八年级数学下册[34 分式方程(一)]教学设

八年级数学下册《3.4 分式方程(一)》教学设计 北师大版

总体说明

本节共三个课时, 它分为分式方程的认知, 分式方程的解答, 以及分式方程在实际问题中的应用。彼此之间由浅入深。是“实题——分式方程建模——求解——解释解的合理性”过程。本章在前面几节陆续介绍了分式,分式的乘除,分式的加减,为本节解分式方程打下了扎实的基础。同时应注意对学生进行过程性评价,要延迟评价学生运算的熟练程度,允许学生经过一定时间达到《标准》要求的目标,把评价重点放在对算理的理解上。

一、学生知识状况分析

学生的知识技能基础:学生在小学以及七年级学过解应用题,以及在本章第三节所讲述的分式加减时所引入的问题的提出及问题的解答。对实际问题进行建模有初步地了解,具备分析问题,处理问题的能力。

学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些问题建模活动,解决了一些简单的现实问题,感受到找出问题等量关系的作用。获得了解决实际问题所必须的一些数学活动经验基础。同时在以前的数学学习中学生已经经历了很多合作学习的经验,具备了一定的合作与交流的能力。

二、教学任务分析

教学时要有意识地进一步提高学生的阅读理解能力,鼓励学生从多角度思考问题,解释所获得结果的合理性。对于常用的数量关系,虽然学生以前大都接触过,但在本节的教学中仍要注意复习、总结,并抓住用两个已知量表示第三个量的表达式,引导学生举一反三,进一步提高分析问题与解决问题的能力。为此,本课时的教学目标是:

知识与技能:

(1)通过对实际问题的分析,感受分式方程刻画现实世界的有效模型的意义。

(2)通过观察,归纳分式方程的概念。

(3)体会到分式方程作为实际问题的模型,能够根据实际问题建立分式方程的数学模型,并能归纳

出分式方程的描述性定义。

过程与方法:采用的是尝试——归纳相结合的方法,根据开始提出的多个实际问题。教师鼓励学生进行尝试,利用具体情境中的等量关系列出分式方程,归纳出分式方程的定义。

情感与态度:在建立分式方程的数学模型的过程中培养能力和克服困难的勇气,并从中获得成就感,提高解决问题的能力。

三、教学过程分析

本节课设计了6教学环节:小麦实验田问题——高速公路问题——电脑网络培训问题——捐款问题——管理问题——课时小节。

第一环节 小麦实验田问题

活动内容

有两块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000kg 和15000kg 。已知第一块试验田每公顷的产量比第二块少3000kg ,分别求出这两块试验田每公顷的产量。 你能找出这一问题中的所有等量关系吗?

如果设第一块实验田每公顷的产量为

___________kg.

根据题意,可得方程:

_______________________________________________

活动目的

为了让学生经历从实际问题抽象、概括分式方程这一“数学化”的过程,体会分式方程的模型在解决实际生活问题中作用,设置了这么一个例题,关键是引导学生努力寻找问题中的所有等量关系,发展学生分析问题、解决问题的能力。

教学效果:

在第一问中,同学们七嘴八舌,得到了许多等量关系。1、第一块实验田的

面积=第二块实验田的面积。2、每公顷的产量=总产量。3、第一块实验田每公顷的产量xk g ,那么第二块试验田每公顷的产量是

土地面积

+3000kg =第二块试验田每公顷的产量。感觉到每人都能想一点,但都不全。第三问得到也有多种方案。例1900015000x x +30009000x ,2这时教师就应适时引导, ==x 9000x x +[1**********]00

每步的实际意义是什么?这样帮学生排除了第二种形式。 ,15000x +3000,x +300015000

第二环节 高速公路问题

活动内容

从甲地到乙地有两条长路:一条是全长600km 的普通公路,另一条是全长480km 的高速公路。某客车在高速公路上行驶的平均速度比在普通公路上快45km /h ,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间。 这一问题中有哪些等量关系?

