sswf)

式中 Sm——钻井液中NaCl的含量(mg/l);

Sf——钻井液滤液中NaCl的含量(mg/l);

sswf——饱和盐水的体积分数。

12.如果遇到钻井液携屑不好的情况,除采取适量补充预水化膨润土浆的措施外,还可以加入改性石棉与抗盐土,在中深井段也可以加入生物聚合物。

对于不同体系和配方的高密度饱和盐水钻井液,其维护工艺措施也会有所不同。应根据钻井液的实际组分和性能进行维护,以确保钻井液性能的稳定。下面仅以塔里木油田羊塔克地区使用的高密度KCl聚磺饱和盐水钻井液体系为例,介绍其主要的维护措施。

当钻井液中MBT值偏低时,应向井浆中补充预水化膨润土浆。为了保证钻井液性能稳定,必须有足够的聚合物浓度。只要钻进,就要细水长流地适当补充聚合物胶液(一般选用的浓度为1%)进行维护。如果发现井浆粘度过高,一般不使用分散剂,而是用低密度HPAN、NPAN胶液(浓度为0.5%~0.7%)来调整因聚合物浓度过高而引起的粘度上升,或者补充大分子聚合物的胶液以消除因聚合物包被不好而造成的粘度回升。在215.9mm(8″)井眼段,若使用高密度KCl聚磺饱和盐水钻井液体系,首先应做到护胶剂加量要足够。其典型组成为:SMP-2或SPC加量6%~8%,胶体磺化沥青1%~3%,混入3%~8%

—172—

的柴油和少许表面活性剂,润滑剂2%~4%,清洁剂1%~2%,KCl 7%~8%,以及适量的盐重结晶抑制剂适量,并用铁铬木质素磺酸盐碱液或配合润滑剂、防塌剂、降滤失剂等胶液维护钻井液的流变参数。应将地层水尽量彻底、干净地放掉,使钻井液污染程度为最小。如有必要,可以补充2%~3%的超细碳酸钙用以调整钻井液中颗粒的级配。为了保证177.8mm(7″)套管安全、顺利下至井底,在下入该套管之前的最后一次通井作业完成之后,可打入混有2%~3%塑料小球的井浆以封闭所有裸眼井段。

总之,高密度饱和盐水钻井液的维护技术是保证其以优良性能钻穿盐膏层的关键。在使用过程中,必须把握好高密度饱和盐水钻井液的各项维护要点,并与其它工程措施,如井身结构、固井技术等相配套,以确保钻井液满足地质和钻井工程的要求。

第四节 高密度饱和盐水钻井液应用实例

我国江汉、四川、胜利、华北、中原、新疆、塔里木、青海、长庆等油田的部分构造上均钻遇盐膏层。其埋藏深度从地表至5000m不等,纯盐层总厚度从几十米至两千多米,单层厚度从几厘米至八十多米。盐岩大多为纯氯化钠,有时亦以复合盐(含氯化钾、氯化镁、氯化钙等)存在,经常与石膏、芒硝共存。表6-4-1是我国各油田钻遇盐膏层的情况。

表6-4-1 我国各油田钻遇盐膏层的情况

—173—

使用欠饱和盐水钻井液钻进时,经常会在盐膏层出现起下钻遇阻,甚至发生卡钻,严重时会导致井报废。发生卡钻前具有下列特征:

(1) 钻时较快,有时憋跳; (2) 泵压忽高忽低; (3) 钻屑增多或不返;

(4) 钻井液粘切上升,滤失量增大,泥饼增厚,氯离子浓度升高; (5) 转盘负荷变重,停转倒车严重,提不起,转不动,当即卡死; (6) 上下活动,阻卡不易消除,甚至逐渐卡死;

(7) 停泵、倒泵,井下情况立即恶化,甚至卡死; (8) 转盘卸扣有倒车; (9) 接单根放不到底;

(10) 卡死后泵压大都正常,泡油、水、酸解卡剂等均无效果,套铣倒扣亦往往因卡

套管而失败。

表6-4-2是我国部分油田在盐膏层的卡钻情况。

表6-4-2 我国部分油田在盐膏层的卡钻情况

—174—

在钻进盐膏层时,除发生遇阻卡或卡钻外,还会发生固井质量差、挤毁套管、井漏、井喷等复杂情况。一方面,提高钻井液密度是防止盐层和含盐泥岩的蠕变和塑性变形的有效措施,而另一方面,选择合适的钻井液类型和配方也是解决钻进盐膏层所遇到的各种井下复杂情况的一项十分重要的措施。对于复杂的深井段复杂盐、膏、泥盐层,一般要求采用高密度饱和盐水钻井液或油包水乳化钻井液进行钻进,以有效抑制盐的溶解和塑性蠕变。

我国大部分油田都钻遇盐膏层,用到的钻井液主要包括欠饱和盐水钻井液、饱和(过饱和)盐水钻井液以及油包水乳化钻井液等,其中高密度饱和盐水钻井液是钻进复合盐层的理想选择。应用比较成功的是第二节提到的四种体系,下面就分别介绍这四种饱和盐水钻井液在几个油田的现场应用情况。

—175—

一、聚合物饱和盐水钻井液体系

聚合物饱和盐水钻井液体系是最早用于钻进盐膏层的饱和盐水钻井液,曾在中原、华北、江汉、青海、新疆等油田的多口井中得到成功应用。聚合物饱和盐水钻井液中用于降粘、降滤失及护胶的处理剂一般都选用聚合物。为提高体系的抗高温、抗盐能力,还常选用聚磺类处理剂,如磺化酚醛树脂、磺化褐煤、磺化沥青等。因此,大部分聚合物饱和盐水钻井液也称为聚磺饱和盐水钻井液。聚合物饱和盐水钻井液特别适于钻进分布相对集中的大段纯盐层、复合盐层以及含有大段易坍塌泥岩的复杂井。

(一)聚合物饱和盐水钻井液在中原油田文东地区的应用

中原油田文东构造的盐膏层主要分布在沙一、沙三2和沙三4段,其中沙三2和沙三4是两套极为复杂的复合盐膏层,断层特别发育,埋深2600~5500m。两套盐膏层下面为高压油气层,压力系数变化较大,从1.50至1.85g/cm3,并且岩性极为复杂。泥岩的矿物组分为:在3900m以上,伊利石54%~70%,伊蒙混层15%~21%,高岭石0~12%,绿泥石5%~24%;在3900m以下,伊利石100%~85%,伊蒙混层0~10%,高岭石0~5%,并含盐25%~56%,无水石膏5%~20%。泥岩的分散性能变化较大,回收率从8.4%至89%,24h膨胀率亦从3.9%至36.7%,亚甲基蓝容量为9.9~1.1mmol/100g土。盐岩以氯化钠为主,含量高达85%~90%,并含有钾盐2%~5%和无水石膏2%~5%。20世纪70年代末期曾主要使用欠饱和盐水钻井液,结果经常发生卡钻、井喷、井漏等恶性事故而导致井的报废。80年代初、中期,使用油包水乳化钻井液顺利钻成文204等4口深井。由于当时我国柴油紧张,油浆的成本太高,从而使油包水乳化钻井液的推广使用受到了限制。直至在1985年,研制成功了饱和盐水钻井液,1986年以后开始大面积推广,并选用合理的井身结构与钻井工程措施,使得文东地区钻盐膏层的成功率从30%提高到100%,此后,再也没有发生过盐卡和报废井。沙三段平均井径扩大率从24.5%降至9%以下。中原油田文东地区所用到的高密度聚合物饱和盐水钻井液配方和性能已在第二节中介绍过(见表6-2-5、6-2-6),在此不再赘述。因此,聚合物饱和盐水钻井液技术的成功应用,为中原油田文东地区的勘探开发和原油增产做出了重大贡献,文东地区沙三复杂盐层的钻井情况统计见表6-4-3。

表6-4-3 中原油田文东地区沙三复杂盐层钻井情况统计

—176—

从表中可以看出,采用聚合物饱和盐水钻井液所取得的主要技术效果是:

—177—

(1) 井下安全,钻井成功率由30%提高到100%,测井成功率由10%提高到100%; (2) 钻井周期短,平均钻井周期为130d左右,比原来缩短约50%; (3) 井径规则,平均井径扩大率小于10%,多数小于5%。 技术上的成功,也带来了巨大的经济效益,主要体现在:

(1)聚合物饱和盐水钻井液在文东的成功应用,使得原来无法确定原油储量的文东地区成了中原油田的一个主要产油区。截止1989年底,在文东共打井200多口。即使以每口井日产70t原油的保守数字计算,实际的经济效益也是非常可观的;

(2)由于钻井周期大大缩短,从而节约了大量费用。1987年文东地区的钻井日费用为4970元/天,这样,仅1986、1987两年因缩短钻井周期而节约的费用大约为4015万元。

(二)聚合物饱和盐水钻井液在青海油田狮子沟的应用

青海狮子沟构造干柴沟组(N1)到下干柴沟组(E3)均钻遇盐、膏、芒硝层,埋深为2400~4200m,单层盐岩厚度4~9m,石膏1~4m,芒硝5~10m,它们夹在含盐塑性泥岩、软泥岩、含膏泥岩、钙质泥岩、盐泥、膏泥及粉砂岩之间,呈不等厚互层。狮20井2400~3967m钻遇上述各类地层达73层之多。由于上述地层受构造运动与盐岩本身的塑性流动而出现许多裂缝,裂缝多为纵向,缝间被方解石、结晶盐、无水石膏所充填。砂岩层为不同压力系数的高压盐水层与油气层,易发生井喷和井漏。高压盐水层矿化度从190,000mg/l至320,000mg/l不等。泥岩中的粘土矿物由69%~87%伊利石和31%~13%绿泥石所组成。泥岩中一般含盐1%~18%,含石膏2%~12%。岩盐由52%~65%氯化钠、2%~9%无水芒硝、4%~15%钙芒硝、0~1%石膏、3%~4%石英、3%~5%长石、1%~2%方解石组成。而芒硝层中含有无水芒硝44%~83%,盐8%~25%,石英2%~3%,白云石4%~6%及粘土3%~22%。钻进此段地层极易引起各种井下复杂情况。例如狮深18井钻穿3700~3900m盐膏层时,井塌严重,井径扩大率高达150%,当钻至3981.57m时,因井塌埋钻具而报废。狮20井,曾使用FCLS—CMC—KCl盐水钻井液钻进此井段,结果性能不稳定,井塌严重,井径扩大率最大达109%,接单根遇阻卡,放不到底,必须划眼才能通过,卸扣打倒车,严重时提不起来,泵压忽高忽低,起下钻阻卡严重。为了顺利钻穿此井段和防止盐的重结晶,狮25井从3300m将钻井液转化为由2%~3%磺化酚醛树脂(SMP-2)、2%~3%磺化褐煤(SMC)、1%~2%聚磺腐植酸(PTC)、0.1%~0.3%Na2Cr2O7、0.1%~0.3%烧碱和0.3%NTA盐重结晶抑制剂组成的

