二次相遇问题的解题思路

二次相遇问题的解题思路

一、直线二次相遇

甲村、乙村相距6千米,小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回).在出发后40分钟两人第一次相遇.小王到达甲村后返回,在离甲村2千米的地方两人第二次相遇.问小张和小王的速度各是多少?

解:画示意图如下:

如图,第一次相遇两人共同走了甲、乙两村间距离,第二次相遇两人已共同走了甲、乙两村间距离的3倍,因此所需时间是

40×3÷60=2(小时).

从图上可以看出从出发至第二次相遇,小张已走了

6×2-2=10(千米).

小王已走了 6+2=8(千米).

因此,他们的速度分别是

小张 10÷2=5(千米/小时),

小王 8÷2=4(千米/小时).

答:小张和小王的速度分别是5千米/小时和4千米/小时.

知识要点提示:甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。一般知道AC和AD的距离,主要抓住第二次相遇时走的路程是第一次相遇时走的路程的两倍。

例题:

1.甲乙两车同时从A、B两地相向而行,在距B地54千米处相遇,它们各自到达对方车站后立即返回,在距A地42千米处相遇。请问A、B两地相距多少千米?

A.120

B.100

C.90

D.80

【答案】A。解析:设两地相距x千米,由题可知,第一次相遇两车共走了x,第二次相遇两车共走了2x,由于速度不变,所以,第一次相遇到第二次相遇走的路程分别为第一次相遇的二倍,即54×2=x-54+42,得出x=120。54乘3再减去42=120,再用120减去54加42的和=24

因为第一次相遇距离B地54千米,说明行完一个全程乙走了54千米,到甲乙第二次相遇时总共走了三个全程,也就是说,这时乙走了54乘3千米,也就是162千米,这个162千米也是乙走完一个全程后还包括多走的42千米,所以用162减去42就是一个AB之间的全程。再用120减去两次相遇距离A地和B地的距离,就是两相遇点之间的距离。

2.两汽车同时从A、B两地相向而行,在离A城52千米处相遇,到达对方城市后立即以原速沿原路返回,在离A城44千米处相遇。两城市相距( )千米

A.200

B.150

C.120

D.100

【答案】D。解析:第一次相遇时两车共走一个全程,第二次相遇时两车共走了两个全程,从A城出发的汽车在第二次相遇时走了52×2=104千米,从B城出发的汽车走了52+44=94千米,故两城间距离为(104+96)÷2=100千米。

绕圈问题:

3.在一个圆形跑道上,甲从A点、乙从B点同时出发反向而行,8分钟后两人相遇,再过6分钟甲到B点,又过10分钟两人再次相遇,则甲环行一周需要( )?

A.24分钟

B.26分钟

C.28分钟

D.30分钟

【答案】C。解析:甲、乙两人从第一次相遇到第二次相遇,用了6+10=16分钟。也就是说,两人16分钟走一圈。从出发到两人第一次相遇用了8分钟,所以两人共走半圈,即从A到B是半圈,甲从A到B用了8+6=14分钟,故甲环行一周需要14×2=28分钟。也是一个倍数关系。

甲乙二人分别从A、B两地同时出发,并在两地间往返行走。第一次二人在距离B点400米处相遇,第二次二人又在距离B点100米处相遇,问两地相距多少米?

答案:

(1)第一次二人在距离B点400米处相遇.说明第一次相遇时乙行400米.

(2)甲、乙从出发到第二次相遇共行3个全程。从第一次相遇后时到第二次相遇他们共行2个全程。在这2个全程中甲行400+100=500米。

说明甲在每个全程中行500/2=250米。

(3)因此在第一次相遇时(一个全程)

250+400=650米

答:两地相距650米。

甲、乙两车同时从A、B两站相对开出,第一次相遇离A站有90千米,然后各自按原速继续行驶,分别到达对方出发站后立即沿原路返回。第二次相遇时离A站的距离占AB两站全长的65%。求AB两站的距离。

答案:

两车第一次相遇时,共行了1个全程,其中甲车行了90千米

两车第二次相遇时,共行了3个全程,其中甲车行了1个全程加上全程的1-65%=35%,为1+35%=1.35个全程

两车共行3个全程,甲车应该行90×3=270千米

所以AB距离270/1.35=200千米

例题 甲乙2人从AB两地相向而行,甲速度42km/h,乙速度30km/h,两人在途中相遇后继续前行,各自到达AB点后返回,途中再次相遇,与第一次相遇点距离80km,求AB点距离?

