变压吸附原理

单一的固定吸附床操作,无论是变温吸附还是变压吸附,由于吸附剂需要再生,吸附都是间歇式的。因此工业上都是采用两个或更多的吸附床,使吸附床的吸附和再生交替进行。当一个塔处于吸附过程时,其他塔就处于再生过程的不同阶段;

当该塔结束吸附步骤开始再生过程时,另一个塔又接着进行吸附过程,这样就能保证原料气不断输入,产品气不断产出,整个吸附过程才是连续的。

对于变压吸附循环过程,依据吸附剂再生的方法有下列几个基本步骤,下图示出了常压解吸和真空解吸变压吸附的基本过程。

1.常压解吸[见图(a)]

(1)升压过程(A-B)

经解吸再生后的吸附床处于过程的最低压力P1,床层内杂质的吸留量为Q1(A点),在此条件下让其他塔的吸附出口气体进入该塔,使塔压升至吸附压力P3,此时床内杂质的吸留量Q1不变(B点)。

(2)吸附过程(B-C)

在恒定的吸附压力下原料气不断进入吸附床,同时输出产品组分,吸附床内杂质组分的吸留量逐步增加,当达到规定的吸留量Q3时(C点)停止进入原料气,吸附终止,此时吸附床上部仍预留有一部分未吸附杂质的吸附剂。

(3)顺放过程(C-D)

沿着进入原料气输出产品的方向降低压力,流出的气体仍然是产品组分,这部分气体用于其他吸附床升压或冲洗。在此过程中,随床内压力不断下降,吸附剂上的杂质被不断解吸,解吸的杂质又继续被吸附床上部未充分吸附杂质的吸附荆吸附,因此杂质并未离开吸附床,床内杂质吸留量Q3不变。当吸附床降压到D点时,床内吸附剂全部被杂质占用,压力为P2。

(4)逆放过程(D-E)

逆着进入原料气输出产品的方向降低压力,直到变压吸附过程的最低压力P1(通常接近大气压力),床内大部分吸留的杂质随气流排出器外,床内杂质吸留量为Q2。

(5)冲洗过程(E-A)

根据实验测定的吸附等温线,在压力P1下吸附床仍有一部分杂质吸留量,为使这部分杂质尽可能解吸,要求床内压力进一步降低。为此利用其他吸附床顺向降压过程排出的产品组分,在过程最低压力P1下对床层进行逆向冲洗不断降低杂质分压使杂质解吸并随冲洗气带出吸附床。经一定程度冲洗后,床内杂质吸留量降低到过程的最低量Q1时,再生结束。至此,吸附床完成了一个吸附-解吸再生过程,准备再次升压进行下一个循环。

2.真空解吸[见图(b)]

(1)升压过程(A-B)

经真空解吸再生后的吸附床处于过程的最低压力P0、床内杂质吸留量为Q1(A点),在此条件下用让其他塔的吸附出口气体进入该塔,使塔压升至吸附压力P3,床内杂质吸留量Q1不变(B点)。

(2)吸附过程(B-C)

在恒定的吸附压力下原料气不断进入吸附床,同时输出产品组分,吸附床内杂质组分的吸留量逐步增加,当达到规定的吸留量Q3时(C点)停止进入原料气,吸附终止,此时吸附床上部仍预留有一部分未吸附杂质的吸附剂。

(3)顺放过程(C-D)

沿着进入原料气输出产品的方向降低压力,流出的气体仍为产品组分,这部分气体用于其他吸附床升压或冲洗。在此过程中,随床内压力不断下降,吸附剂上的杂质被不断解吸,解吸的杂质又继续被吸附床上部未充分吸附杂质的吸附剂吸附,因此杂质并未离开吸附床,床内杂质吸留量Q3不变。当吸附床降压到D点时,床内吸附剂全部被杂质占用,压力为P2。

(4)逆放过程(D-E)

逆着进入原料气输出产品的方向降低压力,直到变压吸附过程的最低压力P1(通常接近大气压力),床内大部分吸留的杂质随气流排出器外,床内杂质吸留量为Q2。

(5)抽空过程(E-A)

根据实验测定的吸附等温线,在压力P1下吸附床仍有一部分杂质吸留量,为使这部分杂质尽可能解吸,要求床内压力进一步降低。在此利用真空泵抽吸的方法降低床层压力,从而降低了杂质分压使杂质解吸并随抽空气带出吸附床。抽吸一定时间后,床内压力为P0,杂质吸留量降低到过程的最低量Q1时,再生结束。至此,吸附床完成了一个吸附-解吸再生过程,准备再次升压进行下一个循环。