—178—

3

聚合物饱和盐水钻井液。其性能是:密度1.42~2.08g/cm(随井深而增加),漏斗粘度40~45s,

切力0.5~1 / 1.5~2Pa,高温高压滤失量11~20ml,膨润土含量25~30g/l,pH值9.5~10.5,抗温可达200℃。转化后,阻卡现象消失,电测顺利,泥岩段井径规则,盐层段平均井径扩大率降至22%以下。

二、氯化钾聚磺饱和盐水钻井液体系

塔里木油田羊塔克地区的复合盐层分布广、埋藏深、厚度大,大段纯盐层、软泥岩(尤其是含膏、盐的软泥岩普遍存在)、高压低渗盐水层同时存在,且多次受造山运动和断层的影响,区域构造应力大,地层裂缝发育,因此该地区的钻井难度非常大。

吉迪克组下部(4800~4950m)和下第三系(4950~5300m)是由大段的膏泥岩、盐岩、盐膏层以及难以预见的软泥岩所组成的复合盐层。此段膏泥盐层段属高膨胀、弱分散地层,石膏的存在更加剧了这种吸水膨胀,无水石膏吸水后转化为二水石膏,其体积增大26%,从而引起缩径,导致卡钻。该地区已完钻的五口井全部钻遇巨厚的复合盐层,其中最厚543m(羊塔克101#井),最薄427m(羊塔克5井),五口井的平均盐层厚度为470.8m。这套复合盐层在吉迪克组下部分别以盐岩、泥膏岩或石膏的形式出现,最早是羊塔克4井在4799~4801m以2m石膏形式出现的。以后,盐岩、石膏、膏泥岩及泥膏盐层逐渐增多,厚度也逐渐增大,至下第三系中部以大段纯盐层为主(最厚羊塔克5井为81m,最薄羊塔克1井为45m),夹有石膏和可钻性极差的泥岩;下部以泥岩为主,夹有互层的石膏、盐岩、膏泥岩等;这套复合盐层在下第三系底部以膏泥岩、石膏或泥膏岩的形式结束,最晚出现的是羊塔克101井在5336~5338m井段2m的膏泥岩。该地区复合盐层普遍存在软泥岩,其中含盐、膏的软泥岩较多。在羊塔克5井曾钻遇厚度达18m、平均钻速21.8min/m的大段纯软泥岩(在5178~5196m)。构造应力的影响使得盐层、软泥岩的蠕变和塑性流动加剧,在钻井实践中需要较高的钻井液密度才能得以平衡,在羊塔克5井,钻井液密度最高达2.38g/cm3。此外,羊塔克2井在复合盐层钻进时发现高压盐水层,钻进时无明显显示,每次起下钻中都有溢流出现。溢流速度为0.2~0.3m3m/h(钻进时使用密度为2.18~2.24g/cm3的钻井液)。其它几口井也有类似情况发生,其中羊塔克5井在钻至4864.64m时发现0.77m3/h的溢流,当时钻井液密度为1.95g/cm3,提高至2.01g/cm3后才逐渐恢复正常。

解决此段地层井下复杂情况的技术措施是,以适合的钻井液密度平衡盐岩和软泥岩的塑性蠕变;采用能抗盐污染、抗高温的钻井液体系;增加钻井液的抑制和防塌能力,达到

—179—

稳定井壁的目的;使用能有效控制和维护高密度饱和盐水钻井液流变参数的降粘剂;严格控制高温高压滤失量,提高泥饼质量。经过室内实验和研究,最后确定采用高密度KCl聚磺饱和盐水钻井液,其配方和性能已在本章第二节介绍过(见表6-8),取得了很好的应用效果。例如,羊塔克2井以密度为2.10~2.26g/cm3的聚磺饱和盐水钻井液顺利钻穿了厚度分别为446m和512m的巨厚复合盐层,在5041~5043m发现高压盐水层,以2.24g/cm3的钻井液钻进时溢流不明显,起下钻时溢流也只有0.2m3/h。采取有效的维护措施稳定了钻井液性能,保证了复合盐层电测一次成功和套管的顺利下入,为国内泥浆公司承钻复合盐层高难度井取得了成功经验,并创造了钻穿盐膏层后,静止40小时下钻通井顺利到底,起钻正常,177.8mm(7″)套管在井底静止66小时后插入成功,开泵19MPa建立正常循环,第二次固井成功等优异指标。

三、氯化钾/氯化钠饱和盐水钻井液体系

塔里木盆地第三系大量存在着各种不同类型的复合盐层。在羊塔克构造带、南喀拉玉尔滚构造、东秋立塔克构造的盐层以盐岩、含盐膏软泥岩、石膏岩、膏泥岩为主,中间夹有薄层泥岩、泥质粉砂岩,盐层成厚薄不等层分布于全井段,钻井难度极大。钻遇此段的南喀1井在复合盐层钻井过程中共发生7次恶性卡钻事故,填井侧钻5次,报废进尺2182m,损失时间319.6天,经济损失巨大。东秋5井在吉迪克—下第三系2440~4280m钻遇此盐层。该井采用的是氯化钾/氯化钠饱和盐水钻井液,其密度为1.82g/cm3,钻至井深2514.85m时进入软泥岩0.84m,发现转盘负荷变重,扭矩上升,停转盘上提即卡死。事故处理完后,将钻井液密度提至2.03g/cm3,极其艰难地钻穿2514~2545m。当钻至井深2555.84m时,起钻倒划眼至井深2527.47m再次卡死,开泵循环不通。套铣时又将钻井液密度提高至2.20g/cm3,卡钻解除。恢复钻进后,仍采用氯化钾/氯化钠饱和盐水钻井液,密度维持在2.20~2.25g/cm3,安全钻进至中完井深。该井在软泥岩段进行中途测试。根据井径数据,计算出软泥岩在密度为2.03g/cm3、Cl-浓度为210,000条件下的径向蠕变速率为2.3mm/h。四开后,在井深3619m钻遇下第三系盐膏层。在3619~4280m井段复合盐层中钻进时,钻井液密度低于1.95g/cm3时,井下阻卡10~30吨,并有较严重的掉块现象,密度提至2.13g/cm3后井下恢复正常。

氯化钾/氯化钠饱和盐水钻井液体系的组成主要包括:

1.无机盐:主要的无机盐是KCl和NaCl,KCl提供防塌用的K+,NaCl提供防止盐溶的Cl-;

—180—

2.滤失剂:主要有Polyerill、Drispac和Polysa-L,加量控制在0.5%以内; 3.防塌剂:主要是Shale-Check 和SKLTEX,加量控制在1%。

另需配合使用国产抗温、抗盐的处理剂,如SPC、SMT等,主要起降粘和降滤失量的作用,同时还需配合使用盐重结晶抑制剂NTA和一定量的LUBE、RH-3等润滑剂,以保证体系中盐的饱和和良好的润滑性能。

现场应用证明,氯化钾/氯化钠饱和盐水钻井液体系不仅具有良好的抗盐污染的能力,同时具有较强的防塌能力。采用氯化钾/氯化钠饱和盐水钻井液体系,虽然有时会发生卡钻事故,但如果能够选用适当高的钻井液密度,并控制好其粘度、切力、滤失量等性能,仍然能够顺利钻穿盐膏层。该体系适于在间断出现的、不连续的大段盐膏层钻井过程中使用。

四、复合饱和盐聚合醇硅酸盐钻井液体系

在复合饱和盐聚合醇硅酸盐钻井液体系中使用了复合盐,即氯化钠和氯化钾。其目的是,利用钾离子的抑制作用使井壁保持稳定。该体系中还加入了硅酸盐,即低浓度的硅酸钠或硅酸钾,这是因为尺寸分布较宽的硅酸根离子可以通过吸附、扩散等途径结合到粘土晶层端部,堵塞粘土层片之间的缝隙,从而起到稳定作用。如果在高温、长时间接触的条件下,硅酸盐还能与粘土进行化学作用,产生无定形的胶结力很强的物质,使其与粘土矿物颗粒凝结成一体。此外,负电性硅酸根离子结合到已经过预水化的粘土颗粒端部,则会使其电动电位升高,粘度、切力和滤失量下降,有利于形成薄而韧的泥饼,同样有利于井壁的稳定。室内岩心浸泡实验表明,在浸泡液中加入3%的稀硅酸钠,可在岩心表面形成一层硬壳。随时间增长,岩心硬度增加,且硅酸钠与7%KCl配合使用时,岩心回收率可高达99.7%。体系中含有的聚合醇又称多元醇,不仅具有良好的抑制泥页岩水化、膨胀和分散的能力,同时还具有很好的润滑性和生物降解性,并具有一定的调流型的作用,与无机盐中的K+同样具有很强的协同作用。因此,这种复合饱和聚合醇硅酸盐钻井液体系又可称为稀硅酸盐聚合醇KCl饱和盐水钻井液。在该体系中,还常添加抗盐和抗高温的磺化类处理剂SMP-2、SPC等。

塔里木油田克拉苏地区的地层复杂性对钻井液提出了非常严格的要求,克拉203井和克拉204井的地质分层和岩性描述分别如表6-4-4和表6-4-5所示。其地层特点和对钻井液的要求可概括如下:

—181—

(1)该地区下第三系存在大段的膏盐层,并夹杂盐岩层和膏泥岩。克拉203和克拉204井的膏盐层厚度分别为533.5m和676.5m。膏盐层易发生蠕变缩径,易垮塌,夹杂的盐岩易溶解,泥岩软并易垮塌。这些复杂情况给井壁稳定带来了很大困难;

(2)同一裸眼井段存在不同的压力系数。地层压力差别很大,使用的钻井液密度的安全范围非常小;

(3)白云岩气层钻开后,又要面临下部白垩系砂岩的防漏、堵漏问题。白云岩本身易碎、易塌、易漏失,所以要求钻井液体系具有极强的封堵性能,从技术上需解决好井漏和气侵的矛盾;

(4)白垩系砂岩层为压力敏感地层,地层压力系数低,并存在井漏和井壁失稳问题,同时要求加入堵漏剂的钻井液必须具有良好的流变性,特别是对于高密度钻井液,这是一个比较大的挑战;

(5)必须保证钻井液体系能够有效地保护油气层;

(6)各种钻井液处理剂必须具有良好的抗盐、抗高温、抗污染的能力; (7)必须确保电测、固井等作业的顺利进行;

(8)由于必须使用高密度钻井液,因此给固控工作带来困难。

表6-4-4 克拉203井地质分层及其岩性描述

—182—

表6-4-5 克拉204井地质分层及其岩性描述

为了顺利钻穿克拉苏地区克拉203、204井的盐膏层,提高钻井速度,缩短钻井周期,大胆采用了具有创新意义的高密度复合饱和盐聚合醇硅酸盐钻井液体系。表6-4-6、6-4-7分别是克拉203、204井现场使用的高密度复合饱和盐聚合醇硅酸盐钻井液的性能参数。