用算术方法解:

第一次相遇,

甲走全程的:42/(42+30)=7/12

乙走全程的:1-7/12=5/12

第二次相遇,甲乙共走全程的3倍,

甲走了3*7/12=21/12,从折返算起,走了21/12-1=9/12.距甲开始出发地距离为1-9/12=3/12, 两点之间距离为全程的:7/12-3/12=4/12=1/3,就是80km,

则全程=80/(1/3)=240(km)

例题 甲乙二人分别从A、B两地同时出发,并在两地间往返行走。第一次二人在距离B点400米处相遇,第二次二人又在距离B点100米处相遇,问两地相距多少米?

解析:

(1)第一次二人在距离B点400米处相遇.说明第一次相遇时乙行400米.

(2)甲、乙从出发到第二次相遇共行3个全程。从第一次相遇后时到第二次相遇他们共行2个全程。在这2个全程中甲行400+100=500米。

说明甲在每个全程中行500/2=250米。

(3)因此在第一次相遇时(一个全程)

250+400=650米

答:两地相距650米。

二、环形二次相遇

环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。

如图,A、B是圆的直径的两端,小张在A点,小王在B点同时出发反向行走,他们在C点第一次相遇,C离A点80米;在D点第二次相遇,D点离B点6O米.求这个圆的周长.

解:第一次相遇,两人合起来走了半个周长;第二次相遇,两个人合起来又走了一圈.

从出发开始算,两个人合起来走了一周半.因此,第二次相遇时两人合起来所走的行程是第一次相遇时合起来所走的行程的3倍,那么从A到D的距离,应该是从A到C距离的3倍,即A到D是

80×3=240(米).

240-60=180(米).

180×2=360(米).

答:这个圆的周长是360米.

如图38-1,A、B是圆的一条直径的两端,小张在A点,小王在B点,同时出发逆时针而行,第一周内,他们在C点第一次相遇,在D点第二次相遇。已知C点离A点80米,D点离B点60米。求这个圆的周长。

【分析】这是一个圆周上的追及问题。从一开始运动到第一次相遇,小张行了80米,小王行了“半个圆周长+80”米,也就是在相同的时间内,小王比小张多行了半个圆周长,然后,小张、小王又从C点同时开始前进,因为小王的速度比小张快,要第二次再相遇,只能是小王沿圆周比小张多跑一圈。从第一次相遇到第二次相遇小王比小张多走的路程(一个圆周长)是从开始到第一次相遇小王比小张多走的路程(半个圆周长)的2倍。也就是,前者所花的时间是后者的2倍。对于小张来说,从一开始到第一次相遇行了80米,从第一次相遇到第二次相遇就应该行160米,一共行了240米。这样就可以知道半个圆周长是180(=240-60)米。

【解】(80+80×2-60)×2=360(米)

二次相遇问题的解题思路

一、直线二次相遇

甲村、乙村相距6千米,小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回).在出发后40分钟两人第一次相遇.小王到达甲村后返回,在离甲村2千米的地方两人第二次相遇.问小张和小王的速度各是多少?

解:画示意图如下:

如图,第一次相遇两人共同走了甲、乙两村间距离,第二次相遇两人已共同走了甲、乙两村间距离的3倍,因此所需时间是

40×3÷60=2(小时).

从图上可以看出从出发至第二次相遇,小张已走了

6×2-2=10(千米).

小王已走了 6+2=8(千米).

因此,他们的速度分别是

小张 10÷2=5(千米/小时),

小王 8÷2=4(千米/小时).

答:小张和小王的速度分别是5千米/小时和4千米/小时.

知识要点提示:甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。一般知道AC和AD的距离,主要抓住第二次相遇时走的路程是第一次相遇时走的路程的两倍。

例题:

1.甲乙两车同时从A、B两地相向而行,在距B地54千米处相遇,它们各自到达对方车站后立即返回,在距A地42千米处相遇。请问A、B两地相距多少千米?

A.120

B.100

C.90

D.80

【答案】A。解析:设两地相距x千米,由题可知,第一次相遇两车共走了x,第二次相遇两车共走了2x,由于速度不变,所以,第一次相遇到第二次相遇走的路程分别为第一次相遇的二倍,即54×2=x-54+42,得出x=120。54乘3再减去42=120,再用120减去54加42的和=24

因为第一次相遇距离B地54千米,说明行完一个全程乙走了54千米,到甲乙第二次相遇时总共走了三个全程,也就是说,这时乙走了54乘3千米,也就是162千米,这个162千米也是乙走完一个全程后还包括多走的42千米,所以用162减去42就是一个AB之间的全程。再用120减去两次相遇距离A地和B地的距离,就是两相遇点之间的距离。

2.两汽车同时从A、B两地相向而行,在离A城52千米处相遇,到达对方城市后立即以原速沿原路返回,在离A城44千米处相遇。两城市相距( )千米

A.200

B.150

C.120

D.100

【答案】D。解析:第一次相遇时两车共走一个全程,第二次相遇时两车共走了两个全程,从A城出发的汽车在第二次相遇时走了52×2=104千米,从B城出发的汽车走了52+44=94千米,故两城间距离为(104+96)÷2=100千米。

绕圈问题:

3.在一个圆形跑道上,甲从A点、乙从B点同时出发反向而行,8分钟后两人相遇,再过6分钟甲到B点,又过10分钟两人再次相遇,则甲环行一周需要( )?

