P=CCCFV11FV ++ ++=FV⨯c⨯(-)+2nnnn1+r(1+r)(1+r)(1+r)rr⨯(1+r)(1+r)Theorem 1: Bond prices move inversely to the yield to maturity of bonds.
P对r示导得:
dP1(1+r)n+r⨯n⨯(1+r)n-1FV⨯n=FV⨯c⨯(-2+)-drrr2(1+r)2n(1+r)n+1
1(1+r)+r⨯nFV⨯n=FV⨯c⨯(-2+2)- rr(1+r)n+1(1+r)n+1
(1+r)+r⨯n-(1+r)n+1FV⨯n=FV⨯c⨯-2n+1r(1+r)(1+r)n+1
式子第二项小于0,因此要证明第一项小于0即可,即证明分子部分小于0:
(1+r)+r⨯n-(1+r)n+1=(1+r+r⨯n)-(1+r)(1+r)n
122=(1+r+r⨯n)-(1+r)(1+Cnr+Cnr+ )
=(1+r+r⨯n)-(1+r)(1+nr+ )
=(1+r+r⨯n)-(1+nr+r+nr2+ )
=-(nr2+ )
所以有: dP
Theorem 2. For a given change in yield to maturity from the nominal yield, the change in bond prices are greater, the longer is the term to maturity.
当c=r时,P=FV,当r发生变动时,
(1)如r变小,由原理1可知债券价格P会上升,此时债券价格变动数值为:
∆P=FV⨯c⨯(11FV-)+-FV nnr-∆r⨯(1+r-∆)(1+r-∆)
FV⨯cFV+, r⨯(1+r-∆)n(1+r-∆)n∆P的大小与n的关系体现在-
令f(n)=FVFV⨯c- nn(1+r-∆)r⨯(1+r-∆)
c-rln(1+r-∆))⨯ r(1+r-∆)n对其求导得:f'(n)=FV⨯(
上式的符号由c-r决定,前面假设r变小,所以c-r>0,因此f'(n)>0。
即n越大,∆P增加得越多。
(2) 如r变大,由原理1可知债券价格P会下降,此时债券价格变动数值为:
∆P=FV-[FV⨯c⨯(11FV-)+] r+∆r⨯(1+r+∆)n(1+r+∆)n
∆P的大小与n的关系体现在FV⨯cFV, -nnr⨯(1+r+∆)(1+r+∆)
同样令f(n)=FV⨯cFV -r⨯(1+r+∆)n(1+r+∆)n
r-cln(1+r+∆) )⨯nr(1+r+∆)对其求导得:f'(n)=FV⨯(
由于前面假设r变大,所以r-c>0,因此f'(n)>0。
即n越大,∆P增加得越多。
Theorem 3: The percentage change described in theorem 2 increases at a diminishing rate as the time to maturity increases.
随着时间的增加,∆P的数值越来越大,但增加的部分越来越少。即求其二阶导。
(1)如r变小, 此时f'(n)=FV⨯(c-rln(1+r-∆))⨯>0, r(1+r-∆)n
c-rln2(1+r-∆)f''(n)=-FV⨯()⨯
(2) 如r变大,此时f'(n)=FV⨯(r-cln(1+r+∆))⨯ r(1+r+∆)n
r-cln2(1+r+∆)f''(n)=-FV⨯()⨯
因此原理3成立。
Theorem 4: Price movements resulting from equal absolute (or, what is the same, from equal proportionate) increases and decreases in the yield to maturity are asymmetric; that is, a decrease in yield to maturity raises bond prices more than the same increase in yield to maturity lowers prices.
收益率相同的增加或减少时,债券价格的变动是不对称的。收益率的减少导致的债券价格增加超过收益率的增加导致的债券价格的减少。
dPd2P0 由原理1已知drdr
d2P1(1+r)+r⨯nFV⨯n={FV⨯c⨯(-+)-'222n+1n+1drrr(1+r)(1+r)
2(n+1)(1+r)r-(1+r+nr)(2+3r+nr)FV⨯n⨯(n+1)=FV⨯c⨯[3+]+rr3(1+r)n+2(1+r)n+2
FV⨯c⨯[2(1+r)n+2+(n+1)(1+r)r-(1+r+nr)(2+3r+nr)]+FV⨯n⨯(n+1)⨯r3=r3(1+r)n+2
上式的符号由分子决定,即
FV⨯c⨯[2(1+r)n+2+(n+1)(1+r)r-(1+r+nr)(2+3r+nr)]+FV⨯n⨯(n+1)⨯r3 决定。这个式子中,最后一项大于0,因此只要[…]部分大于0即可,该部分为:
[2(1+r)n+2+(n+1)(1+r)r-(1+r+nr)(2+3r+nr)]
n⨯(n-1)2r)+(nr+nr2+r+r2)-(2+5r+3nr+4nr2+3r2+n2r2)2
>(2+4r+2nr+3nr2+2r2+n2r2)-(2+4r+2nr+3nr2+2r2+n2r2)>2(1+r)2(1+nr+
=0
d2P>0 因此有:2dr
Theorem 5: The higher is the coupon carried by the bond, the smaller will be the percentage price fluctuations for a given change in the yield to maturity except for one year securities and consols.