表6-4-6 克拉203井使用的高密度多元醇欠饱和盐水稀硅酸盐钻井液的性能 —183—

表6-4-7 克拉204井使用的高密度多元醇欠饱和盐水稀硅酸盐钻井液的性能

该钻井液体系的效果主要表现在以下几个方面:

1.强抑制性和强封堵能力

(1)表现为所钻井段无任何垮塌迹象,井壁稳定,测井井径曲线紧贴钻头尺寸,无扩径、缩径现象,井眼安全畅通,起下钻无阻卡,为顺利钻穿克拉203井、克拉204井533.5m和676.5m的膏盐层起到了关键作用。

(2)强封堵性和优质泥饼的形成,提高了井壁的承压能力,扩大了钻井液密度的调整范围,顺利钻穿了白垩系压力敏感地层。

2.良好的抗高温、抗盐污染能力及稳定性

(1)面对体系从不饱和→饱和→超饱和含盐量的变化,钻井液性能稳定,未出现大的性能波动。克拉203井、克拉204井的钻井液中Ca含量分别达到1200mg/l、880mg/l,然而钻井液性能无波动,充分显示了该体系极强的抗污染能力。

—184—

2+

(2)钻井液体系能耐深井高温,电测资料表明,在3150m处地层温度已为70℃,而各种钻井液处理剂性能发挥稳定,各处理剂之间相容性好。

(3)现场应用数据显示,克拉203井井筒内钻井液静止达50小时,克拉204井井筒内钻井液静止达68小时,返出后钻井液性能测试数据均表明其稳定性良好。

3.优良的润滑性

(1)高密度钻井液润滑性的好坏直接关系着机械钻速的高低,通过加入润滑剂(MHR—86),以及所选处理剂多元醇、乳化沥青等均对钻井液有较强的润滑作用,现场钻井液的摩阻系数一般可控制在:0.0787~0.0963。

(2)电测、固井等作业一次性顺利成功。

4.钻井液能满足处理井下复杂的需要

克拉203井共发生漏失8次,利用井浆能迅速配制好所需堵漏钻井液,且流动性、可泵性好,堵漏成功率高,在随钻堵漏时,钻井液性能稳定,且流变性好。克拉204井钻井液从215.9mm井眼至完钻钻井液均保持良好的态势。

5.该体系能起到保护油气层的作用。采用保护油气层加重剂和高密度铁矿粉配合加重,并使用超细碳酸钙,以及使用酸溶性堵漏剂等均对保护油气层起到了良好的作用。

6.对两口井的提前完钻均起到了不可替代的作用

克拉203井、克拉204井实际钻井周期分别为162天、144天,比设计周期分别节约8天和26天。合理的钻井液体系的使用和正确的钻井液维护技术为这两口井的提前完钻起到了关键作用。由于高密度复合饱和盐聚合醇硅酸盐钻井液体系中同时加入了多种抑制性处理剂多元醇、氯化钾、硅酸钾、乳化沥青,特别是多元醇与氯化钾的协同作用,明显地提高了钻井液体系的抑制性。并且,加入了具有抗高温、抗盐污染能力的聚磺处理剂,保证了低的高温高压滤失量,并能够形成优质泥饼。最重要的是,钻井液中适当的含盐量,使得钻井液的盐溶速率与盐岩的蠕变速率相当。现场实践表明,复合饱和盐聚合醇硅酸盐钻井液体系具有极强的抑制性和封堵能力、良好的抗盐抗高温能力、优良的润滑性和流变性,能够满足盐膏层钻井的需要,具有广阔的应用前景。

小结

—185—

盐水钻井液一般可分为欠饱和盐水钻井液、饱和盐水钻井液和海水钻井液。由于饱和盐水钻井液矿化度极高,因此具有很强的抑制性,并具有很好的抗盐侵、钙侵和抗高温的能力,以及对地层损害小等特点,特别适于钻穿埋藏较深、厚盐层及岩性复杂的复合盐层。高密度饱和盐水钻井液的设计原则是能够有效地抑制盐溶和水敏性地层水化膨胀、在深井高温条件下仍能保持良好的流变性能、具有良好的防塌性和润滑性、高温高压下仍具有较低的滤失量,并能形成薄而韧的泥饼。高密度饱和盐水钻井液一般由膨润土或抗盐土、盐类(一般为氯化钠)、护胶剂与降滤失剂、降粘剂、流型调整剂、磺化沥青类封堵剂、烧碱与纯碱、润滑剂和重结晶抑制剂等组分组成。高密度饱和盐水钻井液有新浆转化、在技术套管内用井浆转化、裸眼转化和裸眼替浆四种配制方法。在现场维护过程中,应注意严格控制膨润土量、处理剂应配成胶液加入、重视钻井液pH值变化和固相控制等要点。本章还介绍了四种类型的高密度饱和盐水钻井液在中原、青海、塔里木等油田的实际应用情况。

复习思考题

1.盐水钻井液通常分为哪几类?其主要作用是什么?

2.饱和盐水钻井液具有什么特点?主要在什么情况下应用?

3.简述高密度饱和盐水钻井液的设计原则。该类钻井液的主要组成和典型配方是什么?

4.在高密度饱和盐水钻井液的维护中应注意哪些问题?

5.简述高密度饱和盐水钻井液在油田的应用情况。

—186—

第六章 高密度饱和盐水钻井液技术

第一节 高密度饱和盐水钻井液概述

一、饱和盐水钻井液的作用和发展概况

凡NaCl含量超过1%(质量分数,Cl-含量约为6000 mg/l)的钻井液统称为盐水钻井液。一般将其分为以下三种类型:

(一)欠饱和盐水钻井液

其Cl-含量自6000 mg/l直至饱和之前均属于此类。

(二)和盐水钻井液

是指含盐量达到饱和,即常温下NaCl浓度为3.15×105 mg/l(Cl-含量为1.89×105mg/l)左右的钻井液。注意NaCl溶解度随温度变化而变化。

(三)海水钻井液

是指用海水配制而成的含盐钻井液。体系中不仅含有约3×104 mg/l的NaCl,还含有一定量的Ca2+和Mg2+。

根据含盐量的多少,在国外出版的专著中又将盐水钻井液分为以下几种类型:含盐量在1%~2%时为微咸水钻井液,在2%~4%时为海水钻井液,在4%与近饱和之间时为非饱和盐水钻井液,在含盐量达最大值31.5%时则被称为饱和盐水钻井液。

如前所述,为了防止盐膏层发生塑性变形和盐溶而造成缩径或井塌等复杂情况的发生,

—154—

提高所用钻井液的密度是非常有效和必要的,这一点已被国内外盐膏层钻井的实践所证实。例如,华北油田新家4井使用油包水乳化钻井液钻3630~4518m的盐膏层井段,当钻井液密度为1.90~1.95 g/cm3时,在盐岩或含盐膏泥岩处,起下钻均会遇阻。而钻井液密度提高至2.03~2.04g/cm3时,井下情况正常,下钻仅轻微遇阻,不需划眼就可通过。因此,为保证安全顺利钻穿盐膏层,必须提高钻井液密度至能够控制盐岩蠕变和塑性变形所需范围。所需密度应根据井深、井温及盐岩蠕变规律来确定,同时还要根据已钻井实际资料和岩心实测试验数据来进行修正,钻井过程中还需根据该井段的实际情况随时进行调整,以确保钻井作业的顺利进行。钻井液密度的具体确定方法和应用图版已在第四、五章详细介绍过,在此不再赘述。

一般情况下,盐的溶解是造成盐膏层钻井过程中各种井下复杂情况的主要原因。因此,要想顺利钻穿盐膏层,就必须采取有效的措施以控制盐的溶解速率。当钻遇盐岩层、盐膏层或盐膏与泥页岩互层时,盐的溶解会使钻井液的粘度、切力上升,滤失量剧增,因此会进一步增加盐膏层钻井的难度。若在钻井液中预先加入工业食盐,可使水基钻井液具有更强的抗盐能力和抑制性。由于饱和盐水钻井液矿化度极高,因此抗污染能力强,对地层中粘土的水化膨胀和分散有极强的抑制作用。钻遇盐膏层时,由于体系中的盐已达饱和,使盐的溶解受到抑制,因此可使盐膏层中盐的溶解减至最小程度,避免大肚子井眼的形成和井塌等复杂情况的发生,从而使井眼规则,确保钻井过程的顺利进行。

在20世纪80年代中期,我国就研究成功饱和盐水钻井液体系,使其顺利钻进盐膏层,基本解决了盐膏层的盐溶、缩径、井塌及卡钻等井下复杂情况。因此,现已形成了较成熟的饱和盐水钻井液体系和针对不同地层的饱和盐水钻井液配方。如胜利油田在新东风10井使用聚合物复合钾盐饱和盐水钻井液顺利通过含盐膏的红层,钻达5344.71m;青海油田在狮20井使用新型的三磺饱和盐水钻井液钻进;中原油田使用了磺化沥青三磺盐水钻井液钻进。这些井的钻井实践表明,只要根据地层实际情况对饱和盐水钻井液的配方进行适当调整,就可以顺利钻穿盐膏层。

对于高密度饱和盐水钻井液体系,不仅能尽可能减少盐岩的溶解,而且由于其“高密度”(2.0~2.5 g/cm3),因此可以有效控制盐岩的蠕变和塑性变形,从而解决了盐膏层两大主要原因引起的复杂情况。同时由于体系中加入了抗盐、抗高温和强抑制性的处理剂,如磺化酚醛树脂、氯化钾和硅酸盐等,因此可以保证井壁稳定,并可在深井和超深井中使用。

—155—

二、盐的重结晶及其预防措施

值得注意的是,盐的溶解度会随温度上升而有所增加(见表6-1-1)。因此在地面配制的饱和盐水钻井液,当循环到井底时就变得不饱和了,而当循环至地面时又会发生盐的重结晶。这样,使用饱和盐水钻井液钻进对下部盐膏层仍会因盐溶而带来各种井下复杂情况,而盐的重结晶会给钻井工作带来困难,还会增加泵压、磨损钻具和泵的部件。此外,如在大段裸眼盐层中钻进时,盐的重结晶会使上部盐层缩径,造成起下钻遇阻卡。例如江汉油田的王深二井,表层套管下至366m,裸眼钻至5163m。该井从900m就进入盐层,全井共钻穿纯盐层1925m,当钻深部井段时,起下钻经常在2000~3400m盐层处遇阻卡。上下活动钻具比原悬重增减10~30t,因缩径,下钻时钻头受很大测向力,钻头在最薄处产生裂缝,新钻头下钻至井底没有钻进,起钻后就发现钻头直径缩小8mm。此井段在刚钻穿时,电测井径均大于钻头直径,但钻深部井段时,曾多次对上部盐层进行测井,发现盐层段井径一次小于一次,后来竟小于钻头直径,但泥岩井径变化不大,而在3400~3900m井段的盐层,井径扩大。上述上部盐层由钻开时的扩径,随时间推移而变为缩径,主要是由于盐的重结晶引起的。此外,盐层本身塑性变形随时间增长而增大亦会造成缩径。