A.24分钟

B.26分钟

C.28分钟

D.30分钟

【答案】C。解析:甲、乙两人从第一次相遇到第二次相遇,用了6+10=16分钟。也就是说,两人16分钟走一圈。从出发到两人第一次相遇用了8分钟,所以两人共走半圈,即从A到B是半圈,甲从A到B用了8+6=14分钟,故甲环行一周需要14×2=28分钟。也是一个倍数关系。

甲乙二人分别从A、B两地同时出发,并在两地间往返行走。第一次二人在距离B点400米处相遇,第二次二人又在距离B点100米处相遇,问两地相距多少米?

答案:

(1)第一次二人在距离B点400米处相遇.说明第一次相遇时乙行400米.

(2)甲、乙从出发到第二次相遇共行3个全程。从第一次相遇后时到第二次相遇他们共行2个全程。在这2个全程中甲行400+100=500米。

说明甲在每个全程中行500/2=250米。

(3)因此在第一次相遇时(一个全程)

250+400=650米

答:两地相距650米。

甲、乙两车同时从A、B两站相对开出,第一次相遇离A站有90千米,然后各自按原速继续行驶,分别到达对方出发站后立即沿原路返回。第二次相遇时离A站的距离占AB两站全长的65%。求AB两站的距离。

答案:

两车第一次相遇时,共行了1个全程,其中甲车行了90千米

两车第二次相遇时,共行了3个全程,其中甲车行了1个全程加上全程的1-65%=35%,为1+35%=1.35个全程

两车共行3个全程,甲车应该行90×3=270千米

所以AB距离270/1.35=200千米

例题 甲乙2人从AB两地相向而行,甲速度42km/h,乙速度30km/h,两人在途中相遇后继续前行,各自到达AB点后返回,途中再次相遇,与第一次相遇点距离80km,求AB点距离?

用算术方法解:

第一次相遇,

甲走全程的:42/(42+30)=7/12

乙走全程的:1-7/12=5/12

第二次相遇,甲乙共走全程的3倍,

甲走了3*7/12=21/12,从折返算起,走了21/12-1=9/12.距甲开始出发地距离为1-9/12=3/12, 两点之间距离为全程的:7/12-3/12=4/12=1/3,就是80km,

则全程=80/(1/3)=240(km)

例题 甲乙二人分别从A、B两地同时出发,并在两地间往返行走。第一次二人在距离B点400米处相遇,第二次二人又在距离B点100米处相遇,问两地相距多少米?

解析:

(1)第一次二人在距离B点400米处相遇.说明第一次相遇时乙行400米.

(2)甲、乙从出发到第二次相遇共行3个全程。从第一次相遇后时到第二次相遇他们共行2个全程。在这2个全程中甲行400+100=500米。

说明甲在每个全程中行500/2=250米。

(3)因此在第一次相遇时(一个全程)

250+400=650米

答:两地相距650米。

二、环形二次相遇

环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。

如图,A、B是圆的直径的两端,小张在A点,小王在B点同时出发反向行走,他们在C点第一次相遇,C离A点80米;在D点第二次相遇,D点离B点6O米.求这个圆的周长.

解:第一次相遇,两人合起来走了半个周长;第二次相遇,两个人合起来又走了一圈.

从出发开始算,两个人合起来走了一周半.因此,第二次相遇时两人合起来所走的行程是第一次相遇时合起来所走的行程的3倍,那么从A到D的距离,应该是从A到C距离的3倍,即A到D是

80×3=240(米).

240-60=180(米).

180×2=360(米).

答:这个圆的周长是360米.

