微带传输线的阻抗匹配问题

微带传输线的匹配问题

串联匹配

Rs 为驱动端的输出电阻(电阻值很小);Z0为传输线特征阻抗;负载端输入电阻很大,近似开路。 为了达到电阻匹配,在驱动端串联电阻R ,使Rs +R =Z0(电阻串联匹配)

当驱动端有一个从5V 降到1V 的脉冲时(具体多大电压不重要),在信号从负载端反射回驱动端之前,驱动端的压降只有2V ,(5-1)/2,相当是Rs +R 和Z0分压(如图下部),就是搞不懂为什么会分压,Z0怎么就接地了呢?

请教,谢谢!

传输线是一对导线组成的,包括信号传播路径和返回路径(即“地”)。

特征阻抗是指传播路径和返回路径之间的等效电阻。

只要信号没达到终端,在任何时刻,在传输线上的任意点,信号都会“感受”到该等效电阻, 因为传输线上任意点都要给该点以后的传输线提供能量。

我认为传输线的特征阻抗并不是表示一个串联在源端和终端之间的一个电阻,应该认为在源端看来,它是一个阻值为Z0的到地的一个电阻。从理想传输线模型(大概是这样,具体忘了,可能有不少问题)可以看到这一点。信号从源端入射,不断地给分布电容、分布电感提供能量,从左到右建立电磁场,直到信号传送到终端。

并联匹配

上面我说的只是源端的情况。

下面说说终端的情况。信号传到终端时,根据负载的不同,情况不同。

当负载阻抗等于特征阻抗时,信号被负载完全吸收,不会发生反射;

当负载阻抗大于特征阻抗时,会有一个电压为正的反射信号,一种典型情况是终端开路,这时反射电压等于入射电压,即全反射;

负载阻抗大于特征阻抗时,会有一个电压为负的反射信号,一种典型情况是终端短路,这时反射电压等于负的入射电压。

反射电压和入射电压会在终端叠加,所以当终端负载阻抗很大时,会有信号过冲。

为了抑制信号的反射,需要做阻抗匹配。所谓的阻抗匹配,就是使得传输线的终端负载等于特征阻抗。匹配有两种方法:

1. 源端串联匹配方法。这种匹配方法实际上是在传输线上入射一半的信号电压,当信号传到终端时,由于负载阻抗非常大,近似于开路,信号在终端发生全反射,反射电压加上入射电压就等于信号原来的电压了。反射信号从终端反射回源端,对于反射信号来说,源端就是反射信号的终端了,由于源端的阻抗已经是匹配了的(即信号源内阻加上源端匹配电阻等于特征阻抗),所以反射信号在源端被吸收,抑制了反射信号在源端再一次反射,也就抑制了振铃现象。

2. 终端并联匹配的方法。这种方法更好理解,最简单的方法就是在终端并联一个到地的电阻,阻值等于传输线的特征阻抗。信号传到终端时,由于负载阻抗等于特征阻抗,信号在终端完全吸收,并没有反射。不过这种匹配方式在高电平时有很大的静态功耗。其他终端并联匹配方法都是围绕着降低静态功耗来做文章的。

1、阻抗匹配

阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。根据接入方式阻抗匹配有串行和并行两种方式;根据信号源频率阻抗匹配可分为低频和高频两种。

(1)高频信号一般使用串行阻抗匹配。串行电阻的阻值为20~75Ω,阻值大小与信号频率成正比,与PC B 走线宽度和长度成反比。在嵌入式系统中,一般频率大于20M 的信号PCB 走线长度大于5cm 时都要加串行匹配电阻,例如系统中的时钟信号、数据和地址总线信号等。串行匹配电阻的作用有两个:

◆ 减少高频噪声以及边沿过冲。如果一个信号的边沿非常陡峭,则含有大量的高频成分,将会辐射干扰,另外,也容易产生过冲。串联电阻与信号线的分布电容以及负载输入电容等形成一个RC 电路,这样就会降低信号边沿的陡峭程度。