单一的固定吸附床操作,无论是变温吸附还是变压吸附,由于吸附剂需要再生,吸附都是间歇式的。因此工业上都是采用两个或更多的吸附床,使吸附床的吸附和再生交替进行。当一个塔处于吸附过程时,其他塔就处于再生过程的不同阶段;

当该塔结束吸附步骤开始再生过程时,另一个塔又接着进行吸附过程,这样就能保证原料气不断输入,产品气不断产出,整个吸附过程才是连续的。

对于变压吸附循环过程,依据吸附剂再生的方法有下列几个基本步骤,下图示出了常压解吸和真空解吸变压吸附的基本过程。

1.常压解吸[见图(a)]

(1)升压过程(A-B)

经解吸再生后的吸附床处于过程的最低压力P1,床层内杂质的吸留量为Q1(A点),在此条件下让其他塔的吸附出口气体进入该塔,使塔压升至吸附压力P3,此时床内杂质的吸留量Q1不变(B点)。

(2)吸附过程(B-C)

在恒定的吸附压力下原料气不断进入吸附床,同时输出产品组分,吸附床内杂质组分的吸留量逐步增加,当达到规定的吸留量Q3时(C点)停止进入原料气,吸附终止,此时吸附床上部仍预留有一部分未吸附杂质的吸附剂。

(3)顺放过程(C-D)

沿着进入原料气输出产品的方向降低压力,流出的气体仍然是产品组分,这部分气体用于其他吸附床升压或冲洗。在此过程中,随床内压力不断下降,吸附剂上的杂质被不断解吸,解吸的杂质又继续被吸附床上部未充分吸附杂质的吸附荆吸附,因此杂质并未离开吸附床,床内杂质吸留量Q3不变。当吸附床降压到D点时,床内吸附剂全部被杂质占用,压力为P2。

(4)逆放过程(D-E)

逆着进入原料气输出产品的方向降低压力,直到变压吸附过程的最低压力P1(通常接近大气压力),床内大部分吸留的杂质随气流排出器外,床内杂质吸留量为Q2。

(5)冲洗过程(E-A)

根据实验测定的吸附等温线,在压力P1下吸附床仍有一部分杂质吸留量,为使这部分杂质尽可能解吸,要求床内压力进一步降低。为此利用其他吸附床顺向降压过程排出的产品组分,在过程最低压力P1下对床层进行逆向冲洗不断降低杂质分压使杂质解吸并随冲洗气带出吸附床。经一定程度冲洗后,床内杂质吸留量降低到过程的最低量Q1时,再生结束。至此,吸附床完成了一个吸附-解吸再生过程,准备再次升压进行下一个循环。

2.真空解吸[见图(b)]

(1)升压过程(A-B)

经真空解吸再生后的吸附床处于过程的最低压力P0、床内杂质吸留量为Q1(A点),在此条件下用让其他塔的吸附出口气体进入该塔,使塔压升至吸附压力P3,床内杂质吸留量Q1不变(B点)。

(2)吸附过程(B-C)

在恒定的吸附压力下原料气不断进入吸附床,同时输出产品组分,吸附床内杂质组分的吸留量逐步增加,当达到规定的吸留量Q3时(C点)停止进入原料气,吸附终止,此时吸附床上部仍预留有一部分未吸附杂质的吸附剂。

(3)顺放过程(C-D)

沿着进入原料气输出产品的方向降低压力,流出的气体仍为产品组分,这部分气体用于其他吸附床升压或冲洗。在此过程中,随床内压力不断下降,吸附剂上的杂质被不断解吸,解吸的杂质又继续被吸附床上部未充分吸附杂质的吸附剂吸附,因此杂质并未离开吸附床,床内杂质吸留量Q3不变。当吸附床降压到D点时,床内吸附剂全部被杂质占用,压力为P2。

(4)逆放过程(D-E)

逆着进入原料气输出产品的方向降低压力,直到变压吸附过程的最低压力P1(通常接近大气压力),床内大部分吸留的杂质随气流排出器外,床内杂质吸留量为Q2。

(5)抽空过程(E-A)

