线面平行证明

线面平行证明“三板斧”

第一斧:从结论出发,假定线面平行成立,利用线面平行的性质,在平面

内找到与已知直线的平行线。

例1:如图正方体ABCDA1B1C1D1中,E为DD1的中点,试判断BD1与平面AEC的位置关系,并说明理由。

练习:

如图,已知四棱锥PABCD的底面ABCD的底面ABCD是菱形,点F为PC中点,求证:PA//平面BFD

第二斧:以平面外的直线作平行四边形

D

例2:如图,正方体ABCDA1B1C1D1,E为A1B1上任意一点,求证:AE//平面DC1

练习:

如图,已知三棱柱ABCA1B1C1中,E为B1C1的中点,F为AA1的中点,求证:

A1E//平面B1CF

第三斧:选证明面面平行,再由线平行的定义过度到线面平行。

例3:如图,四棱锥PABCD,底面ABCD为正方形,E,F,G分别为PC,PD,BC的中点,求证:PA//平面EFG

练习:如图,在直三棱柱(侧棱与底面垂直的三棱柱)D为BC的中点,求证:

AC1//平面AB1D

B

C

总结:线面平行证明的三种方法中,多数题目其实都可以用第一、二种方法得到解决,因此前二种方法是首先。第三种方法虽然证明过程长,但其思路是很固定的,实践过程中更容易为同学们所掌握。一个题目可能有几种证法,同学们练习时可以三种方法都去试一试,看看有几种办法可以解决。在熟悉以后,解题过程中可按照招式一、二、三的顺序依次去思考。

1. 如图,在四棱锥PABCD中,ABCD是平行四边形,M,N分别是AB,PC的中点.

求证:MN//平面PAD.

2.如图,在正四棱锥PABCD中,PAABa,点E在棱PC上. 问点E在何处时,PA//平面EBD,并加以证明.

P

E

C

A

B

3.如图,在直三棱柱ABC-A1B1C1中, D为AC的中点,求证:AB1//平面BC1D;

AA

D

C

B1

C1

4.在四面体ABCD中,M,N分别是面△ACD,△BCD的重心,则四面体的四个面中与MN平行的是________.

5.如下图所示,四个正方体中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得到AB//面MNP的图形的序号的是

①②③④

6.如图,正三棱柱ABCA1B1C1的底面边长是2,3,D是AC的中点.求证:B1C//平面A1BD.

A

7.a,b是两条异面直线,A是不在a,b上的点,则下列结论成立的是

A.过A有且只有一个平面平行于a,b B.过A至少有一个平面平行于a,b

C.过A有无数个平面平行于a,b D.过A且平行a,b的平面可能不存在

8.设平面∥β,A,C∈,B,D∈β,直线AB与CD交于S,若AS=18,BS=9,CD=34,则CS=_____________.

1

9.如下图,正方体ABCD-A1B1C1D1中,E,F分别为棱AB

,CC1的中点,在平面ADD1A1内且与平面D1EF平行的直线( )

A.不存在 B.有1条 C.有2条 D.有无数条

10.如图所示:设P

上的点,

AMDN且MBNP

11.求证:MN//平面PBC如图所示,在棱长为a的正方体ABCDA1B1C1D1中,E,F,

P,Q分别是BC,C1D1,AD1,BD的中点.

(1) 求证:PQ//平面DCC1D1(2) 求PQ的长.

(3) 求证:EF//平面BB1D1D.

线面平行证明“三板斧”

第一斧:从结论出发,假定线面平行成立,利用线面平行的性质,在平面

内找到与已知直线的平行线。

例1:如图正方体ABCDA1B1C1D1中,E为DD1的中点,试判断BD1与平面AEC的位置关系,并说明理由。

练习:

如图,已知四棱锥PABCD的底面ABCD的底面ABCD是菱形,点F为PC中点,求证:PA//平面BFD

第二斧:以平面外的直线作平行四边形

D

例2:如图,正方体ABCDA1B1C1D1,E为A1B1上任意一点,求证:AE//平面DC1

练习:

如图,已知三棱柱ABCA1B1C1中,E为B1C1的中点,F为AA1的中点,求证:

A1E//平面B1CF

第三斧:选证明面面平行,再由线平行的定义过度到线面平行。

例3:如图,四棱锥PABCD,底面ABCD为正方形,E,F,G分别为PC,PD,BC的中点,求证:PA//平面EFG

练习:如图,在直三棱柱(侧棱与底面垂直的三棱柱)D为BC的中点,求证:

AC1//平面AB1D

B

C

总结:线面平行证明的三种方法中,多数题目其实都可以用第一、二种方法得到解决,因此前二种方法是首先。第三种方法虽然证明过程长,但其思路是很固定的,实践过程中更容易为同学们所掌握。一个题目可能有几种证法,同学们练习时可以三种方法都去试一试,看看有几种办法可以解决。在熟悉以后,解题过程中可按照招式一、二、三的顺序依次去思考。

1. 如图,在四棱锥PABCD中,ABCD是平行四边形,M,N分别是AB,PC的中点.

求证:MN//平面PAD.

2.如图,在正四棱锥PABCD中,PAABa,点E在棱PC上. 问点E在何处时,PA//平面EBD,并加以证明.

P

E

C

A

B

3.如图,在直三棱柱ABC-A1B1C1中, D为AC的中点,求证:AB1//平面BC1D;

AA

D

C

B1

C1

4.在四面体ABCD中,M,N分别是面△ACD,△BCD的重心,则四面体的四个面中与MN平行的是________.