◆ 减少高频反射以及自激振荡。当信号的频率很高时,则信号的波长就很短,当波长短得跟传输线长度可以比拟时,反射信号叠加在原信号上将会改变原信号的形状。如果传输线的特征阻抗跟负载阻抗不相等(即不匹配)时,在负载端就会产生反射,造成自激振荡。PCB 板内走线的低频信号直接连通即可,一般不需要加串行匹配电阻。

(2)并行阻抗匹配又叫“终端阻抗匹配”,一般用在输入/输出接口端,主要指与传输电缆的阻抗匹配。例如,LVDS 与RS422/485使用5类双绞线的输入端匹配电阻为100~120Ω;视频信号使用同轴电缆的匹配电阻为75Ω或50Ω、使用篇平电缆为300Ω。并行匹配电阻的阻值与传输电缆的介质有关,与长度无关,其主要作用也是防止信号反射、减少自激振荡。值得一提的是,阻抗匹配可以提高系统的EMI 性能。此外,解决阻抗匹配除了使用串/并联电阻外,还可使用变压器来做阻抗变换,典型的例子如以太网接口、CAN 总线等。

2、0欧电阻的作用

(1)最简单的是做跳线用,如果某段线路不用,直接不焊接该电阻即可(不影响外观)。

(2)在匹配电路参数不确定的时候,以0欧姆代替,实际调试的时候,确定参数,再以具体数值的元件代替。

(3)想测某部分电路的工作电流时,可以去掉0欧电阻,接上电流表,这样方便测量电流。

(4)在布线时, 如果实在布不过去了, 也可以加一个0欧的电阻 起跨接作用。

(5)在高频信号网络中,充当电感或电容(起阻抗匹配作用,0欧电阻也有阻抗!)。充当电感用时,主要是解决EMC 问题。

(6)单点接地,例如模拟地与数字地的单点对接共地。

(7)配置电路,可以取代跳线和拨码开关。有时用户会乱动设置,易引起误会,为了减少维护费用,应用0欧电阻代替跳线等焊在板子上。

(8)系统调试用,例如将系统分成几个模块,模块间的电源与地用0欧电阻分开,调试阶段发现电源或地短路时,去掉0欧电阻可缩小查找范围。

上述功能也可使用“磁珠”替代。0欧电阻与磁珠虽然功能上有点类似,但存在本质差别,前者呈阻抗特性,后者呈感抗特性。磁珠一般用在电源与地网络中,有滤波作用。

微带传输线的匹配问题

串联匹配

Rs 为驱动端的输出电阻(电阻值很小);Z0为传输线特征阻抗;负载端输入电阻很大,近似开路。 为了达到电阻匹配,在驱动端串联电阻R ,使Rs +R =Z0(电阻串联匹配)

当驱动端有一个从5V 降到1V 的脉冲时(具体多大电压不重要),在信号从负载端反射回驱动端之前,驱动端的压降只有2V ,(5-1)/2,相当是Rs +R 和Z0分压(如图下部),就是搞不懂为什么会分压,Z0怎么就接地了呢?

请教,谢谢!

传输线是一对导线组成的,包括信号传播路径和返回路径(即“地”)。

特征阻抗是指传播路径和返回路径之间的等效电阻。

只要信号没达到终端,在任何时刻,在传输线上的任意点,信号都会“感受”到该等效电阻, 因为传输线上任意点都要给该点以后的传输线提供能量。

我认为传输线的特征阻抗并不是表示一个串联在源端和终端之间的一个电阻,应该认为在源端看来,它是一个阻值为Z0的到地的一个电阻。从理想传输线模型(大概是这样,具体忘了,可能有不少问题)可以看到这一点。信号从源端入射,不断地给分布电容、分布电感提供能量,从左到右建立电磁场,直到信号传送到终端。

并联匹配

上面我说的只是源端的情况。

下面说说终端的情况。信号传到终端时,根据负载的不同,情况不同。

当负载阻抗等于特征阻抗时,信号被负载完全吸收,不会发生反射;

当负载阻抗大于特征阻抗时,会有一个电压为正的反射信号,一种典型情况是终端开路,这时反射电压等于入射电压,即全反射;