如果设客车由高速公路从甲地到乙地所需的时间为 xh ,那么它由普通公路从甲地到乙地所需的时间为 _________________h 。

根据题意,可得方程_______________________________________________-

活动目的

再次让学生经历从实际问题抽象、概括分式方程这一“数学化”的过程,体会分式方程的模型作用,设置了这么一个例题,关键是引导学生努力寻找问题中的所有等量关系,发展学生分析问题、解决问题的能力。

教学效果:

这次讨论的声音比第一次要少些,可能感觉比上一题容易。找出的等量关系有(1)600km=客车在普通公路上行驶的平均速度⨯客车由普通公路从甲地到乙地的时间。

(2)480 km=客车在高速公路上行驶的平均速度⨯客车由高速公路从甲地到乙地的时间。

(3)客车在高速公路上行驶的平均速度减去客车在普通公路上行驶的平均速度=

(4)由高速公路从甲地到乙地的时间=

同样注意引导学生每一步的实际意义。

第三环节 电脑网络培训问题

活动内容

王军同学准备在课外活动时间组织部分同学参加电脑网络培训,按原定的人数估计共需费用300元。后因人数增加到原定人数的2倍,费用享受了优惠,一共只需要480元,参加活动的每个同学平均分摊的费用比原计划少4元,原定的人数是多少?

这一问题中有哪些等量关系?

如果设原定是x 人,那么每人平均分摊______________元。

人数增加到原定人数的2倍后,每人平均分摊_________________元。

根据题意,可得方程_______________________________________________-.

活动目的

由浅入深,出了一道比上题难度大一点的问题。还是为了训练学生找出问题中的所有等量关系,发展学生分析问题、解决问题的能力。

教学效果:

这次学生讨论的声音又大了点,找出了如下的等量关系

(1) 实际参加活动的人数=原定人数⨯2。

(2) 原计划每个同学平均分摊的费用=实际每个同学平均分摊的费用+4元。 45km /h 1⨯由普通公路从甲地到乙地的时间。 2

根据题意:

300480+4 =x 2x

第四环节 捐款问题

这个题目不要求学生讨论。让学生独立完成。

活动内容

为了帮助遭受自然灾害的地区重建家园。某学校号召同学们自愿捐款。已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款恰好相等。如果设第一次捐款人数为x 人,那么x 满足怎样的方程?

活动目的

这次让学生独立思考,不再借助别人的力量。根据前面几题的练习,看同学们对找等量关系到底掌握了多少。特别关注那些后进生。以便及时调整教学进度。

教学效果:

这次不允许讨论,学生花的时间比上二题多些。当然有的学生还是反应很快,还有一部分学生则花了有5分钟的时间。在这个班,说明学生之间的差异还是很大的。

第五环节 管理问题

活动内容

某商场有管理人员40人,销售人员80人,为了提高服务水平和销售量,商场决定从管理人员中抽调一部分人充实销售部分,使管理人员与销售人员的人数比为1:4,那么应抽调的管理人员数x 满足怎样的方程?

活动目的

这个例题还是采取独立思考的原则,主要是针对刚才教师发现上一题做慢,做错的同学。努力引导他们找到问题中的等量关系。

教学效果:

再次提醒刚才做错的和做的很慢的同学。让他们找到等量关系。由于我的提醒和同学们的注意力高度集中,从检查的效果来看,比上一次大有进步。

第六环节 课时小节

活动内容

对于一个现实问题⇒找到它的等量关系⇒建立分式方程

分母中含有未知数的方程叫做分式方程

同时注意每一步的实际意义。

活动目的

让学生感受到在实际问题中,一定要找到它的等量关系,最好是越多越好。根据等量关系来列方程,这个方程不是唯一的,今天的分式方程就是以前没有接触过的。同时培养学生有条理的思考及其语言表达能力。

教学效果:

小节最好由同学们讨论,再派代表来叙述。而不是让老师说。教师只是顺势把学生的话进行一个归纳。关注学生从现实生活中发现并提出数学问题的能力,关注学生能否尝试用不同方法寻求问题中数量关系,并用分式方程表示,能否表达自己解决问题的过程。大家基本都知道核心是找到等量关系,从而找到它的方程。

布置作业:P87——随堂练习第一题

P88——习题3.6——1,2,3

四、教学反思

1、教材只是为教师提供最基本的教学素材,教师完全可以根据学生的实际情况进行适当调整。这些问题的提出要根据本班学生的实际情况,学生能力强的,就要找一些难度大的。学生能力弱的,就要找一些难度小的。还可以因势利导的编一些与同学们生活息息相关的例子。当然,这些问题的提出都必须以现实生活为背景。不要出一些与实际生活不符的纯理论问题。

2、课堂上要把激发学生学习的积极性放在首位,多让学生说,帮助学生培养发展有条理的思考及其语言表达能力。同时要多注意困难学生的疑问。不要让一些思维活跃的学生的回答代替了其他同学的思考。使小组学习更有实效性。

