综合题组:一副三角板的旋转

2015年06月01日liangwujun000529的初中数学组卷

一.解答题(共6小题)

1.(2004•青岛)把两个全等的等腰直角三角形ABC和EFG(其直角边长均为4)叠放在一起(如图①),且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点逆时针旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图②).

(1)在上述旋转过程中,BH与CK有怎样的数量关系四边形CHGK的面积有何变化?证明你发现的结论;

(2)连接HK,在上述旋转过程中,设BH=x,△GKH的面积为y,求y与x之间的函数关系式,并写出自变量x的取值范围;

(3)在(2)的前提下,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的若存在,求出此时x的值;若不存在,说明理由.

2.(2012秋•渝北区校级月考)把两个直角边长均为6的等腰直角三角板ABC和EFG叠放在一起(如图①),使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点顺时针旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图②).

(1)探究:在上述旋转过程中,BH与CK的数量关系以及四边形CHGK的面积的变化情况(直接写出探究的结果,不必写探究及推理过程);

(2)利用(1)中你得到的结论,解决下面问题:连接HK,在上述旋转过程中,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的

不存在,说明理由.

?若存在,求出此时BH的长度;若

3.(2013秋•邵武市校级期中)有两个全等的等腰直角三角板ABC和EFG(其直角边长均为6)如图1所示叠放在一起,使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点顺时针旋转,旋转角α满足0<α°<90°,四边形CHGK是旋转过程中两块三角板的重叠部分(如图2).

(1)在上述旋转过程中,①BH与CK有怎样的数量关系?②四边形CHGK的面积是否发生变化?并证明你发现的结论.

(2)如图3,连接KH,在上述旋转过程中,是否存在某一位置使△GKH的面积恰好等于△ABC面积的?若存在,请求出此时KC的长度;若不存在,请说明理由.

4.(2011秋•富源县校级期末)把两个全等的等腰直角三角板△ABC和△EFG(其直角边长均为4)叠放在一起(如图1),且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点顺时针方向旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图2).在上述旋转过程中,BH与CK有怎样的数量关系?四边形CHGK的面积有何变化?证明你发现的结论.

5.(2013•无锡模拟)如图1,把两个全等的三角板ABC、EFG叠放在一起,使三角板EFG的直角边FG经过三角板ABC的直角顶点C,垂直AB于G,其中∠B=∠F=30°,斜边AB和EF均为4.现将三角板EFG由图1所示的位置绕G点沿逆时针方向旋转α(0<α<90°),如图2,EG交AC于点K,GF交BC于点H.在旋转过程中,请你解决以下问题:

(1)GH:GK的值是否变化?证明你的结论;

(2)连接HK,求证:KH∥EF;

(3)设AK=x,请问是否存在x,使△CKH的面积最大?若存在,求x的值;若不存在,请说明理由.

6.(2007•哈尔滨模拟)把两个全等的直角三角板ABC和EFG叠放在一起,使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合,其中∠B=∠F=30°,斜边AB和EF长均为4.

(1)当EG⊥AC于点K,GF⊥BC于点H时(如图①),求GH:GK的值;

(2)现将三角板EFG由图①所示的位置绕O点沿逆时针方向旋转,旋转角α满足条件:0°<α<30°(如图②),EG交AC于点K,GF交BC于点H,GH:GK的值是否改变?证明你发现的结论;

(3)在②下,连接HK,在上述旋转过程中,设GH=x,△GKH的面积为y,求y与x之间的函数关系式,并写出自变量x的取值范围;

(4)三角板EFG由图①所示的位置绕O点逆时针旋转时,0°<α≤90°,是否存在某位置使△BFG是等腰三角形?若存在,请直接写出相应的旋转角α;若不存在,说明理由.

2015年06月01日liangwujun000529的初中数学组卷

参考答案与试题解析

一.解答题(共6小题)

1.(2004•青岛)把两个全等的等腰直角三角形ABC和EFG(其直角边长均为4)叠放在一起(如图①),且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点逆时针旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图②).

(1)在上述旋转过程中,BH与CK有怎样的数量关系四边形CHGK的面积有何变化?证明你发现的结论;

(2)连接HK,在上述旋转过程中,设BH=x,△GKH的面积为y,求y与x之间的函数关系式,并写出自变量x的取值范围;

(3)在(2)的前提下,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的若存在,求出此时x的值;若不存在,说明理由.

2.(2012秋•渝北区校级月考)把两个直角边长均为6的等腰直角三角板ABC和EFG叠放在一起(如图①),使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将

三角板EFG绕O点顺时针旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图②).