息票率越高,债券价格变化的百分比越小。设
故有:
前面已经证明(1+r)+r⨯n-(1+r)n+1
因此,息票率越高,债券价格变化的幅度越小。
设原来债券价格为P=FV⨯c⨯(-1
r1FV)+,后来债券收益率下降∆,则r⨯(1+r)n(1+r)n
价格变为P∆=FV⨯c⨯(11FV-)+ nnr-∆(r-∆)⨯(1+r-∆)(1+r-∆)
债券价格变动百分比为:P∆-1。 P
11FV-)+P∆r-∆(r-∆)⨯(1+r-∆)n(1+r-∆)n
-1=-1PFV⨯c⨯(-)+rr⨯(1+r)n(1+r)n
111c⨯(-)+r-∆(r-∆)⨯(1+r-∆)n(1+r-∆)n
=-1111c⨯(-)+rr⨯(1+r)n(1+r)nFV⨯c⨯(
令f(c)=P∆1111-1,f1=k=k=,f2=,,,上式可化简为: 12Pr-∆r(1+r-∆)n(1+r)n
f(c)=c⨯(f1-f1f2)+f2-1,对此式求导得: c⨯(k1-k1k2)+k2
f1k2+f2k1k2-f2k1-f1f2k2,将各式代入分子部分,则可得: 2[c⨯(k1-k1k2)+k2]f'(c)=
f1k2+f2k1k2-f2k1-f1f2k2
=1111111111 ⋅+⋅⋅-⋅-⋅⋅nnnnnnr-∆(1+r)(1+r-∆)r(1+r)(1+r-∆)rr-∆(1+r-∆)(1+r)=r(1+r-∆)n+(r-∆)-(r-∆)(1+r)n-r
P=CCCFV11FV ++ ++=FV⨯c⨯(-)+2nnnn1+r(1+r)(1+r)(1+r)rr⨯(1+r)(1+r)Theorem 1: Bond prices move inversely to the yield to maturity of bonds.
P对r示导得:
dP1(1+r)n+r⨯n⨯(1+r)n-1FV⨯n=FV⨯c⨯(-2+)-drrr2(1+r)2n(1+r)n+1
1(1+r)+r⨯nFV⨯n=FV⨯c⨯(-2+2)- rr(1+r)n+1(1+r)n+1
(1+r)+r⨯n-(1+r)n+1FV⨯n=FV⨯c⨯-2n+1r(1+r)(1+r)n+1
式子第二项小于0,因此要证明第一项小于0即可,即证明分子部分小于0:
(1+r)+r⨯n-(1+r)n+1=(1+r+r⨯n)-(1+r)(1+r)n
122=(1+r+r⨯n)-(1+r)(1+Cnr+Cnr+ )
=(1+r+r⨯n)-(1+r)(1+nr+ )
=(1+r+r⨯n)-(1+nr+r+nr2+ )
=-(nr2+ )
所以有: dP
Theorem 2. For a given change in yield to maturity from the nominal yield, the change in bond prices are greater, the longer is the term to maturity.
当c=r时,P=FV,当r发生变动时,
(1)如r变小,由原理1可知债券价格P会上升,此时债券价格变动数值为:
∆P=FV⨯c⨯(11FV-)+-FV nnr-∆r⨯(1+r-∆)(1+r-∆)
FV⨯cFV+, r⨯(1+r-∆)n(1+r-∆)n∆P的大小与n的关系体现在-
令f(n)=FVFV⨯c- nn(1+r-∆)r⨯(1+r-∆)
c-rln(1+r-∆))⨯ r(1+r-∆)n对其求导得:f'(n)=FV⨯(
上式的符号由c-r决定,前面假设r变小,所以c-r>0,因此f'(n)>0。
即n越大,∆P增加得越多。
(2) 如r变大,由原理1可知债券价格P会下降,此时债券价格变动数值为:
∆P=FV-[FV⨯c⨯(11FV-)+] r+∆r⨯(1+r+∆)n(1+r+∆)n
∆P的大小与n的关系体现在FV⨯cFV, -nnr⨯(1+r+∆)(1+r+∆)
同样令f(n)=FV⨯cFV -r⨯(1+r+∆)n(1+r+∆)n
r-cln(1+r+∆) )⨯nr(1+r+∆)对其求导得:f'(n)=FV⨯(
由于前面假设r变大,所以r-c>0,因此f'(n)>0。
即n越大,∆P增加得越多。
Theorem 3: The percentage change described in theorem 2 increases at a diminishing rate as the time to maturity increases.