3、列分式方程解决应用问题要比列一次方程(组)稍复杂一些。教学是要引导学生抓住寻找等量关系,恰当选设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量等关键环节,细心分析问题中的数量关系。一定要在这方面多花时间,要让你“会”转化为学生“会”。只要学生脑子里有分析这种问题的“意识”这节课才有收获。

八年级数学下册《3.4 分式方程(一)》教学设计 北师大版

总体说明

本节共三个课时, 它分为分式方程的认知, 分式方程的解答, 以及分式方程在实际问题中的应用。彼此之间由浅入深。是“实题——分式方程建模——求解——解释解的合理性”过程。本章在前面几节陆续介绍了分式,分式的乘除,分式的加减,为本节解分式方程打下了扎实的基础。同时应注意对学生进行过程性评价,要延迟评价学生运算的熟练程度,允许学生经过一定时间达到《标准》要求的目标,把评价重点放在对算理的理解上。

一、学生知识状况分析

学生的知识技能基础:学生在小学以及七年级学过解应用题,以及在本章第三节所讲述的分式加减时所引入的问题的提出及问题的解答。对实际问题进行建模有初步地了解,具备分析问题,处理问题的能力。

学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些问题建模活动,解决了一些简单的现实问题,感受到找出问题等量关系的作用。获得了解决实际问题所必须的一些数学活动经验基础。同时在以前的数学学习中学生已经经历了很多合作学习的经验,具备了一定的合作与交流的能力。

二、教学任务分析

教学时要有意识地进一步提高学生的阅读理解能力,鼓励学生从多角度思考问题,解释所获得结果的合理性。对于常用的数量关系,虽然学生以前大都接触过,但在本节的教学中仍要注意复习、总结,并抓住用两个已知量表示第三个量的表达式,引导学生举一反三,进一步提高分析问题与解决问题的能力。为此,本课时的教学目标是:

知识与技能:

(1)通过对实际问题的分析,感受分式方程刻画现实世界的有效模型的意义。

(2)通过观察,归纳分式方程的概念。

(3)体会到分式方程作为实际问题的模型,能够根据实际问题建立分式方程的数学模型,并能归纳

出分式方程的描述性定义。

过程与方法:采用的是尝试——归纳相结合的方法,根据开始提出的多个实际问题。教师鼓励学生进行尝试,利用具体情境中的等量关系列出分式方程,归纳出分式方程的定义。

情感与态度:在建立分式方程的数学模型的过程中培养能力和克服困难的勇气,并从中获得成就感,提高解决问题的能力。

三、教学过程分析

本节课设计了6教学环节:小麦实验田问题——高速公路问题——电脑网络培训问题——捐款问题——管理问题——课时小节。

第一环节 小麦实验田问题

活动内容

有两块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000kg 和15000kg 。已知第一块试验田每公顷的产量比第二块少3000kg ,分别求出这两块试验田每公顷的产量。 你能找出这一问题中的所有等量关系吗?

如果设第一块实验田每公顷的产量为

___________kg.

根据题意,可得方程:

_______________________________________________

活动目的

为了让学生经历从实际问题抽象、概括分式方程这一“数学化”的过程,体会分式方程的模型在解决实际生活问题中作用,设置了这么一个例题,关键是引导学生努力寻找问题中的所有等量关系,发展学生分析问题、解决问题的能力。

教学效果:

在第一问中,同学们七嘴八舌,得到了许多等量关系。1、第一块实验田的

面积=第二块实验田的面积。2、每公顷的产量=总产量。3、第一块实验田每公顷的产量xk g ,那么第二块试验田每公顷的产量是

土地面积

+3000kg =第二块试验田每公顷的产量。感觉到每人都能想一点,但都不全。第三问得到也有多种方案。例1900015000x x +30009000x ,2这时教师就应适时引导, ==x 9000x x +[1**********]00

每步的实际意义是什么?这样帮学生排除了第二种形式。 ,15000x +3000,x +300015000

第二环节 高速公路问题

活动内容

从甲地到乙地有两条长路:一条是全长600km 的普通公路,另一条是全长480km 的高速公路。某客车在高速公路上行驶的平均速度比在普通公路上快45km /h ,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间。 这一问题中有哪些等量关系?