(1)探究:在上述旋转过程中,BH与CK的数量关系以及四边形CHGK的面积的变化情况(直接写出探究的结果,不必写探究及推理过程);

(2)利用(1)中你得到的结论,解决下面问题:连接HK,在上述旋转过程中,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的?若存在,求出此时BH的长度;若不存在,说明理由.

3.(2013秋•邵武市校级期中)有两个全等的等腰直角三角板ABC和EFG(其直角边长均为6)如图1所示叠放在一起,使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点顺时针旋转,旋转角α满足0<α°<90°,四边形CHGK是旋转过程中两块三角板的重叠部分(如图2).

(1)在上述旋转过程中,①BH与CK有怎样的数量关系?②四边形CHGK的面积是否发生变化?并证明你发现的结论.

(2)如图3,连接KH,在上述旋转过程中,是否存在某一位置使△GKH的面积恰好等于△ABC面积的?若存在,请求出此时KC的长度;若不存在,请说明理由.

4.(2011秋•富源县校级期末)把两个全等的等腰直角三角板△ABC和△EFG(其直角边长均为4)叠放在一起(如图1),且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点顺时针方向旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图2).在上述旋转过程中,BH与CK有怎样的数量关系?四边形CHGK的面积有何变化?证明你发现的结

论.

5.(2013•无锡模拟)如图1,把两个全等的三角板ABC、EFG叠放在一起,使三角板EFG的直角边FG经过三角板ABC的直角顶点C,垂直AB于G,其中∠B=∠F=30°,斜边AB和EF均为4.现将三角板EFG

由图1所示的位置绕G点沿逆时针方向旋转α(0<α<90°),如图2,EG交AC于点K,GF交BC于点H.在旋转过程中,请你解决以下问题:

(1)GH:GK的值是否变化?证明你的结论;

(2)连接HK,求证:KH∥EF;

(3)设AK=x,请问是否存在x,使△CKH的面积最大?若存在,求x的值;若不存在,请说明理由.

6.(2007•哈尔滨模拟)把两个全等的直角三角板ABC和EFG叠放在一起,使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合,其中∠B=∠F=30°,斜边AB和EF长均为4.

(1)当EG⊥AC于点K,GF⊥BC于点H时(如图①),求GH:GK的值;

(2)现将三角板EFG由图①所示的位置绕O点沿逆时针方向旋转,旋转角α满足条件:0°<α<30°(如图②),EG交AC于点K,GF交BC于点H,

GH:GK的值是否改变?证明你发现的结论;

(3)在②下,连接HK,在上述旋转过程中,设GH=x,△GKH的面积为y,求y与x之间的函数关系式,并写出自变量x的取值范围;

(4)三角板EFG由图①所示的位置绕O点逆时针旋转时,0°<α≤90°,是否存在某位置使△BFG是等腰三角形?若存在,请直接写出相应的旋转角α;若不存在,说明理由.

2015年06月01日liangwujun000529的初中数学组卷

一.解答题(共6小题)

1.(2004•青岛)把两个全等的等腰直角三角形ABC和EFG(其直角边长均为4)叠放在一起(如图①),且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点逆时针旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图②).

(1)在上述旋转过程中,BH与CK有怎样的数量关系四边形CHGK的面积有何变化?证明你发现的结论;

(2)连接HK,在上述旋转过程中,设BH=x,△GKH的面积为y,求y与x之间的函数关系式,并写出自变量x的取值范围;

(3)在(2)的前提下,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的若存在,求出此时x的值;若不存在,说明理由.

2.(2012秋•渝北区校级月考)把两个直角边长均为6的等腰直角三角板ABC和EFG叠放在一起(如图①),使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点顺时针旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图②).

(1)探究:在上述旋转过程中,BH与CK的数量关系以及四边形CHGK的面积的变化情况(直接写出探究的结果,不必写探究及推理过程);

(2)利用(1)中你得到的结论,解决下面问题:连接HK,在上述旋转过程中,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的

不存在,说明理由.

?若存在,求出此时BH的长度;若

3.(2013秋•邵武市校级期中)有两个全等的等腰直角三角板ABC和EFG(其直角边长均为6)如图1所示叠放在一起,使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点顺时针旋转,旋转角α满足0<α°<90°,四边形CHGK是旋转过程中两块三角板的重叠部分(如图2).

(1)在上述旋转过程中,①BH与CK有怎样的数量关系?②四边形CHGK的面积是否发生变化?并证明你发现的结论.

(2)如图3,连接KH,在上述旋转过程中,是否存在某一位置使△GKH的面积恰好等于△ABC面积的?若存在,请求出此时KC的长度;若不存在,请说明理由.