随着时间的增加,∆P的数值越来越大,但增加的部分越来越少。即求其二阶导。
(1)如r变小, 此时f'(n)=FV⨯(c-rln(1+r-∆))⨯>0, r(1+r-∆)n
c-rln2(1+r-∆)f''(n)=-FV⨯()⨯
(2) 如r变大,此时f'(n)=FV⨯(r-cln(1+r+∆))⨯ r(1+r+∆)n
r-cln2(1+r+∆)f''(n)=-FV⨯()⨯
因此原理3成立。
Theorem 4: Price movements resulting from equal absolute (or, what is the same, from equal proportionate) increases and decreases in the yield to maturity are asymmetric; that is, a decrease in yield to maturity raises bond prices more than the same increase in yield to maturity lowers prices.
收益率相同的增加或减少时,债券价格的变动是不对称的。收益率的减少导致的债券价格增加超过收益率的增加导致的债券价格的减少。
dPd2P0 由原理1已知drdr
d2P1(1+r)+r⨯nFV⨯n={FV⨯c⨯(-+)-'222n+1n+1drrr(1+r)(1+r)
2(n+1)(1+r)r-(1+r+nr)(2+3r+nr)FV⨯n⨯(n+1)=FV⨯c⨯[3+]+rr3(1+r)n+2(1+r)n+2
FV⨯c⨯[2(1+r)n+2+(n+1)(1+r)r-(1+r+nr)(2+3r+nr)]+FV⨯n⨯(n+1)⨯r3=r3(1+r)n+2
上式的符号由分子决定,即
FV⨯c⨯[2(1+r)n+2+(n+1)(1+r)r-(1+r+nr)(2+3r+nr)]+FV⨯n⨯(n+1)⨯r3 决定。这个式子中,最后一项大于0,因此只要[…]部分大于0即可,该部分为:
[2(1+r)n+2+(n+1)(1+r)r-(1+r+nr)(2+3r+nr)]
n⨯(n-1)2r)+(nr+nr2+r+r2)-(2+5r+3nr+4nr2+3r2+n2r2)2
>(2+4r+2nr+3nr2+2r2+n2r2)-(2+4r+2nr+3nr2+2r2+n2r2)>2(1+r)2(1+nr+
=0
d2P>0 因此有:2dr
Theorem 5: The higher is the coupon carried by the bond, the smaller will be the percentage price fluctuations for a given change in the yield to maturity except for one year securities and consols.
息票率越高,债券价格变化的百分比越小。设
故有:
前面已经证明(1+r)+r⨯n-(1+r)n+1
因此,息票率越高,债券价格变化的幅度越小。
设原来债券价格为P=FV⨯c⨯(-1
r1FV)+,后来债券收益率下降∆,则r⨯(1+r)n(1+r)n
价格变为P∆=FV⨯c⨯(11FV-)+ nnr-∆(r-∆)⨯(1+r-∆)(1+r-∆)
债券价格变动百分比为:P∆-1。 P
11FV-)+P∆r-∆(r-∆)⨯(1+r-∆)n(1+r-∆)n
-1=-1PFV⨯c⨯(-)+rr⨯(1+r)n(1+r)n
111c⨯(-)+r-∆(r-∆)⨯(1+r-∆)n(1+r-∆)n
=-1111c⨯(-)+rr⨯(1+r)n(1+r)nFV⨯c⨯(
令f(c)=P∆1111-1,f1=k=k=,f2=,,,上式可化简为: 12Pr-∆r(1+r-∆)n(1+r)n
f(c)=c⨯(f1-f1f2)+f2-1,对此式求导得: c⨯(k1-k1k2)+k2
f1k2+f2k1k2-f2k1-f1f2k2,将各式代入分子部分,则可得: 2[c⨯(k1-k1k2)+k2]f'(c)=
f1k2+f2k1k2-f2k1-f1f2k2
=1111111111 ⋅+⋅⋅-⋅-⋅⋅nnnnnnr-∆(1+r)(1+r-∆)r(1+r)(1+r-∆)rr-∆(1+r-∆)(1+r)=r(1+r-∆)n+(r-∆)-(r-∆)(1+r)n-r