【课题】 1.3 正弦定理与余弦定理(一)
【教学目标】
知识目标:
理解正弦定理与余弦定理. 能力目标:
通过应用举例与数学知识的应用,培养学生分析问题和解决问题的能力.
【教学重点】
正弦定理与余弦定理及其应用.
【教学难点】
正弦定理与余弦定理及其应用.
【教学设计】
本课利用几何知识引入新知识降低了难度.教学中,不利用向量工具进行严格的证明,否则会增加难度,而是重在应用.安排了5道例题,介绍利用正弦定理解三角形的方法.例1是基础题,目的是让学生熟悉公式.例2和例3是突破难点的题目,需要分情况进行讨论,介绍了讨论的方法和讨论的两种结果.例4是已知两边及夹角,求第三边的示例,可以直接应用余弦定理;例5是已知三边的长求最大角和最小角的示例.由于余弦函数在区间(0,π)内是单调函数,所以知道余弦值求角时,没有必要进行讨论.这里求最大角与最小角,是起到强化对“大边对大角,小边对小角”的认识.利用余弦定理求一个角,求第二个角的时候,可以利用余弦定理,也可以利用正弦定理.
【教学备品】
教学课件.
【课时安排】
2课时.(90分钟)
【教学过程】
【教师教学后记】
【课题】 1.3 正弦定理与余弦定理(一)
【教学目标】
知识目标:
理解正弦定理与余弦定理. 能力目标:
通过应用举例与数学知识的应用,培养学生分析问题和解决问题的能力.
【教学重点】
正弦定理与余弦定理及其应用.
【教学难点】
正弦定理与余弦定理及其应用.
【教学设计】
本课利用几何知识引入新知识降低了难度.教学中,不利用向量工具进行严格的证明,否则会增加难度,而是重在应用.安排了5道例题,介绍利用正弦定理解三角形的方法.例1是基础题,目的是让学生熟悉公式.例2和例3是突破难点的题目,需要分情况进行讨论,介绍了讨论的方法和讨论的两种结果.例4是已知两边及夹角,求第三边的示例,可以直接应用余弦定理;例5是已知三边的长求最大角和最小角的示例.由于余弦函数在区间(0,π)内是单调函数,所以知道余弦值求角时,没有必要进行讨论.这里求最大角与最小角,是起到强化对“大边对大角,小边对小角”的认识.利用余弦定理求一个角,求第二个角的时候,可以利用余弦定理,也可以利用正弦定理.
【教学备品】
教学课件.
【课时安排】
2课时.(90分钟)
【教学过程】
【教师教学后记】