根据实验测定的吸附等温线,在压力P1下吸附床仍有一部分杂质吸留量,为使这部分杂质尽可能解吸,要求床内压力进一步降低。在此利用真空泵抽吸的方法降低床层压力,从而降低了杂质分压使杂质解吸并随抽空气带出吸附床。抽吸一定时间后,床内压力为P0,杂质吸留量降低到过程的最低量Q1时,再生结束。至此,吸附床完成了一个吸附-解吸再生过程,准备再次升压进行下一个循环。


相关内容

  • 氢气变压吸附原理
  • 变压吸附原理在工业制氢中的应用 一. 概述 冶金企业有丰富的焦炉煤气,经变压吸附后其中氢气的组分提高,仍可作冶金燃料再利用,有广泛的应用前景.吸附剂具有选择性吸附的特性,并且吸附剂对不同的气体在吸附量.吸附速度.吸附力等方面均存在差异,变压吸附制氢就是利用吸附剂这个特点,实现气体分离的.另外吸附剂的 ...

  • 变压吸附制氧一般性技术原理
  • 变压吸附制氧一般性技术原理 1 变压吸附制氧技术发展概况 变压吸附空分制氧始创于20世纪60年代初(Skarstrom, 1960; Guerin de Montgarenil & Domine, 1964),并于70年代实现工业化生产.在此之前,传统的工业空分装置大部分采用深冷精馏法(简称 ...

  • 实验三变压吸附
  • 变压吸附实验 利用多孔固体物质的选择性吸附分离和净化气体或液体混合物的过程称为吸附分离.吸附过程得以实现的基础是固体表面过剩能的存在,这种过剩能可通过范德华力的作用吸引物质附着于固体表面,也可通过化学键合力的作用吸引物质附着于固体表面,前者称为物理吸附,后者称为化学吸附.一个完整的吸附分离过程通常是 ...

  • 用高性能制氧分子筛变压吸附
  • 第22卷第5鞠2000年9月 南京化工大学学撤 J0uR.AL0FNANJINGuNIVERSlTYoFcHEMIcAL v.1.22No5 TEcHNOI∞GY se.2000 ===::一∞====±!========*_∞==::=2222=:==#_#_≈±!========:====≈=± ...

  • 吸附式制氮装置的设计
  • I 吉林化工学院本科毕业设计说明书 摘 要 氮气是惰性气体,在石油化工生产.生物制药中,物料需要使用氮气进行保护和输送:在工业热处理方面,也需要制备氮基,并且在塑料生产与橡胶制造工业也有着广泛的用途. 变压吸附技术,是一种高效的新型气体分离技术,目前已得到了广泛应用.由小型化逐渐实现大型化发展,因为 ...

  • 中国对变压吸附制氧技术的研究
  • 中国对变压吸附制氧技术的开发起步较早,20世纪70年代是中国PSA 分离空气制氧技术发展的鼎盛时期.全国有十几个单位相继开展了变压吸附制氧技术的实验研究,建立了数套工业试验设备.这个时期开发的变压吸附制氧设备的共同点有以下几个方面: ⑴大多采用高于大气压吸附.常压解吸流程,吸附塔有两个到四个: ⑵空 ...

  • 焦炉煤气变压吸附制氢装置五塔与六塔工艺方案的比较
  • 张天来,穆根来 (成都天蓝化工科技有限公司,四川 成都,610041) [摘 要]以1000Nm/h规模的焦炉煤气变压吸附制氢装置为例,介绍常用的五塔和六塔流程两种工艺技术方案,分析比较了其工艺配置.运行程序切换方式和建造成本的差异,并说明它们各自的适用场合与优劣. [关键词]变压吸附:焦炉煤气制氢 ...

  • 可燃气体报警器毕业论文
  • 可燃气体报警器毕业论文 专 业:电子测量技术与仪器 目录 第一章 毕业设计的意义........................................................................1 第二章 选择题目的意义......................... ...

  • 深冷制氮与变压吸附制氮的技术经济比较
  • 深冷制氮与变压吸附制氮的技术经济比较 深冷制氮与变压吸附制氮的技术经济比较 作者:汪红(中国石化集团洛阳石化工程公司) [关键词]深冷制氮,变压吸附制氮,技术经济比较 [摘要]随着工业的迅速发展,氮气在化工.电子.冶金.食品.机械等领域获得了广泛的应用,我国对氮气的需求量每年以大于8%的速度增加. ...