4.(2011秋•富源县校级期末)把两个全等的等腰直角三角板△ABC和△EFG(其直角边长均为4)叠放在一起(如图1),且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点顺时针方向旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图2).在上述旋转过程中,BH与CK有怎样的数量关系?四边形CHGK的面积有何变化?证明你发现的结论.

5.(2013•无锡模拟)如图1,把两个全等的三角板ABC、EFG叠放在一起,使三角板EFG的直角边FG经过三角板ABC的直角顶点C,垂直AB于G,其中∠B=∠F=30°,斜边AB和EF均为4.现将三角板EFG由图1所示的位置绕G点沿逆时针方向旋转α(0<α<90°),如图2,EG交AC于点K,GF交BC于点H.在旋转过程中,请你解决以下问题:

(1)GH:GK的值是否变化?证明你的结论;

(2)连接HK,求证:KH∥EF;

(3)设AK=x,请问是否存在x,使△CKH的面积最大?若存在,求x的值;若不存在,请说明理由.

6.(2007•哈尔滨模拟)把两个全等的直角三角板ABC和EFG叠放在一起,使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合,其中∠B=∠F=30°,斜边AB和EF长均为4.

(1)当EG⊥AC于点K,GF⊥BC于点H时(如图①),求GH:GK的值;

(2)现将三角板EFG由图①所示的位置绕O点沿逆时针方向旋转,旋转角α满足条件:0°<α<30°(如图②),EG交AC于点K,GF交BC于点H,GH:GK的值是否改变?证明你发现的结论;

(3)在②下,连接HK,在上述旋转过程中,设GH=x,△GKH的面积为y,求y与x之间的函数关系式,并写出自变量x的取值范围;

(4)三角板EFG由图①所示的位置绕O点逆时针旋转时,0°<α≤90°,是否存在某位置使△BFG是等腰三角形?若存在,请直接写出相应的旋转角α;若不存在,说明理由.

2015年06月01日liangwujun000529的初中数学组卷

参考答案与试题解析

一.解答题(共6小题)

1.(2004•青岛)把两个全等的等腰直角三角形ABC和EFG(其直角边长均为4)叠放在一起(如图①),且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点逆时针旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图②).

(1)在上述旋转过程中,BH与CK有怎样的数量关系四边形CHGK的面积有何变化?证明你发现的结论;

(2)连接HK,在上述旋转过程中,设BH=x,△GKH的面积为y,求y与x之间的函数关系式,并写出自变量x的取值范围;

(3)在(2)的前提下,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的若存在,求出此时x的值;若不存在,说明理由.

2.(2012秋•渝北区校级月考)把两个直角边长均为6的等腰直角三角板ABC和EFG叠放在一起(如图①),使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将

三角板EFG绕O点顺时针旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图②).

(1)探究:在上述旋转过程中,BH与CK的数量关系以及四边形CHGK的面积的变化情况(直接写出探究的结果,不必写探究及推理过程);

(2)利用(1)中你得到的结论,解决下面问题:连接HK,在上述旋转过程中,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的?若存在,求出此时BH的长度;若不存在,说明理由.

3.(2013秋•邵武市校级期中)有两个全等的等腰直角三角板ABC和EFG(其直角边长均为6)如图1所示叠放在一起,使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点顺时针旋转,旋转角α满足0<α°<90°,四边形CHGK是旋转过程中两块三角板的重叠部分(如图2).

(1)在上述旋转过程中,①BH与CK有怎样的数量关系?②四边形CHGK的面积是否发生变化?并证明你发现的结论.

(2)如图3,连接KH,在上述旋转过程中,是否存在某一位置使△GKH的面积恰好等于△ABC面积的?若存在,请求出此时KC的长度;若不存在,请说明理由.

4.(2011秋•富源县校级期末)把两个全等的等腰直角三角板△ABC和△EFG(其直角边长均为4)叠放在一起(如图1),且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点顺时针方向旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图2).在上述旋转过程中,BH与CK有怎样的数量关系?四边形CHGK的面积有何变化?证明你发现的结

论.

5.(2013•无锡模拟)如图1,把两个全等的三角板ABC、EFG叠放在一起,使三角板EFG的直角边FG经过三角板ABC的直角顶点C,垂直AB于G,其中∠B=∠F=30°,斜边AB和EF均为4.现将三角板EFG

由图1所示的位置绕G点沿逆时针方向旋转α(0<α<90°),如图2,EG交AC于点K,GF交BC于点H.在旋转过程中,请你解决以下问题:

(1)GH:GK的值是否变化?证明你的结论;

(2)连接HK,求证:KH∥EF;

(3)设AK=x,请问是否存在x,使△CKH的面积最大?若存在,求x的值;若不存在,请说明理由.