目前,用于抑制盐的重结晶比较有效的方法就是在钻井液中加入适量盐重结晶抑制剂,这样就可以配制在井下高温条件下处于饱和状态的钻井液,而上返至地面时,随温度下降,盐也不会从钻井液中结晶出来,从而解决了上部钻杆、接头及地面循环系统中因重结晶盐粒造成的泵压增加、钻具磨损带来的操作困难。由于井底的盐处于饱和状态而使盐溶解度减小,因此在饱和盐水钻井液中加入重结晶抑制剂使其成为过饱和盐水钻井液是非常必要的。另外,配制饱和盐水钻井液时最好选用抗盐粘土,但含量不宜太高。其配制和维护技术将在本章第三节详细介绍。

表6-1-1 几种无机盐在不同温度下的溶解度

—156—

三、高密度饱和盐水钻井液的类型、特点和应用范围

各油田在钻井实践中,已应用成功4种典型的高密度饱和盐水钻井液体系,即聚合物饱和盐水钻井液、氯化钾聚磺饱和盐水钻井液、氯化钠/氯化钾过饱和盐水钻井液和复合饱和盐聚合醇硅酸盐钻井液。尽管它们组成有所不同,但它们都具有以下特点:

1.由于矿化度极高,因此具有很强的抑制性,能有效抑制泥页岩水化,保证井壁稳定; 2.不仅具有很强的抗盐侵的能力,而且能够有效地抗钙侵和抗高温,适于钻穿大段盐膏层,并可在深井和超深井中使用;

3.由于其滤液性质与地层原生水比较接近,因此对油气层的损害较小; 4.饱和盐水钻井液还能有效地抑制地层造浆,流动性好,性能稳定。

因此,高密度饱和盐水钻井液适于钻穿埋藏较深、厚度较大的大段深、厚盐层及岩性复杂的复合盐膏层。但由于该体系矿化度高,对钻具腐蚀性较大,维护工艺较复杂,耗盐量大导致配制成本较高,因此在一定程度上限制了它的广泛使用。但总的来说,高密度饱和盐水钻井液是钻进复合盐层和深层大段纯盐层的理想钻井液体系,可以在欠饱和盐水钻井液无法对付的盐膏层中使用。

—157—

第二节 高密度饱和盐水钻井液体系设计和主要技术指标

一、高密度饱和盐水钻井液的设计原则

盐膏层对钻井液体系的选择和使用提出了非常严格的要求,因此高密度饱和盐水钻井液体系设计应遵循以下原则:

1.盐侵、抗高温,能有效抑制盐溶和水敏性地层水化膨胀,以保证井眼和钻井液性能的稳定;

2. 高温条件下,钻井液仍能保持良好的流变性能;

3.具有良好的防塌性、润滑性,并对岩屑具有较好的悬浮和携带能力;

4.具有抗高压、抗低渗含盐量较低的地层水污染的能力和抑制钻井液中盐重结晶的能力;

5.高温高压下仍具有较低的滤失量,能形成薄而韧、压缩性好的泥饼。

二、高密度饱和盐水钻井液的组成

高密度饱和盐水钻井液一般主要由以下组分组成:

—158—

(一)膨润土或抗盐土

主要用来提高饱和盐水钻井液的塑性粘度和动切力。一般情况下,钻井液中膨润土含量应控制在25~50g/l。如膨润土含量过低,则钻井液切力低,影响岩屑的携带与加重剂的悬浮;而膨润土含量过高则钻井液粘切过大,性能不稳定。钻井液中最佳膨润土含量应随钻井液密度与温度增高而下降。由于膨润土在盐水中不易水化,故应先将膨润土在淡水中进行预水化,然后再加盐或加到盐水钻井液中。而抗盐土可以直接加到盐水或饱和盐水钻井液中,但必须使用剪切枪使抗盐土在水中充分分散。

(二)盐类

一般选用氯化钠。在特殊情况下,亦选用氯化钾与氯化钠进行复配。对于石膏含量较高的地层,亦可选用硫酸胺,利用同离子效应来控制Ca2+对钻井液性能的不良影响。

(三)护胶剂与降滤失剂

通常选用野生植物胶、生物聚合物、羧甲基纤维素、预胶化淀粉、羧甲基淀粉、聚丙烯酸盐类(如水解聚丙烯腈、水解聚丙烯酰胺、PAC141、SK1104等)来使钻井液流变参数与滤失量达到钻井工程的要求。使用时,处理剂数量必须加足,才能保证性能稳定。上述处理剂抗温能力不同,因此需依据所钻井最高井底温度来选用护胶剂和降滤失剂,以确保在高温下仍具有良好的性能。钻进深部盐膏层时,为了降低高温高压滤失量,可加入磺化度高的磺化酚醛树脂或SPNH、SLSP等。

(四)降粘剂

对于未加重的饱和盐水钻井液,只要控制好膨润土含量,加足护胶剂和降滤失剂,通常不需要降粘剂。但对于加重的饱和盐水钻井液,尤其当密度大于1.8 g/cm3时,若膨润土含量过高,则往往需要加入饱和盐水以降低土含量,并加入降粘剂来调整流变参数。常用的降粘剂有铁铬木质素磺酸盐、磺化单宁、SK-3、XB-40、XY-27以及水解聚丙烯腈的盐类等。

—159—

(五)流型调整剂

饱和盐水钻井液往往动切力低,携带岩屑能力较差。可加入1%~2.5%改性石棉或海泡石。海泡石应预先配成10%预水化浆再加入井浆中。在高密度饱和盐水钻井液中加入改性石棉或海泡石之后的性能变化情况见表6-2。从表中数据可见,加入这两种流型调整剂以后,动塑比明显增加。

表6-2-1 饱和盐水钻井液加入改性石棉或海泡石后的性能变化

(六)磺化沥青类产品

对于层理裂隙发育的复合盐膏泥页岩层,为了防止井塌,可加入1%~2%的磺化沥青来封堵泥页岩的层理与裂隙。

(七)烧碱与纯碱

根据所选用处理剂的需要,可用纯碱除钙,用烧碱调整pH值。

(八)润滑剂

为了改善钻井液的润滑性能,应加入适量的润滑剂或原油、柴油等。

—160—

(九)重结晶抑制剂

为了抑制深井段因盐岩溶解而引起井径扩大,并避免出现井下复杂情况以及防止盐的重结晶,可在饱和盐水钻井液中加入适量的重结晶抑制剂,使其成为过饱和盐水钻井液。常用的重结晶抑制剂有氮—三乙酰胺、亚铁氰化钠、亚铁氰化钾、氯化镉和NTA。其中NTA是一种合成的氮氚三乙酰胺的衍生物盐抑制剂,除了具有抑制盐重结晶的作用外,还能提高钻井液的热稳定性,使滤失量略有下降,对钻井液流变性能影响不大,其加量一般为0.2%~0.4%(见表6-2-2)。

表6-2-2 NTA对钻井液性能的影响

实验表明,NTA不仅在饱和盐水钻井液中具有较好的抑制效果,而且在欠饱和盐水钻井液中亦能起到抑制盐的溶解的作用(见表6-2-3)。

表6-2-3 NTA抑制盐溶情况

—161—

NTA不仅在过饱和NaCl溶液中具有抑制重结晶的作用,而且在含有Ca2+、Mg2+的过饱和复合盐溶液中,亦有较好的抑制重结晶的作用(见表6-2-4)。

表6-2-4 NTA在过饱和复合盐溶液中的抑制作用

目前,NTA已在中原、江汉、长庆、新疆、青海、胜利等油田得到应用,取得较好的使用效果。如中原油田文东地区在饱和盐水钻井液中加入NTA后,盐层平均井径扩大率从10%降至5%以下,并消除了在钻具和地面循环系统中产生的盐重结晶现象。江汉油田钻进潜四下盐层时,使用NTA后有效地防止了因盐重结晶而引起的盐卡。

为了提高饱和盐水钻井液的热稳定性,还可加入适量的司盘-80、烷基苯磺酸钠或烷基磺酸钠、重铬酸钠等。

三、高密度饱和盐水钻井液的典型配方和性能

高密度饱和盐水钻井液各种主要性能的一般范围是:密度,2.0~2.30g/cm3;漏斗粘度,60~80s;塑性粘度,60~75mPa·s;动切力,10~20Pa;API滤失≤4ml/1.0mm;HTHP滤失≤10ml/3.0mm;膨润土含量,20~30g/l;[Cl-]≥190,000mg/l;pH值,9~10。

表6-2-5、6-2-6、6-2-7和6-2-8分别是应用比较成功的几种饱和盐水钻井液的配方和性能。

表6-2-5 中原油田文东地区使用的高密度聚合物饱和盐水钻井液配方

—162—

表6-2-6 中原油田文东地区使用的高密度聚合物饱和盐水钻井液的性能

—163—

表6-2-7 塔里木油田羊塔克地区使用的高密度KCl聚磺饱和盐水钻井液的

配方及性能

表6-2-8 塔里木油田克拉苏地区使用的高密度复合饱和盐聚合醇硅酸盐钻井液的

配方及性能

—165—

对于不同的高密度饱和盐水钻井液体系和配方不同,其适用的地层、应用效果和配制成本等也有所不同。因此,应根据实际地质特点和以往的钻井实践,并同时综合考虑成本和维护等方面的因素,对高密度饱和盐水钻井液体系及配方进行优化设计,使其能够达到所需的各项钻井液性能指标,以满足钻井、测井和固井对钻井液的要求,达到安全、顺利地钻穿复杂的盐岩层和盐膏层的目的。

第三节 高密度饱和盐水钻井液的配制和维护技术

一、配制高密度饱和盐水钻井液的一般方法

配制高密度饱和盐水钻井液的方法可大致分为两种。一种是在地面直接配好饱和盐水钻井液,在钻达盐层前将其替入井内,然后钻穿整个盐岩层。另一种方法是在上部地层使用淡水或一般盐水钻井液,然后在循环过程中提前进行加盐处理,使含盐量和钻井液性能逐渐达到要求,在进入盐岩层前转化为饱和盐水钻井液。然而,在现场实际操作中,有以下四种方法用于配制高密度饱和盐水钻井液。

(一)新浆转化

采用该方法配制高密度饱和盐水钻井液的一般步骤为:

—166—

1.配制预水化膨润土浆。

首先往清水中加入NaOH(约4.3kg/m3)与Na2CO3(约7kg/m3),沉除Ca2+与Mg2+后,调整pH至9~10。再加入钠膨润土110~150kg/m3。以上处理剂和配浆土的加量应依据钻井用水的总矿化度及各种离子含量和土的来源而定。