如图38-1,A、B是圆的一条直径的两端,小张在A点,小王在B点,同时出发逆时针而行,第一周内,他们在C点第一次相遇,在D点第二次相遇。已知C点离A点80米,D点离B点60米。求这个圆的周长。

【分析】这是一个圆周上的追及问题。从一开始运动到第一次相遇,小张行了80米,小王行了“半个圆周长+80”米,也就是在相同的时间内,小王比小张多行了半个圆周长,然后,小张、小王又从C点同时开始前进,因为小王的速度比小张快,要第二次再相遇,只能是小王沿圆周比小张多跑一圈。从第一次相遇到第二次相遇小王比小张多走的路程(一个圆周长)是从开始到第一次相遇小王比小张多走的路程(半个圆周长)的2倍。也就是,前者所花的时间是后者的2倍。对于小张来说,从一开始到第一次相遇行了80米,从第一次相遇到第二次相遇就应该行160米,一共行了240米。这样就可以知道半个圆周长是180(=240-60)米。

【解】(80+80×2-60)×2=360(米)


相关内容

  • 小学六年级路程.工程问题
  • 应用题问题总结 路程问题 解题总思路: 路程问题最基本的思路就是:路程=时间*速度.牢记这个公式,无论什么样的路程问题,最终都要通过这个公式来解决. 最简单的路程问题:已知路程.时间.速度中的两个量,求剩下的量. 如: 1. 2. 3. 甲乙两地相距100千米,小明以每小时5千米从甲地向乙地走去,需 ...

  • 1归一问题
  • 1 归一问题 [含义] 在解题时,先求出一份是多少(即单一量),然后以单一量为标准, 求出所要求的数量.这类应用题叫做归一问题. [数量关系] 总量÷份数=1份数量 1份数量×所占份数=所求几份的数 量 另一总量÷(总量÷份数)=所求份数 [解题思路和方法] 先求出单一量,以单一量为标准,求出所要求 ...

  • 小学数学经典应用题(二)
  • 小学数学经典应用题(二) 21. 一桶油连桶重16千克,用去一半后,连桶重9千克,桶重多少千克? 解题思路: 由已知条件可知,16千克和9千克的差正好是半桶油的重量.9千克是半桶油和桶的重量,去掉半桶油的重量就是桶的重量. 答题: 解:9-(16-9)=9-7=2(千克) 答:桶重2千克. 22. ...

  • 高二物理匀变速直线运动的位移与速度的关系
  • 4 匀变速直线运动的位移与速度的关系 整体设计 本节的教学目标是让学生熟练运用匀变速直线运动的位移与速度的关系来解决实际问题. 教材先是通过一个例题的求解,利用公式x=v0t+12at 和v=v0+at推导出了位移与速度的2 关系:v 2-v 02=2ax.到本节为止匀变速直线运动的速度-时间关系. ...

  • 2015河南公务员考试:行程问题解题方法
  • 2015河南公务员考试:行程问题解题方法 行程问题一直公务员考试行测中的一个热点,不管是在国家公务员考试还是在省公务员考试中,都是每年必考的一类题型.在行程问题中,所考察的知识点多,常考的知识点有相遇追击问题.多次相遇问题.流水行船问题.牛吃草问题.时钟问题.走走停停问题.接送问题等.每种类型都有固 ...

  • 小学数学应用题解题技巧大全
  • 小学数学应用题解题技巧大全 小升初应用题大全,可分为一般应用题与典型应用题. 1归一问题 [含义]在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量.这类应用题叫做归一问题. [数量关系]总量÷份数=1份数量 1份数量×所占份数=所求几份的数量 另一总量÷(总量÷份数)=所 ...

  • 事业单位考试中数量类行程问题的解题技巧
  • 以教育推动社会进步 事业单位考试中数量类行程问题的解题技巧 在事业单位考试中,行程问题一直是热点,考察的难度也往往是所有运算题型当中最难的一部分.因此行程问题是大部分考生最为头疼的一个题型,但是,任何题目都有技巧,只要摸准了这些题的规律,可以按照相同的思路去解决.那么,我们来看看对于行程问题我们该运 ...

  • 2016年广东公务员考试行测环形相遇追及问题解题技巧
  • 2016年广东公务员考试行测环形相遇追及问题解题技巧 行程问题一直是公务员考试行测的考察重点和难点,而环形相遇追及问题因为过程复杂,难以理顺思路,更成为数量关系模块的"杀手锏".因此快速.准确地解答环形相遇追及问题是拉开行测分数差距的关键. [例1]甲乙两人在周长为400米的圆形 ...

  • 2016河北公务员考试行测环形相遇追及问题解题技巧
  • 河北公务员考试真题 2016河北公务员考试行测环形相遇追及问题解题技 巧 河北公务员考试<行政职业能力测验>主要测查与公务员职业密切相关的.适合通过客观化纸笔测验方式进行考查的基本素质和能力要素,包括言语理解与表达.数量关系.判断推理.资料分析和常识判断等部分.更具体的各个部分的详细情况 ...