如果设客车由高速公路从甲地到乙地所需的时间为 xh ,那么它由普通公路从甲地到乙地所需的时间为 _________________h 。

根据题意,可得方程_______________________________________________-

活动目的

再次让学生经历从实际问题抽象、概括分式方程这一“数学化”的过程,体会分式方程的模型作用,设置了这么一个例题,关键是引导学生努力寻找问题中的所有等量关系,发展学生分析问题、解决问题的能力。

教学效果:

这次讨论的声音比第一次要少些,可能感觉比上一题容易。找出的等量关系有(1)600km=客车在普通公路上行驶的平均速度⨯客车由普通公路从甲地到乙地的时间。

(2)480 km=客车在高速公路上行驶的平均速度⨯客车由高速公路从甲地到乙地的时间。

(3)客车在高速公路上行驶的平均速度减去客车在普通公路上行驶的平均速度=

(4)由高速公路从甲地到乙地的时间=

同样注意引导学生每一步的实际意义。

第三环节 电脑网络培训问题

活动内容

王军同学准备在课外活动时间组织部分同学参加电脑网络培训,按原定的人数估计共需费用300元。后因人数增加到原定人数的2倍,费用享受了优惠,一共只需要480元,参加活动的每个同学平均分摊的费用比原计划少4元,原定的人数是多少?

这一问题中有哪些等量关系?

如果设原定是x 人,那么每人平均分摊______________元。

人数增加到原定人数的2倍后,每人平均分摊_________________元。

根据题意,可得方程_______________________________________________-.

活动目的

由浅入深,出了一道比上题难度大一点的问题。还是为了训练学生找出问题中的所有等量关系,发展学生分析问题、解决问题的能力。

教学效果:

这次学生讨论的声音又大了点,找出了如下的等量关系

(1) 实际参加活动的人数=原定人数⨯2。

(2) 原计划每个同学平均分摊的费用=实际每个同学平均分摊的费用+4元。 45km /h 1⨯由普通公路从甲地到乙地的时间。 2

根据题意:

300480+4 =x 2x

第四环节 捐款问题

这个题目不要求学生讨论。让学生独立完成。

活动内容

为了帮助遭受自然灾害的地区重建家园。某学校号召同学们自愿捐款。已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款恰好相等。如果设第一次捐款人数为x 人,那么x 满足怎样的方程?

活动目的

这次让学生独立思考,不再借助别人的力量。根据前面几题的练习,看同学们对找等量关系到底掌握了多少。特别关注那些后进生。以便及时调整教学进度。

教学效果:

这次不允许讨论,学生花的时间比上二题多些。当然有的学生还是反应很快,还有一部分学生则花了有5分钟的时间。在这个班,说明学生之间的差异还是很大的。

第五环节 管理问题

活动内容

某商场有管理人员40人,销售人员80人,为了提高服务水平和销售量,商场决定从管理人员中抽调一部分人充实销售部分,使管理人员与销售人员的人数比为1:4,那么应抽调的管理人员数x 满足怎样的方程?

活动目的

这个例题还是采取独立思考的原则,主要是针对刚才教师发现上一题做慢,做错的同学。努力引导他们找到问题中的等量关系。

教学效果:

再次提醒刚才做错的和做的很慢的同学。让他们找到等量关系。由于我的提醒和同学们的注意力高度集中,从检查的效果来看,比上一次大有进步。

第六环节 课时小节

活动内容

对于一个现实问题⇒找到它的等量关系⇒建立分式方程

分母中含有未知数的方程叫做分式方程

同时注意每一步的实际意义。

活动目的

让学生感受到在实际问题中,一定要找到它的等量关系,最好是越多越好。根据等量关系来列方程,这个方程不是唯一的,今天的分式方程就是以前没有接触过的。同时培养学生有条理的思考及其语言表达能力。

教学效果:

小节最好由同学们讨论,再派代表来叙述。而不是让老师说。教师只是顺势把学生的话进行一个归纳。关注学生从现实生活中发现并提出数学问题的能力,关注学生能否尝试用不同方法寻求问题中数量关系,并用分式方程表示,能否表达自己解决问题的过程。大家基本都知道核心是找到等量关系,从而找到它的方程。

布置作业:P87——随堂练习第一题

P88——习题3.6——1,2,3

四、教学反思

1、教材只是为教师提供最基本的教学素材,教师完全可以根据学生的实际情况进行适当调整。这些问题的提出要根据本班学生的实际情况,学生能力强的,就要找一些难度大的。学生能力弱的,就要找一些难度小的。还可以因势利导的编一些与同学们生活息息相关的例子。当然,这些问题的提出都必须以现实生活为背景。不要出一些与实际生活不符的纯理论问题。