5.如下图所示,四个正方体中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得到AB//面MNP的图形的序号的是

①②③④

6.如图,正三棱柱ABCA1B1C1的底面边长是2,3,D是AC的中点.求证:B1C//平面A1BD.

A

7.a,b是两条异面直线,A是不在a,b上的点,则下列结论成立的是

A.过A有且只有一个平面平行于a,b B.过A至少有一个平面平行于a,b

C.过A有无数个平面平行于a,b D.过A且平行a,b的平面可能不存在

8.设平面∥β,A,C∈,B,D∈β,直线AB与CD交于S,若AS=18,BS=9,CD=34,则CS=_____________.

1

9.如下图,正方体ABCD-A1B1C1D1中,E,F分别为棱AB

,CC1的中点,在平面ADD1A1内且与平面D1EF平行的直线( )

A.不存在 B.有1条 C.有2条 D.有无数条

10.如图所示:设P

上的点,

AMDN且MBNP

11.求证:MN//平面PBC如图所示,在棱长为a的正方体ABCDA1B1C1D1中,E,F,

P,Q分别是BC,C1D1,AD1,BD的中点.

(1) 求证:PQ//平面DCC1D1(2) 求PQ的长.

(3) 求证:EF//平面BB1D1D.


相关内容

  • 立体几何知识点
  • 立体几何知识点 [重点知识整合] 1. 直线与平面平行的判定和性质 (1)判定:①判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行: ②面面平行的性质:若两个平面平行,则其中一个平面内的任何直线与另一个平面平行. (2)性质:如果一条直线和一个平面平行,那么经过这条 ...

  • 如何证明线线平行
  • 用反证法 A平面垂直与一条直线, 设平面和直线的交点为P B平面垂直与一条直线, 设平面和直线的交点为Q 假设A和B不平行,那么一定有交点。 设有交点R,那么 做三角形 PQR PR垂直PQ QR垂直PQ 没有这样的三角形。因为三角形的内角和为180 所以 A一定平行于B 内错角相等 同位角相等 同 ...

  • 证明线线平行的方法
  • 内错角相等 同位角相等 同旁内角互补 A平行B,B平行C,则A平行C 平行四边形(那一类如菱形,矩形等)对边平行 证明:如果a‖b,a‖c,那么b‖c 证明:假使b、c不平行 则b、c交于一点O 又因为a‖b,a‖c 所以过O有b、c两条直线平行于a 这就与平行公理矛盾 所以假使不成立 所以b‖c ...

  • 初一平行线证明题
  • 用反证法 A平面垂直与一条直线, 设平面和直线的交点为P B平面垂直与一条直线, 设平面和直线的交点为Q 假设A和B不平行,那么一定有交点。 设有交点R,那么 做三角形 PQR PR垂直PQ QR垂直PQ 没有这样的三角形。因为三角形的内角和为180 所以 A一定平行于B 证明:如果a‖b,a‖c, ...

  • 怎样证明两直线平行
  • “两直线平行,同位角相等.”是公理,是无法证明的,书上给的也只是说明而已,并没有给出严格证明,而“两直线平行,内错角相等“则是由上面的公理推导出来的,利用了对等角相等做了一个替换,上面两位给出的都不是严格的证明。 一、怎样证明两直线平行 证明两直线平行的常用定理(性质)有: 1.两直线平行的判定定理 ...

  • 平行四边形的判定方法(五种)
  • 在四边形ABCD中,对角线AC,BD相交于点O.请从下列所给条件中,任意添加两个条件,使四边形ABCD 是平行四边形.并说明理由. (1)AB//CD (2) AD//BC (3) AB=CD (4)AD=BC (5) 先独立思考,然后小组合作,交流,共同探索,得出结论: (1)(2) , (1)( ...

  • 平行四边形的证明题 2
  • 平行四边形的证明题 一.解答题(共30小题) 1.如图,已知四边形ABCD 为平行四边形,AE ⊥BD 于E ,CF ⊥BD 于F . (1)求证:BE=DF: (2)若 M .N 分别为边AD .BC 上的点,且DM=BN,试判断四边形MENF 的形状(不必说明理由). 2.如图所示,▱AECF ...

  • 证明线面平行的方法
  • 线面平行重点难点剖析 线面平行关系的判断和证明是空间线面位置关系的研究重点之一,它包括直线与直线的平行,直线与平面的平行以及平面与平面的平行. 本节复习包括首先要系统梳理有关判断、证明线面平行关系的各种依据,其中既包括有关定义、公理,还包括相应的判定定理或性质定理.梳理中不仅要明确有关判断、证明各有 ...

  • 证明平行的方法
  • 高中立体几何的证明主要是平行关系与垂直关系的证明。方法如下(难以建立坐标系时再考虑): Ⅰ.平行关系: 线线平行:1.在同一平面内无公共点的两条直线平行。2.公理4(平行公理)。3.线面平行的性质。4.面面平行的性质。5.垂直于同一平面的两条直线平行。 线面平行:1.直线与平面无公共点。2.平面外的 ...

  • 面面平行的证明
  • 判定定理:如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行。 反证:记其中一个平面内的两条相交直线为a,b。假设这两个平面不平行,设交线为l,则a∥l(过平面外一条与平面平行的直线的平面与该平面的交线平行于该直线),b∥l,则a∥b,与a,b相交矛盾,故假设不成立,所以这两个平面平 ...