负载阻抗大于特征阻抗时,会有一个电压为负的反射信号,一种典型情况是终端短路,这时反射电压等于负的入射电压。

反射电压和入射电压会在终端叠加,所以当终端负载阻抗很大时,会有信号过冲。

为了抑制信号的反射,需要做阻抗匹配。所谓的阻抗匹配,就是使得传输线的终端负载等于特征阻抗。匹配有两种方法:

1. 源端串联匹配方法。这种匹配方法实际上是在传输线上入射一半的信号电压,当信号传到终端时,由于负载阻抗非常大,近似于开路,信号在终端发生全反射,反射电压加上入射电压就等于信号原来的电压了。反射信号从终端反射回源端,对于反射信号来说,源端就是反射信号的终端了,由于源端的阻抗已经是匹配了的(即信号源内阻加上源端匹配电阻等于特征阻抗),所以反射信号在源端被吸收,抑制了反射信号在源端再一次反射,也就抑制了振铃现象。

2. 终端并联匹配的方法。这种方法更好理解,最简单的方法就是在终端并联一个到地的电阻,阻值等于传输线的特征阻抗。信号传到终端时,由于负载阻抗等于特征阻抗,信号在终端完全吸收,并没有反射。不过这种匹配方式在高电平时有很大的静态功耗。其他终端并联匹配方法都是围绕着降低静态功耗来做文章的。

1、阻抗匹配

阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。根据接入方式阻抗匹配有串行和并行两种方式;根据信号源频率阻抗匹配可分为低频和高频两种。

(1)高频信号一般使用串行阻抗匹配。串行电阻的阻值为20~75Ω,阻值大小与信号频率成正比,与PC B 走线宽度和长度成反比。在嵌入式系统中,一般频率大于20M 的信号PCB 走线长度大于5cm 时都要加串行匹配电阻,例如系统中的时钟信号、数据和地址总线信号等。串行匹配电阻的作用有两个:

◆ 减少高频噪声以及边沿过冲。如果一个信号的边沿非常陡峭,则含有大量的高频成分,将会辐射干扰,另外,也容易产生过冲。串联电阻与信号线的分布电容以及负载输入电容等形成一个RC 电路,这样就会降低信号边沿的陡峭程度。

◆ 减少高频反射以及自激振荡。当信号的频率很高时,则信号的波长就很短,当波长短得跟传输线长度可以比拟时,反射信号叠加在原信号上将会改变原信号的形状。如果传输线的特征阻抗跟负载阻抗不相等(即不匹配)时,在负载端就会产生反射,造成自激振荡。PCB 板内走线的低频信号直接连通即可,一般不需要加串行匹配电阻。

(2)并行阻抗匹配又叫“终端阻抗匹配”,一般用在输入/输出接口端,主要指与传输电缆的阻抗匹配。例如,LVDS 与RS422/485使用5类双绞线的输入端匹配电阻为100~120Ω;视频信号使用同轴电缆的匹配电阻为75Ω或50Ω、使用篇平电缆为300Ω。并行匹配电阻的阻值与传输电缆的介质有关,与长度无关,其主要作用也是防止信号反射、减少自激振荡。值得一提的是,阻抗匹配可以提高系统的EMI 性能。此外,解决阻抗匹配除了使用串/并联电阻外,还可使用变压器来做阻抗变换,典型的例子如以太网接口、CAN 总线等。