2.配制饱和盐水胶液。

当下钻至技术套管鞋以上10~20m时,用清水替出老浆。再加入2/3所需的各种处理剂,待溶解后,加入NaCl至饱和。

3.将预水化膨润土浆与饱和盐水胶液混合。

按所需密度控制钻井液中膨润土的含量,其含量应随钻井液的密度增加而降低(参考表6-3-1)。然后加入剩下的1/3各种处理剂,循环至处理剂全部溶解。待钻井液性能稳定后,加盐至饱和。如果需要,再加入0.4%左右的盐重结晶抑制剂。

4.将钻井液加重至所需的密度。

表6-3-1 膨润土的推荐加量

(二)技术套管内用井浆转化

将钻具下至技术套管中,边加清水边放掉1/3 ~ 1/2井浆,按所需配浆密度调整钻井液中膨润土的含量,使其达到所需要的范围。然后按照与新浆转化同样的步骤加入各种处理

—167—

剂与盐。

(三)裸眼转化

在进入盐层之前,配好转化饱和盐水所需处理剂的胶液。然后根据室内试验确定胶液与井浆的混合比例,边混胶液边放掉多余的钻井液。完成替换之后,加盐至饱和,并补充部分处理剂,使其达到所需的性能,必要时加重并加入盐重结晶抑制剂。

(四)裸眼替浆

在地面按第一或第二种方法配制饱和盐水钻井液,然后将井浆全部替出放掉。

二、用抗盐粘土配制高密度饱和盐水钻井液的方法

如果条件允许,最好选用海泡石、凹凸棒石等抗盐粘土配制饱和盐水钻井液。如选用膨润土,则体系中总固相和膨润土含量均不宜过高,以防止在配浆过程中出现粘度、切力过高的情况。若饱和盐水钻井液体系是由井浆转化而成,应在加盐前先将固相含量及粘度、切力降下来。

用抗盐粘土配制饱和盐水钻井液的步骤如下:

(1)在每桶(0.159m3)淡水中加入125lbm(56.75kg)工业食盐,即可得到密度为1.13g/cm3的饱和盐水;

(2)在饱和盐水中加入28~30lbm/bbl(79.9~85.6kg/m3)优质抗盐粘土,即可配成漏斗粘度为36~38s的原浆;

(3)然后加入淀粉,边加边搅拌。当加量为4~5lbm/bbl(11.4~14.3kg/m3)时,一般可使滤失量降至15ml以下;而加量为8~10lbm/bbl(22.8~28.5kg/m3)时,可使滤失量控制在5ml以内。

—168—

三、配浆实例

塔里木羊塔克地区下第三系使用的高密度KCl聚磺饱和盐水钻井液体系的现场配制方法是,首先充分利用四级固控(特别是离心机的利用),尽可能清除老浆中的低密度、细分散的劣质固相,并准确测定转化前老浆的各项性能,特别是膨润土含量的测定,综合考虑高密度钻井液中膨润土含量和胶体颗粒的级配。在老浆中原有的处理剂存在并起作用的情况下,采用配制胶液的方法,加足烧碱,并加入抗高温降滤失剂、防塌剂、盐重结晶抑制剂、盐和氯化钾,调整基浆的性能,然后加重。最后所配制成的高密度饱和盐水钻井液配方为:胶液 + (6%~8%)SMP-2 + (3%~8%)柴油+ (1%~3%)SAS + (2%~4%)DH-1 + (1%~2%)RH-4 + (7%~8%)KCl + NaCl至饱和 + 铁矿粉至密度要求。

当然,在现场实际配制高密度饱和盐水钻井液时,应根据进入盐层井段前所使用的钻井液体系和处理剂以及现场的实际条件来选择合适的配制方法。如果能够直接由原来的钻井液体系进行转化,当然是既经济又省时的。但是,如果要求将原浆全部处理掉,则一定要做到一次性处理,否则原浆中有些处理剂仍然会起作用,受原浆性能影响,将会给钻井液体系的转化和改造工作带来困难,并直接影响转化后钻井液性能的稳定性,为复合盐层的顺利钻进留下隐患。例如,羊塔克5井在转化和改造原浆时,只放掉80m3钻井液,但在钻复合盐层过程中,钻井液性能极不稳定,其高温高压滤失量很高,流变性、抑制性及泥饼质量都较差。再加上井下地质条件复杂,使得井下阻卡严重,虽经几次大处理,但都未能根本扭转。究其原因,主要是因为转化原浆时放掉的钻井液太少,处理不彻底,从而使得钻井液越处理越复杂。据统计,几次大处理共放掉钻井液400多m3,这不仅没有节约成本和劳动强度,反而使钻井液成本和劳动强度大大增加,并且加重了废弃钻井液对环境的污染。而羊塔克2井在开始改造和转化原浆时,一下就放掉原浆的2/3,在此基础上对钻井液性能进行了调整,并在钻进时配合采取适当的维护措施,使钻井液的性能一直保持在稳定和良好的状态,未经任何大的处理就顺利钻穿了巨厚(512m)的复合盐层。

四、高密度饱和盐水钻井液的现场维护技术

钻井液的维护,特别是高密度饱和盐水钻井液的维护,对维持钻井液性能的稳定以确保井下安全至关重要。如果一旦操作失误,将造成难以想象的后果。高密度饱和盐水钻井液在井下极易形成厚泥饼和假泥饼,从而造成井径缩小和钻头、扶正器泥包,再与盐、膏、

—169—

软泥岩的复杂情况交织在一起,会造成对井下阻卡原因的判断失误和操作处理不当。因此,对于高密度饱和盐水钻井液,必须运用科学方法和态度精心维护、正确处理,并严格控制其固相组成和各项性能参数,以形成优质泥饼,并具有良好的流变性能。

高密度饱和盐水钻井液的维护原则是以护胶为主,降粘为辅。这是因为在该类钻井液中,粘土颗粒不易形成端-端或端-面连接的网架结构,而特别容易发生面-面聚结,变成大颗粒而聚沉,因此需要大量的护胶剂维护其性能,否则在使用过程中常会出现粘度、切力下降和滤失量上升的现象。一旦出现以上异常情况,应及时补充护胶剂。添加预水化膨润土也能起到提粘和降滤失的作用,但加量不宜过大。

对于高密度饱和盐水钻井液体系,在维护处理时应注意以下几方面的问题:

1.高密度饱和盐水钻井液应具有优良的流变性能和合理的环空流型。

在盐膏层钻井过程中所发生的井径扩大与泥页岩坍塌等复杂情况,除与钻井液的密度、含盐量及配方有关外,还与钻井液的流变性能和环空流型紧密相关。环空紊流对盐岩层与泥页岩的冲蚀亦会引起井径扩大与井塌。例如,当中原油田使用油包水乳化钻井液钻进文东构造3000m左右的盐膏层时,钻井液的塑性粘度为30~42mPa·s,动切力为2~6Pa时,钻井液在环空中处于紊流,发生井塌,大的塌块重达70~80克。当提高油包水乳化钻井液的塑性粘度至35~55mPa·s,动切力至10~15Pa,使其在环空中处于层流时,则井下情况恢复正常。又如在美国威力斯顿盆地,曾采用饱和盐水钻井液钻进2000~3000m盐岩层。在222.25mm井眼中,泵量为1.2663m3/min时,171.45mm钻铤处Z值为2854,井壁受到严重冲蚀,平均井径高达762mm。但在另一口井,采用相同类型钻井液,泵量为1.0017m3/min,并适当提高钻井液的塑性粘度与动切力,177.8mm钻铤处的Z值为600~630,相同井段的平均井径降为304.8mm。据国外文献报道,为了能在盐膏层获得规则井眼,钻井液在环空中的Z值应低于600。为满足该条件,钻井液的流变参数必须与泵量相匹配,这样才能既保证钻井液在环空中处于层流,又使钻井液的塑性粘度、动切力不宜太高,以避免引起过大激动压力而造成井漏。泵量亦不能太小,以确保岩屑的携带。

2.当高密度饱和盐水钻井液的密度大于2.0g/cm3时,应优先使用铁矿粉(密度5.0g/cm3)加重,密度2.10g/cm3以上必须使用铁矿粉加重,不能使用重晶石加重。

3.高密度饱和盐水钻井液的膨润土含量必须严格控制,不宜过高。密度为

2.20~2.30g/cm3的钻井液,其MBT值一般应控制在20~30g/l为宜,并且膨润土必须经预水化之后再加入到钻井液中。如果膨润土粘土含量增高引起粘度、切力上升,可用离心机清

—170—

除膨润土与钻屑,或加入饱和盐水、饱和盐水胶液并同时加重的方法来降低钻井液中的膨润土含量,必要时亦可配合加入降粘剂来调整钻井液的粘度和切力。如果因为膨润土含量过低而出现动切力低、携砂能力差、滤失量大且泥饼厚等情况,则可适量补充预水化膨润土浆或抗盐土浆。

4.高密度饱和盐水钻井液应严格控制低密度固相含量小于3.0%,严禁人为在全井钻井液中混入低密度固相材料(如堵漏材料),控制钻井液中钻屑含量不大于两倍膨润土的含量。

5.一般情况下,不能在高密度饱和盐水钻井液中直接加入处理剂干粉,而应配成胶液,在充分溶解后再加入。由于高密度饱和盐水钻井液中的自由水含量很少,液相中处理剂的浓度相对较高,如果在钻井液中直接加入处理剂干粉,会导致溶解不充分,不能充分发挥作用。此时,相当于在钻井液中加入了低密度固相材料,从而会导致粘切升高,流变性失控。

6.室内实验和现场实践证明,SMP-2和SPC具有较好的控制滤失量和维持钻井液胶体稳定性的作用,其中SMP-2具有更好的抗盐和护胶能力,在高密度饱和盐水钻井液中取得了很好的应用效果,推荐加量为6~8%。

7.高密度饱和盐水钻井液一般采用FCLS(铁铬木质素磺酸盐)碱液进行流变性控制。铁铬木质素磺酸盐以降粘为主,同时也起降滤失作用。因为它可以通过吸附作用来削弱和拆散钻井液中粘土颗粒间形成的网架结构,同时对粘土也有一定的聚结稳定作用。其缺点是有时会使钻井液所形成的泥饼摩阻系数较大,并严格要求钻井液的pH范围在9~10。

8.高密度饱和盐水钻井液应强化泥饼的质量和对润滑性的改善,并提高泥饼的可压缩性。一般可选择3%粉状磺化沥青和2~3%超细碳酸钙(QS-2)来调节固体颗粒的级配。同时可混入3~8%柴油及少量表面活性剂来改善泥饼的润滑性。

9.对于高密度饱和盐水钻井液,要特别重视钻井液pH的变化,并注意对钻井液滤液甲基橙碱度Pf和酸碱度Mf的测定和分析,以便能够及时地避免阴离子CO32-和HCO3-对钻井液造成的污染。由于高密度饱和盐水钻井液中的固相含量高,以及大量的加重材料和钻遇的盐膏层都会消耗大量的烧碱,同时,降粘剂铁铬木质素磺酸盐也要消耗一定量的烧碱。所以要重视pH值的变化,一旦发现pH值有下降趋势,应及时补充烧碱,以避免由此引起的处理剂效能降低和钻井液性能变坏。