6.(2007•哈尔滨模拟)把两个全等的直角三角板ABC和EFG叠放在一起,使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合,其中∠B=∠F=30°,斜边AB和EF长均为4.

(1)当EG⊥AC于点K,GF⊥BC于点H时(如图①),求GH:GK的值;

(2)现将三角板EFG由图①所示的位置绕O点沿逆时针方向旋转,旋转角α满足条件:0°<α<30°(如图②),EG交AC于点K,GF交BC于点H,

GH:GK的值是否改变?证明你发现的结论;

(3)在②下,连接HK,在上述旋转过程中,设GH=x,△GKH的面积为y,求y与x之间的函数关系式,并写出自变量x的取值范围;

(4)三角板EFG由图①所示的位置绕O点逆时针旋转时,0°<α≤90°,是否存在某位置使△BFG是等腰三角形?若存在,请直接写出相应的旋转角α;若不存在,说明理由.


相关内容

  • 全等三角形的综合运用
  • 全等三角形的综合运用 [方法归纳] 问题一:如何证明角相等? 方法归纳: 证明角相等有两种方法: ①直接用定理证,可用定理有: ②通过关系的转化来证明: 角与角的关系有:______________.________________._______________._____________等等. ...

  • 函数与相似28条综合题
  • 1.已知反比例函数y == m -2x m -2x (x 的图象交于点B ,与x 轴交于点C ,且AB =2BC . (1)求m 的值及点B 的坐标: (2)求△AOB 的面积. 2.如图,在△ABC 中,AB =AC =10,BC =12,AM ∥BC ,点P 在线段BC 上以每秒2个单位的速度由 ...

  • 轴对称--讲义
  • 学生辅导讲义 时间:_________ 学生:_________ 教师:__________ 知识点回顾 一.轴对称变换 1.轴对称图形:把一个图形沿着某一条直线对折,若直线两侧的部分能够互相重合,则这样的图形称之为轴对称图形,这条直线叫做这个图形的对称轴 2.轴对称变换:由一个图形变为另一个图形, ...

  • 全国初中数学教材目录大全
  • 人教版初中数学目录: 七年级上册 第一章 有理数 1.1 正数和负数 1.2 有理数 1.3 有理数的加减法 1.4 有理数的乘除法 1.5 有理数的乘方 第二章 整式的加减 2.1 整式 2.2 整式的加减 第三章 一元一次方程 3.1 从算式到方程 3.2 解一元一次方程(一) 3.3 解一元一 ...

  • 初中数学数与代数知识点总结
  • 初中数学数与代数知识点总结: 数与代数知识点是初中学习数学时期的主要知识点之一,主要包括有理数.实数.代数式.整式.分式.一元一次方程.二元一次方程(组).一元二次方程.一元一次不等式(组).一次函数.反比例函数.二次函数.等,以下是各具体知识点总结的理解和分析. 初中数学有理数知识点总结: 有理数 ...

  • 2010年福建省厦门一中中美班招生数学试卷
  • 2010年福建省厦门一中中美班招生数学试卷 一.选择题:(本大题有7题,每小题3分,共21分) 1.(3分)(2011•阿荣旗校级模拟)下列计算正确的是( ) A .a +2a =3a B .a •a =a C .a ÷a =a(a ≠0) D .(a )•a=a 2.(3分)(2010•思明区校级 ...

  • 初三数学知识点总结
  • 初三知识整理 人教版 体系框架(7-9年级) 第21章 二次根式 学生已经学过整式与分式,知道用式子可以表示实际问题中的数量关系.解决与数量关系有关的问题还会遇到二次根式."二次根式" 一章就来认识这种式子,探索它的性质,掌握它的运算. 在这一章,首先让学生了解二次根式的概念,并 ...

  • 2015年江苏省扬州市中考数学试卷
  • 2015年江苏省扬州市中考数学试卷 一.选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一个选项是符合题目要求的.) 1.(3分)(2015•扬州)实数0是( ) A .有理数 B .无理数 C .正数 D.负数 2.(3分)(2015•扬州)2015年我国大学生毕业人数 ...

  • 十二讲 图形的认识
  • 第12讲 图形的认识 张广银 (一)线段.角.相交线与平行线 一.考纲解读; 1. 能直观认识平面图形,掌握点和线的有关知识. 2. 了解补角.余角.对顶角.垂线.垂线段等概念. 3. 会识别同位角.内错角和同旁内角,能依据平行线的性质与判定解决一类与平行线有关 的几何问题. 二.备考策略 这部分内 ...