2、0欧电阻的作用

(1)最简单的是做跳线用,如果某段线路不用,直接不焊接该电阻即可(不影响外观)。

(2)在匹配电路参数不确定的时候,以0欧姆代替,实际调试的时候,确定参数,再以具体数值的元件代替。

(3)想测某部分电路的工作电流时,可以去掉0欧电阻,接上电流表,这样方便测量电流。

(4)在布线时, 如果实在布不过去了, 也可以加一个0欧的电阻 起跨接作用。

(5)在高频信号网络中,充当电感或电容(起阻抗匹配作用,0欧电阻也有阻抗!)。充当电感用时,主要是解决EMC 问题。

(6)单点接地,例如模拟地与数字地的单点对接共地。

(7)配置电路,可以取代跳线和拨码开关。有时用户会乱动设置,易引起误会,为了减少维护费用,应用0欧电阻代替跳线等焊在板子上。

(8)系统调试用,例如将系统分成几个模块,模块间的电源与地用0欧电阻分开,调试阶段发现电源或地短路时,去掉0欧电阻可缩小查找范围。

上述功能也可使用“磁珠”替代。0欧电阻与磁珠虽然功能上有点类似,但存在本质差别,前者呈阻抗特性,后者呈感抗特性。磁珠一般用在电源与地网络中,有滤波作用。


相关内容

  • 毕设论文_小型化宽带基站天线阵列单元设计
  • 班 级 XXXX 学 号 XXXXXX 本科毕业设计论文 题 目 小型化宽带基站天线阵列单元设计 学 院 电子工程学院 专 业 电子信息工程 学生姓名 XXXXX 导师姓名 XXXXX 毕业设计(论文)诚信声明书 本人声明:本人所提交的毕业论文<小型化宽带基站天线阵列单元设计>是本人在指 ...

  • 毕业设计-微带天线设计
  • 本科毕业论文(设计) ( 2013 届) 2.4GHz无线网桥天线设计 院 系专 业 电子信息工程 姓 名指导教师 ****** 职 称 2013年5月 2.4GHz 无线网桥天线设计 摘 要 当代人们生活越来越依赖通信网络,数据传输的方式分为有线传输和无线传输,对于有一定距离的局域网,比如一些相距 ...

  • 微波填空题
  • 1.若一微波传输线传播常数为实数,则其量纲为N /m ,它主 p 要由波导壁及填充介质引起的衰减产生,此时该传输线处于截止状态. 2.微波传输过程中其相速是等相位面 移动的速度,群速是能量移动的速度,其中相速可以大于光速. 3.微波同轴线可传输TE 模式,单模传输条件为 λ>π(a +b ). ...

  • 低噪声放大器的设计-射频课程设计
  • 射频设计报告 低噪声放大器的设计 目 录 1 前言 ................................................................................................................... 1 2 低噪声放 ...

  • LVDS(低电压差分信号)原理简介
  • LVDS(低电压差分信号)原理简介 1 LVDS信号介绍 LVDS:Low Voltage Differential Signaling,低电压差分信号. LVDS传输支持速率一般在155Mbps(大约为77MHZ)以上. LVDS是一种低摆幅的差分信号技术,它使得信号能在差分PCB线对或平衡电缆上 ...

  • 阻抗线计算
  • 阻抗线计算 一. 传输线类型 1 最通用的传输线类型为微带线(microstrip)和带状线(stripline) 微带线(microstrip):指在 PCB 外层的线和只有一个参考平面的线,有非嵌入/嵌入两种 如图所示: (图1) 非嵌入(我们目前常用) (图2) 嵌入(我们目前几乎没有用过) ...

  • 50欧阻抗天线设计
  • 两层板(双面板)如何控制50欧特性阻抗的设计技巧 我们都知道,在射频电路的设计过程中,走线保持50欧姆的特性阻抗是一件很重要的事情,尤其是在Wi-Fi 产品的射频电路设计过程中,由于工作频率很高(2.4GHz 或者5.8GHz ),特性阻抗的控制就显得更加重要了.如果特性阻抗没有很好的控制在50欧姆 ...

  • E型贴片微带天线性能分析
  • 第30卷 第6期2009年12月大连交通大学学报 JOURNAL OF DAL I A N J I A OT ONG UN I V ERSI TY Vol . 30 No . 6 Dec . 2009 文章编号:167329590(2009) 0620095203 E 型贴片微带天线性能分析 车仁信 ...

  • 功率放大器毕业论文
  • 毕 电 业 子 科 技 大 学设 计 论 文 摘 要 随着现代无线通信的发展,微波功率放大器已成为微波通信设备的重要部件,它的性能优劣在很大程度上影响着通信质量.因而,对微波功率放大器的研究和设计也越来越受关注. 本文分析了微波功率放大器的非线性特性,介绍了其阻抗匹配电路的方法,并根据指标要求对晶体 ...