10.高密度饱和盐水钻井液的固相控制问题十分重要。由于钻井液密度高,给固控工作增加了难度。这种情况下,除泥器和除砂器的使用效率降低,离心机又不便于多用。所

—171—

以一定要注意振动筛的管理使用,尽量用细目筛布。另外,由于使用了强分散性的降粘剂铁铬木质素磺酸盐,因此不可避免地加大了钻井液中细分散颗粒的浓度,严重时还可能会造成井下阻卡。因此,必须保证固控设备处于良好的状态,井内返出的钻井液应严格经过四级固控设备,以最大限度地除去无用固相。最好配备414、518型两级离心机,即用414型离心机进行一级分离,再用518星离心机进行分离以清除低密度无用固相。

11.为了维持饱和盐水钻井液中的盐始终处于饱和状态,除使用盐重结晶抑制剂外,还需要定期地补充一定量的细盐,使其在地面条件下保持3~5kg/m3过量盐。过量盐的含量通常用以下方法进行测定。

(1)测定钻井液滤液中的Cl-浓度,换算成NaCl(mg/l);

(2)取1ml井浆,加10ml蒸馏水,测Cl-浓度,换算成NaCl(mg/l);

(3)用干馏法测定固相含量与水的体积百分数。

过量盐(mg/l)= Sm – Sf (sswf)

式中 Sm——钻井液中NaCl的含量(mg/l);

Sf——钻井液滤液中NaCl的含量(mg/l);

sswf——饱和盐水的体积分数。

12.如果遇到钻井液携屑不好的情况,除采取适量补充预水化膨润土浆的措施外,还可以加入改性石棉与抗盐土,在中深井段也可以加入生物聚合物。

对于不同体系和配方的高密度饱和盐水钻井液,其维护工艺措施也会有所不同。应根据钻井液的实际组分和性能进行维护,以确保钻井液性能的稳定。下面仅以塔里木油田羊塔克地区使用的高密度KCl聚磺饱和盐水钻井液体系为例,介绍其主要的维护措施。

当钻井液中MBT值偏低时,应向井浆中补充预水化膨润土浆。为了保证钻井液性能稳定,必须有足够的聚合物浓度。只要钻进,就要细水长流地适当补充聚合物胶液(一般选用的浓度为1%)进行维护。如果发现井浆粘度过高,一般不使用分散剂,而是用低密度HPAN、NPAN胶液(浓度为0.5%~0.7%)来调整因聚合物浓度过高而引起的粘度上升,或者补充大分子聚合物的胶液以消除因聚合物包被不好而造成的粘度回升。在215.9mm(8″)井眼段,若使用高密度KCl聚磺饱和盐水钻井液体系,首先应做到护胶剂加量要足够。其典型组成为:SMP-2或SPC加量6%~8%,胶体磺化沥青1%~3%,混入3%~8%

—172—

的柴油和少许表面活性剂,润滑剂2%~4%,清洁剂1%~2%,KCl 7%~8%,以及适量的盐重结晶抑制剂适量,并用铁铬木质素磺酸盐碱液或配合润滑剂、防塌剂、降滤失剂等胶液维护钻井液的流变参数。应将地层水尽量彻底、干净地放掉,使钻井液污染程度为最小。如有必要,可以补充2%~3%的超细碳酸钙用以调整钻井液中颗粒的级配。为了保证177.8mm(7″)套管安全、顺利下至井底,在下入该套管之前的最后一次通井作业完成之后,可打入混有2%~3%塑料小球的井浆以封闭所有裸眼井段。

总之,高密度饱和盐水钻井液的维护技术是保证其以优良性能钻穿盐膏层的关键。在使用过程中,必须把握好高密度饱和盐水钻井液的各项维护要点,并与其它工程措施,如井身结构、固井技术等相配套,以确保钻井液满足地质和钻井工程的要求。

第四节 高密度饱和盐水钻井液应用实例

我国江汉、四川、胜利、华北、中原、新疆、塔里木、青海、长庆等油田的部分构造上均钻遇盐膏层。其埋藏深度从地表至5000m不等,纯盐层总厚度从几十米至两千多米,单层厚度从几厘米至八十多米。盐岩大多为纯氯化钠,有时亦以复合盐(含氯化钾、氯化镁、氯化钙等)存在,经常与石膏、芒硝共存。表6-4-1是我国各油田钻遇盐膏层的情况。

表6-4-1 我国各油田钻遇盐膏层的情况

—173—

使用欠饱和盐水钻井液钻进时,经常会在盐膏层出现起下钻遇阻,甚至发生卡钻,严重时会导致井报废。发生卡钻前具有下列特征:

(1) 钻时较快,有时憋跳; (2) 泵压忽高忽低; (3) 钻屑增多或不返;

(4) 钻井液粘切上升,滤失量增大,泥饼增厚,氯离子浓度升高; (5) 转盘负荷变重,停转倒车严重,提不起,转不动,当即卡死; (6) 上下活动,阻卡不易消除,甚至逐渐卡死;

(7) 停泵、倒泵,井下情况立即恶化,甚至卡死; (8) 转盘卸扣有倒车; (9) 接单根放不到底;

(10) 卡死后泵压大都正常,泡油、水、酸解卡剂等均无效果,套铣倒扣亦往往因卡

套管而失败。

表6-4-2是我国部分油田在盐膏层的卡钻情况。

表6-4-2 我国部分油田在盐膏层的卡钻情况

—174—

在钻进盐膏层时,除发生遇阻卡或卡钻外,还会发生固井质量差、挤毁套管、井漏、井喷等复杂情况。一方面,提高钻井液密度是防止盐层和含盐泥岩的蠕变和塑性变形的有效措施,而另一方面,选择合适的钻井液类型和配方也是解决钻进盐膏层所遇到的各种井下复杂情况的一项十分重要的措施。对于复杂的深井段复杂盐、膏、泥盐层,一般要求采用高密度饱和盐水钻井液或油包水乳化钻井液进行钻进,以有效抑制盐的溶解和塑性蠕变。

我国大部分油田都钻遇盐膏层,用到的钻井液主要包括欠饱和盐水钻井液、饱和(过饱和)盐水钻井液以及油包水乳化钻井液等,其中高密度饱和盐水钻井液是钻进复合盐层的理想选择。应用比较成功的是第二节提到的四种体系,下面就分别介绍这四种饱和盐水钻井液在几个油田的现场应用情况。

—175—

一、聚合物饱和盐水钻井液体系

聚合物饱和盐水钻井液体系是最早用于钻进盐膏层的饱和盐水钻井液,曾在中原、华北、江汉、青海、新疆等油田的多口井中得到成功应用。聚合物饱和盐水钻井液中用于降粘、降滤失及护胶的处理剂一般都选用聚合物。为提高体系的抗高温、抗盐能力,还常选用聚磺类处理剂,如磺化酚醛树脂、磺化褐煤、磺化沥青等。因此,大部分聚合物饱和盐水钻井液也称为聚磺饱和盐水钻井液。聚合物饱和盐水钻井液特别适于钻进分布相对集中的大段纯盐层、复合盐层以及含有大段易坍塌泥岩的复杂井。

(一)聚合物饱和盐水钻井液在中原油田文东地区的应用

中原油田文东构造的盐膏层主要分布在沙一、沙三2和沙三4段,其中沙三2和沙三4是两套极为复杂的复合盐膏层,断层特别发育,埋深2600~5500m。两套盐膏层下面为高压油气层,压力系数变化较大,从1.50至1.85g/cm3,并且岩性极为复杂。泥岩的矿物组分为:在3900m以上,伊利石54%~70%,伊蒙混层15%~21%,高岭石0~12%,绿泥石5%~24%;在3900m以下,伊利石100%~85%,伊蒙混层0~10%,高岭石0~5%,并含盐25%~56%,无水石膏5%~20%。泥岩的分散性能变化较大,回收率从8.4%至89%,24h膨胀率亦从3.9%至36.7%,亚甲基蓝容量为9.9~1.1mmol/100g土。盐岩以氯化钠为主,含量高达85%~90%,并含有钾盐2%~5%和无水石膏2%~5%。20世纪70年代末期曾主要使用欠饱和盐水钻井液,结果经常发生卡钻、井喷、井漏等恶性事故而导致井的报废。80年代初、中期,使用油包水乳化钻井液顺利钻成文204等4口深井。由于当时我国柴油紧张,油浆的成本太高,从而使油包水乳化钻井液的推广使用受到了限制。直至在1985年,研制成功了饱和盐水钻井液,1986年以后开始大面积推广,并选用合理的井身结构与钻井工程措施,使得文东地区钻盐膏层的成功率从30%提高到100%,此后,再也没有发生过盐卡和报废井。沙三段平均井径扩大率从24.5%降至9%以下。中原油田文东地区所用到的高密度聚合物饱和盐水钻井液配方和性能已在第二节中介绍过(见表6-2-5、6-2-6),在此不再赘述。因此,聚合物饱和盐水钻井液技术的成功应用,为中原油田文东地区的勘探开发和原油增产做出了重大贡献,文东地区沙三复杂盐层的钻井情况统计见表6-4-3。

表6-4-3 中原油田文东地区沙三复杂盐层钻井情况统计

—176—

从表中可以看出,采用聚合物饱和盐水钻井液所取得的主要技术效果是:

—177—

(1) 井下安全,钻井成功率由30%提高到100%,测井成功率由10%提高到100%; (2) 钻井周期短,平均钻井周期为130d左右,比原来缩短约50%; (3) 井径规则,平均井径扩大率小于10%,多数小于5%。 技术上的成功,也带来了巨大的经济效益,主要体现在:

(1)聚合物饱和盐水钻井液在文东的成功应用,使得原来无法确定原油储量的文东地区成了中原油田的一个主要产油区。截止1989年底,在文东共打井200多口。即使以每口井日产70t原油的保守数字计算,实际的经济效益也是非常可观的;

(2)由于钻井周期大大缩短,从而节约了大量费用。1987年文东地区的钻井日费用为4970元/天,这样,仅1986、1987两年因缩短钻井周期而节约的费用大约为4015万元。