2、课堂上要把激发学生学习的积极性放在首位,多让学生说,帮助学生培养发展有条理的思考及其语言表达能力。同时要多注意困难学生的疑问。不要让一些思维活跃的学生的回答代替了其他同学的思考。使小组学习更有实效性。

3、列分式方程解决应用问题要比列一次方程(组)稍复杂一些。教学是要引导学生抓住寻找等量关系,恰当选设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量等关键环节,细心分析问题中的数量关系。一定要在这方面多花时间,要让你“会”转化为学生“会”。只要学生脑子里有分析这种问题的“意识”这节课才有收获。


相关内容

  • 全国初中数学教材目录大全
  • 人教版初中数学目录: 七年级上册 第一章 有理数 1.1 正数和负数 1.2 有理数 1.3 有理数的加减法 1.4 有理数的乘除法 1.5 有理数的乘方 第二章 整式的加减 2.1 整式 2.2 整式的加减 第三章 一元一次方程 3.1 从算式到方程 3.2 解一元一次方程(一) 3.3 解一元一 ...

  • 浙教版七年级下册数学教学计划
  • 2015学年第二学期七年级下册数学教学计划 一.学情分析 从七年级上册数学期末考试成绩来看, 本班优秀率有突破 10 人, 算是达到预期目标, 但及格率只达到 65% 多, 与预期尚有一定的差距.总体上来看, 仅管绝大多数学生学习很努力, 也掌握了一定的学习数学的方法和技巧, 但基础知识的不扎实成为 ...

  • 八年级下册数学分式单元测试卷+答案
  • 八年级下册分式单元测试卷 一.选择(每题2分,共20分) 1.代数式的家中来了四位客人①2 ②xy ③1 ④x,其中属于分式家族成员的有( ) x52a1 A.①② B. ③④ C. ①③ D.①②③④ 2. 若分式xx1无意义,则x的值是( ) A. 0 B. 1 C. -1 D.1 ...

  • 北师大版八年级数学下册教学工作计划
  •   一、上一学期学生学习情况(基本知识、基本技能掌握情况、能力发展)和教学工作中的经验、问题:   上学期期末考试的成绩不及格,总体来看,成绩比较不理想。在学生所学知识的掌握程度上,大部分学生能够透彻理解知识,知识间的内在联系也较为清楚,但个别学生连简单的基础知识还不能有效的掌握,成绩较差。在学习能 ...

  • 冀教版初中数学教材总目录
  • 冀教版初中数学教材 总目录 七年级上册 第一章 几何图形的初步认识 1.1 几何图形1.2 图形中的点.线.面1.3 几何体的表面展开图 1.4 从不同方向看几何体1.5 用平面截几何体 第二章 有理数 2.1 正数和负数2.2 数轴2.3 绝对值2.4 有理数的大小比较 2.5 有理数的加法2.6 ...

  • 华师大版八年级下册数学教学计划
  • 一、教学目标 1、知识与技能:主要内容包括“分式” “ 函数及其图象”“全等三角形” “平行四边形的判定” “数据的整理与初步处理”共五章,各章都力图讲清知识的来龙去脉,将知识的形成和应用过程呈现给同学们。 2、过程与方法: [1] 经历“观察----探索----猜测----证明”的学习过程,体验科 ...

  • 八年级数学下册___分式知识点总结
  • 第十六章 分式 1.分式的定义:如果A.B表示两个整式,并且B中含有字母,那么式子A叫做分式. B 分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零. 2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变. AA∙C=BB∙CAA÷C=BB÷C (C≠0) ...

  • 新人教版八年级下册数学教学工作计划
  • 一、指导思想: 以《初中数学新课程标准》为依据,全面推进素质教育。数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据 、进行计算、推理 和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想 和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想 ...

  • 初中数学各版本教材目录比较
  • 华师大版(新版) 七年级上册 第一章 走进数学世界 第二章 有理数 2.1 有理数 1.正数和负数 2.有理数 2.2 数轴 1.数轴 2.在数轴上比较数的大小 2.3 相反数 2.4 绝对值 2.5 有理数的大小比较 2.6 有理数的加法 1.有理数的加法法则 2.有理数加法的运算律 2.7 有理 ...