(二)聚合物饱和盐水钻井液在青海油田狮子沟的应用

青海狮子沟构造干柴沟组(N1)到下干柴沟组(E3)均钻遇盐、膏、芒硝层,埋深为2400~4200m,单层盐岩厚度4~9m,石膏1~4m,芒硝5~10m,它们夹在含盐塑性泥岩、软泥岩、含膏泥岩、钙质泥岩、盐泥、膏泥及粉砂岩之间,呈不等厚互层。狮20井2400~3967m钻遇上述各类地层达73层之多。由于上述地层受构造运动与盐岩本身的塑性流动而出现许多裂缝,裂缝多为纵向,缝间被方解石、结晶盐、无水石膏所充填。砂岩层为不同压力系数的高压盐水层与油气层,易发生井喷和井漏。高压盐水层矿化度从190,000mg/l至320,000mg/l不等。泥岩中的粘土矿物由69%~87%伊利石和31%~13%绿泥石所组成。泥岩中一般含盐1%~18%,含石膏2%~12%。岩盐由52%~65%氯化钠、2%~9%无水芒硝、4%~15%钙芒硝、0~1%石膏、3%~4%石英、3%~5%长石、1%~2%方解石组成。而芒硝层中含有无水芒硝44%~83%,盐8%~25%,石英2%~3%,白云石4%~6%及粘土3%~22%。钻进此段地层极易引起各种井下复杂情况。例如狮深18井钻穿3700~3900m盐膏层时,井塌严重,井径扩大率高达150%,当钻至3981.57m时,因井塌埋钻具而报废。狮20井,曾使用FCLS—CMC—KCl盐水钻井液钻进此井段,结果性能不稳定,井塌严重,井径扩大率最大达109%,接单根遇阻卡,放不到底,必须划眼才能通过,卸扣打倒车,严重时提不起来,泵压忽高忽低,起下钻阻卡严重。为了顺利钻穿此井段和防止盐的重结晶,狮25井从3300m将钻井液转化为由2%~3%磺化酚醛树脂(SMP-2)、2%~3%磺化褐煤(SMC)、1%~2%聚磺腐植酸(PTC)、0.1%~0.3%Na2Cr2O7、0.1%~0.3%烧碱和0.3%NTA盐重结晶抑制剂组成的

—178—

3

聚合物饱和盐水钻井液。其性能是:密度1.42~2.08g/cm(随井深而增加),漏斗粘度40~45s,

切力0.5~1 / 1.5~2Pa,高温高压滤失量11~20ml,膨润土含量25~30g/l,pH值9.5~10.5,抗温可达200℃。转化后,阻卡现象消失,电测顺利,泥岩段井径规则,盐层段平均井径扩大率降至22%以下。

二、氯化钾聚磺饱和盐水钻井液体系

塔里木油田羊塔克地区的复合盐层分布广、埋藏深、厚度大,大段纯盐层、软泥岩(尤其是含膏、盐的软泥岩普遍存在)、高压低渗盐水层同时存在,且多次受造山运动和断层的影响,区域构造应力大,地层裂缝发育,因此该地区的钻井难度非常大。

吉迪克组下部(4800~4950m)和下第三系(4950~5300m)是由大段的膏泥岩、盐岩、盐膏层以及难以预见的软泥岩所组成的复合盐层。此段膏泥盐层段属高膨胀、弱分散地层,石膏的存在更加剧了这种吸水膨胀,无水石膏吸水后转化为二水石膏,其体积增大26%,从而引起缩径,导致卡钻。该地区已完钻的五口井全部钻遇巨厚的复合盐层,其中最厚543m(羊塔克101#井),最薄427m(羊塔克5井),五口井的平均盐层厚度为470.8m。这套复合盐层在吉迪克组下部分别以盐岩、泥膏岩或石膏的形式出现,最早是羊塔克4井在4799~4801m以2m石膏形式出现的。以后,盐岩、石膏、膏泥岩及泥膏盐层逐渐增多,厚度也逐渐增大,至下第三系中部以大段纯盐层为主(最厚羊塔克5井为81m,最薄羊塔克1井为45m),夹有石膏和可钻性极差的泥岩;下部以泥岩为主,夹有互层的石膏、盐岩、膏泥岩等;这套复合盐层在下第三系底部以膏泥岩、石膏或泥膏岩的形式结束,最晚出现的是羊塔克101井在5336~5338m井段2m的膏泥岩。该地区复合盐层普遍存在软泥岩,其中含盐、膏的软泥岩较多。在羊塔克5井曾钻遇厚度达18m、平均钻速21.8min/m的大段纯软泥岩(在5178~5196m)。构造应力的影响使得盐层、软泥岩的蠕变和塑性流动加剧,在钻井实践中需要较高的钻井液密度才能得以平衡,在羊塔克5井,钻井液密度最高达2.38g/cm3。此外,羊塔克2井在复合盐层钻进时发现高压盐水层,钻进时无明显显示,每次起下钻中都有溢流出现。溢流速度为0.2~0.3m3m/h(钻进时使用密度为2.18~2.24g/cm3的钻井液)。其它几口井也有类似情况发生,其中羊塔克5井在钻至4864.64m时发现0.77m3/h的溢流,当时钻井液密度为1.95g/cm3,提高至2.01g/cm3后才逐渐恢复正常。

解决此段地层井下复杂情况的技术措施是,以适合的钻井液密度平衡盐岩和软泥岩的塑性蠕变;采用能抗盐污染、抗高温的钻井液体系;增加钻井液的抑制和防塌能力,达到

—179—

稳定井壁的目的;使用能有效控制和维护高密度饱和盐水钻井液流变参数的降粘剂;严格控制高温高压滤失量,提高泥饼质量。经过室内实验和研究,最后确定采用高密度KCl聚磺饱和盐水钻井液,其配方和性能已在本章第二节介绍过(见表6-8),取得了很好的应用效果。例如,羊塔克2井以密度为2.10~2.26g/cm3的聚磺饱和盐水钻井液顺利钻穿了厚度分别为446m和512m的巨厚复合盐层,在5041~5043m发现高压盐水层,以2.24g/cm3的钻井液钻进时溢流不明显,起下钻时溢流也只有0.2m3/h。采取有效的维护措施稳定了钻井液性能,保证了复合盐层电测一次成功和套管的顺利下入,为国内泥浆公司承钻复合盐层高难度井取得了成功经验,并创造了钻穿盐膏层后,静止40小时下钻通井顺利到底,起钻正常,177.8mm(7″)套管在井底静止66小时后插入成功,开泵19MPa建立正常循环,第二次固井成功等优异指标。

三、氯化钾/氯化钠饱和盐水钻井液体系

塔里木盆地第三系大量存在着各种不同类型的复合盐层。在羊塔克构造带、南喀拉玉尔滚构造、东秋立塔克构造的盐层以盐岩、含盐膏软泥岩、石膏岩、膏泥岩为主,中间夹有薄层泥岩、泥质粉砂岩,盐层成厚薄不等层分布于全井段,钻井难度极大。钻遇此段的南喀1井在复合盐层钻井过程中共发生7次恶性卡钻事故,填井侧钻5次,报废进尺2182m,损失时间319.6天,经济损失巨大。东秋5井在吉迪克—下第三系2440~4280m钻遇此盐层。该井采用的是氯化钾/氯化钠饱和盐水钻井液,其密度为1.82g/cm3,钻至井深2514.85m时进入软泥岩0.84m,发现转盘负荷变重,扭矩上升,停转盘上提即卡死。事故处理完后,将钻井液密度提至2.03g/cm3,极其艰难地钻穿2514~2545m。当钻至井深2555.84m时,起钻倒划眼至井深2527.47m再次卡死,开泵循环不通。套铣时又将钻井液密度提高至2.20g/cm3,卡钻解除。恢复钻进后,仍采用氯化钾/氯化钠饱和盐水钻井液,密度维持在2.20~2.25g/cm3,安全钻进至中完井深。该井在软泥岩段进行中途测试。根据井径数据,计算出软泥岩在密度为2.03g/cm3、Cl-浓度为210,000条件下的径向蠕变速率为2.3mm/h。四开后,在井深3619m钻遇下第三系盐膏层。在3619~4280m井段复合盐层中钻进时,钻井液密度低于1.95g/cm3时,井下阻卡10~30吨,并有较严重的掉块现象,密度提至2.13g/cm3后井下恢复正常。

氯化钾/氯化钠饱和盐水钻井液体系的组成主要包括:

1.无机盐:主要的无机盐是KCl和NaCl,KCl提供防塌用的K+,NaCl提供防止盐溶的Cl-;

—180—

2.滤失剂:主要有Polyerill、Drispac和Polysa-L,加量控制在0.5%以内; 3.防塌剂:主要是Shale-Check 和SKLTEX,加量控制在1%。

另需配合使用国产抗温、抗盐的处理剂,如SPC、SMT等,主要起降粘和降滤失量的作用,同时还需配合使用盐重结晶抑制剂NTA和一定量的LUBE、RH-3等润滑剂,以保证体系中盐的饱和和良好的润滑性能。

现场应用证明,氯化钾/氯化钠饱和盐水钻井液体系不仅具有良好的抗盐污染的能力,同时具有较强的防塌能力。采用氯化钾/氯化钠饱和盐水钻井液体系,虽然有时会发生卡钻事故,但如果能够选用适当高的钻井液密度,并控制好其粘度、切力、滤失量等性能,仍然能够顺利钻穿盐膏层。该体系适于在间断出现的、不连续的大段盐膏层钻井过程中使用。

四、复合饱和盐聚合醇硅酸盐钻井液体系

在复合饱和盐聚合醇硅酸盐钻井液体系中使用了复合盐,即氯化钠和氯化钾。其目的是,利用钾离子的抑制作用使井壁保持稳定。该体系中还加入了硅酸盐,即低浓度的硅酸钠或硅酸钾,这是因为尺寸分布较宽的硅酸根离子可以通过吸附、扩散等途径结合到粘土晶层端部,堵塞粘土层片之间的缝隙,从而起到稳定作用。如果在高温、长时间接触的条件下,硅酸盐还能与粘土进行化学作用,产生无定形的胶结力很强的物质,使其与粘土矿物颗粒凝结成一体。此外,负电性硅酸根离子结合到已经过预水化的粘土颗粒端部,则会使其电动电位升高,粘度、切力和滤失量下降,有利于形成薄而韧的泥饼,同样有利于井壁的稳定。室内岩心浸泡实验表明,在浸泡液中加入3%的稀硅酸钠,可在岩心表面形成一层硬壳。随时间增长,岩心硬度增加,且硅酸钠与7%KCl配合使用时,岩心回收率可高达99.7%。体系中含有的聚合醇又称多元醇,不仅具有良好的抑制泥页岩水化、膨胀和分散的能力,同时还具有很好的润滑性和生物降解性,并具有一定的调流型的作用,与无机盐中的K+同样具有很强的协同作用。因此,这种复合饱和聚合醇硅酸盐钻井液体系又可称为稀硅酸盐聚合醇KCl饱和盐水钻井液。在该体系中,还常添加抗盐和抗高温的磺化类处理剂SMP-2、SPC等。

塔里木油田克拉苏地区的地层复杂性对钻井液提出了非常严格的要求,克拉203井和克拉204井的地质分层和岩性描述分别如表6-4-4和表6-4-5所示。其地层特点和对钻井液的要求可概括如下:

—181—

(1)该地区下第三系存在大段的膏盐层,并夹杂盐岩层和膏泥岩。克拉203和克拉204井的膏盐层厚度分别为533.5m和676.5m。膏盐层易发生蠕变缩径,易垮塌,夹杂的盐岩易溶解,泥岩软并易垮塌。这些复杂情况给井壁稳定带来了很大困难;

(2)同一裸眼井段存在不同的压力系数。地层压力差别很大,使用的钻井液密度的安全范围非常小;

(3)白云岩气层钻开后,又要面临下部白垩系砂岩的防漏、堵漏问题。白云岩本身易碎、易塌、易漏失,所以要求钻井液体系具有极强的封堵性能,从技术上需解决好井漏和气侵的矛盾;

(4)白垩系砂岩层为压力敏感地层,地层压力系数低,并存在井漏和井壁失稳问题,同时要求加入堵漏剂的钻井液必须具有良好的流变性,特别是对于高密度钻井液,这是一个比较大的挑战;

(5)必须保证钻井液体系能够有效地保护油气层;

(6)各种钻井液处理剂必须具有良好的抗盐、抗高温、抗污染的能力; (7)必须确保电测、固井等作业的顺利进行;

(8)由于必须使用高密度钻井液,因此给固控工作带来困难。

表6-4-4 克拉203井地质分层及其岩性描述

—182—

表6-4-5 克拉204井地质分层及其岩性描述

为了顺利钻穿克拉苏地区克拉203、204井的盐膏层,提高钻井速度,缩短钻井周期,大胆采用了具有创新意义的高密度复合饱和盐聚合醇硅酸盐钻井液体系。表6-4-6、6-4-7分别是克拉203、204井现场使用的高密度复合饱和盐聚合醇硅酸盐钻井液的性能参数。

表6-4-6 克拉203井使用的高密度多元醇欠饱和盐水稀硅酸盐钻井液的性能 —183—

表6-4-7 克拉204井使用的高密度多元醇欠饱和盐水稀硅酸盐钻井液的性能

该钻井液体系的效果主要表现在以下几个方面:

1.强抑制性和强封堵能力

(1)表现为所钻井段无任何垮塌迹象,井壁稳定,测井井径曲线紧贴钻头尺寸,无扩径、缩径现象,井眼安全畅通,起下钻无阻卡,为顺利钻穿克拉203井、克拉204井533.5m和676.5m的膏盐层起到了关键作用。

(2)强封堵性和优质泥饼的形成,提高了井壁的承压能力,扩大了钻井液密度的调整范围,顺利钻穿了白垩系压力敏感地层。

2.良好的抗高温、抗盐污染能力及稳定性

(1)面对体系从不饱和→饱和→超饱和含盐量的变化,钻井液性能稳定,未出现大的性能波动。克拉203井、克拉204井的钻井液中Ca含量分别达到1200mg/l、880mg/l,然而钻井液性能无波动,充分显示了该体系极强的抗污染能力。

—184—

2+

(2)钻井液体系能耐深井高温,电测资料表明,在3150m处地层温度已为70℃,而各种钻井液处理剂性能发挥稳定,各处理剂之间相容性好。

(3)现场应用数据显示,克拉203井井筒内钻井液静止达50小时,克拉204井井筒内钻井液静止达68小时,返出后钻井液性能测试数据均表明其稳定性良好。

3.优良的润滑性

(1)高密度钻井液润滑性的好坏直接关系着机械钻速的高低,通过加入润滑剂(MHR—86),以及所选处理剂多元醇、乳化沥青等均对钻井液有较强的润滑作用,现场钻井液的摩阻系数一般可控制在:0.0787~0.0963。

(2)电测、固井等作业一次性顺利成功。

4.钻井液能满足处理井下复杂的需要

克拉203井共发生漏失8次,利用井浆能迅速配制好所需堵漏钻井液,且流动性、可泵性好,堵漏成功率高,在随钻堵漏时,钻井液性能稳定,且流变性好。克拉204井钻井液从215.9mm井眼至完钻钻井液均保持良好的态势。

5.该体系能起到保护油气层的作用。采用保护油气层加重剂和高密度铁矿粉配合加重,并使用超细碳酸钙,以及使用酸溶性堵漏剂等均对保护油气层起到了良好的作用。

6.对两口井的提前完钻均起到了不可替代的作用

克拉203井、克拉204井实际钻井周期分别为162天、144天,比设计周期分别节约8天和26天。合理的钻井液体系的使用和正确的钻井液维护技术为这两口井的提前完钻起到了关键作用。由于高密度复合饱和盐聚合醇硅酸盐钻井液体系中同时加入了多种抑制性处理剂多元醇、氯化钾、硅酸钾、乳化沥青,特别是多元醇与氯化钾的协同作用,明显地提高了钻井液体系的抑制性。并且,加入了具有抗高温、抗盐污染能力的聚磺处理剂,保证了低的高温高压滤失量,并能够形成优质泥饼。最重要的是,钻井液中适当的含盐量,使得钻井液的盐溶速率与盐岩的蠕变速率相当。现场实践表明,复合饱和盐聚合醇硅酸盐钻井液体系具有极强的抑制性和封堵能力、良好的抗盐抗高温能力、优良的润滑性和流变性,能够满足盐膏层钻井的需要,具有广阔的应用前景。

小结

—185—

盐水钻井液一般可分为欠饱和盐水钻井液、饱和盐水钻井液和海水钻井液。由于饱和盐水钻井液矿化度极高,因此具有很强的抑制性,并具有很好的抗盐侵、钙侵和抗高温的能力,以及对地层损害小等特点,特别适于钻穿埋藏较深、厚盐层及岩性复杂的复合盐层。高密度饱和盐水钻井液的设计原则是能够有效地抑制盐溶和水敏性地层水化膨胀、在深井高温条件下仍能保持良好的流变性能、具有良好的防塌性和润滑性、高温高压下仍具有较低的滤失量,并能形成薄而韧的泥饼。高密度饱和盐水钻井液一般由膨润土或抗盐土、盐类(一般为氯化钠)、护胶剂与降滤失剂、降粘剂、流型调整剂、磺化沥青类封堵剂、烧碱与纯碱、润滑剂和重结晶抑制剂等组分组成。高密度饱和盐水钻井液有新浆转化、在技术套管内用井浆转化、裸眼转化和裸眼替浆四种配制方法。在现场维护过程中,应注意严格控制膨润土量、处理剂应配成胶液加入、重视钻井液pH值变化和固相控制等要点。本章还介绍了四种类型的高密度饱和盐水钻井液在中原、青海、塔里木等油田的实际应用情况。

复习思考题

1.盐水钻井液通常分为哪几类?其主要作用是什么?

2.饱和盐水钻井液具有什么特点?主要在什么情况下应用?

3.简述高密度饱和盐水钻井液的设计原则。该类钻井液的主要组成和典型配方是什么?

4.在高密度饱和盐水钻井液的维护中应注意哪些问题?

5.简述高密度饱和盐水钻井液在油田的应用情况。

—186—


相关内容

  • 钻井液技术规范
  • 钻 井 液 技 术 规 范 中国石油天然气集团公司 2010年3月9日 目 录 第一章 总 则┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄1 第二章 钻井液设计┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄1 第一节 设计的主要依据和内容┄┄┄┄┄┄┄┄┄┄┄┄1 第二节 钻井液体系选择┄┄┄┄┄┄┄┄┄┄┄┄┄ ...

  • 国内外抗高温钻井液降滤失剂研究与应用进展
  • 第14卷第4期2009年4月 中外能源 SINO-GLOBAL ENERGY ·37· 油气勘探与开发 ▲ 国内外抗高温钻井液降滤失剂研究与应用进展 王显光 1,2 (1.中国石化石油勘探开发研究院,北京100083:2. 中国石油大学,北京102249) ▲ ,杨小华1,王琳1,苏长明1,李家芬 ...

  • 酸性气体在钻井液两相流动中的溶解度特性
  • [摘要]在进行深水钻井时,由于泥线上下井筒的温度差较为明显,在温度和压力的影响下,气体会在钻井液中溶解,也会从钻井液中逸出,在环空中气体所处状态会极大的影响到环空压力.因此,本文通过天然气在水油中溶解度的计算模型基础上,建立了计算气体在水.油基钻井液中溶解度的理论模型,对气体处于深水环境时在水.油基 ...

  • 钻井泥浆工初级
  • 一.选择题(每题4个选项,其中只有1个是正确的,将正确的选项填入括号内) 1.酸分子是由氢原子和(C)组成的化合物. (A)碱金属 (B)碱性氧化物 (C)酸根 (D)氢氧根 2.酸在水溶液中能电离出(A)和酸根离子. (A)H+ (B)OH- (C)Na+ (D)Mg2+ 3.HNO3是一种(B) ...

  • 常用钻井液材料及其功用
  • 一.稀释剂 泥浆稀释剂,或分散剂,通过破碎粘土层边和面之间的附着而降低粘度(见图1).稀释剂吸附粘土层,因此破坏了层间的引力.加入稀释剂可以降低粘度.切力和屈服值. 大多数的稀释剂都可以划分为有机材料或无机磷酸盐络合物.有机稀释剂包括木质素磺酸盐.木质素和丹宁.与无机稀释剂相比,有机稀释剂可用于高温 ...

  • 脂肪酸甲酯乙氧基化物磺酸盐生物降解性测试
  • 第22卷 第11期 应 用 化 学 与 分 析 Vol.22 No.11 脂肪酸甲酯乙氧基化物磺酸盐生物降解性测试 刘满辉 上海喜赫精细化工有限公司,上海金山化学工业区,201508 摘 要:将超声波和固定化细胞技术相结合,以阴离子表面活性剂废水中脂肪酸甲酯乙氧基化物磺酸盐(FMES)为研究对象,研 ...

  • 矿场地球物理总结(西石大版)
  • 矿 场 地 球 物 理 主编:丁次乾 (总结) 西石大版 总结人:Petroler •L 2013年9月2日-11月11 日 自然电位测井SP 1.什么叫自然电场.自然电位测井?P4 答:钻开岩层时井壁附近产生的电化学活动造成的电场,这个电场的分布决定于井孔剖面的岩性,把这个电场叫自然电场:沿井身测 ...

  • 井场硫化氢气体检测方法及防护措施
  • 研究与探讨 井场硫化氢气体检测方法及防护措施 周金堂 * 杨伟彪 赵安军! 周宝义∀ ( 河南油田地质录井公司; ! 华北油田勘探部; ∀大港油田勘探事业部) 摘 要 周金堂, 杨伟彪. 井场硫化氢气体检测方法及防护措施. 录井技术, 2004, 15(2) :1~5 针对重庆川东北天然气矿钻井作业 ...

  • 专业英语词汇
  • Petroleum 石油 Pore space 孔隙 Ethanol 乙醇 酒精 Electric battery 电池 Crude 原油 Seep 渗出 漏出 Deposit 沉积 存储 Oozed 渗出 Bitumen 沥青 Pitch 人造沥青 Asphalt 沥青 柏油 Mortar 灰浆 ...