称重传感器的原理及应用

称重传感器的原理及应用

随着技术的进步,由称重传感器制作的电子衡器已广泛地应用到各行各业,实现了对物料的快速、准确的称量,特别是随着微处理机的出现,工业生产过程自动化程度化的不断提高,称重传感器已成为过程控制中的一种必需的装置,从以前不能称重的大型罐、料斗等重量计测以及吊车秤、汽车秤等计测控制,到混合分配多种原料的配料系统、生产工艺中的自动检测和粉粒体进料量控制等,都应用了称重传感器,目前,称重传感器几乎运用到了所有的称重领域。

1.高速定量分装系统

本系统由微机控制称重传感器的称重和比较,并输出控制信号,执行定值称量,控制外部给料系统的运转,实行自动称量和快速分装的任务。

系统采用MCS-51单片机和V/F电压频率变换器等电子器件,其硬件电路框图如图1所示,用8031作为中央处理器,BCD拔码盘作为定值设定输入器,物料装在料斗里,其重量使传感器弹性体发生变形,输出与重量成正比的电信号,传感器输出信号经放大器放大后,输入V/F转换器进行A/D转换,转换成的频率信号直接送入8031微处理器中,其数字量由微机进行处理。微机一方面把物重的瞬时数字量送入显示电路,显示出瞬时物重,另一方面则进行称重比较,开启和关闭加料口、放料于箱中等一系列的称重定值控制。

图1 原理框图

在整个定值分装控制系统中,称重传感器是影响电子秤测量精度的关键部件,选用GYL-3应变式称重测力传感器。四片电阻应变片构成全桥桥路,在所加桥压U不变的情况下,传感器输出信号与作用在传感器上的重力和供桥桥压成正比,而且,供桥桥压U的变化直接影响电子称的测量精度,所以要求桥压很稳定。毫伏级的传感器输出经放大后,变成了0-10V的电压信号输出,送入V/F变换器进行A/D转换,其输出端输出的频率信号加到单片机8031定时器1的计数、输入端T1上。在微机内部由定时器0作计数定时,定时器0的定时时间由要求的A/D转换分辩率设定。

定时器1的计数值反映了测量电压大小即物料的重量。在显示的同时,计算机还根据设定值与测量值进行定值判断。测量值与给定值进行比较,取差值提供PID运算,当重量不足,则继续送料和显示测量值。一旦重量相等或大于给定值,控制接口输出控制信号,控制外部给料设备停止送料,显示测量终值,然后发出回答令,表示该袋装料结束,可进行下袋的装料称重。

图2所示为自动称重和装料装置。每个装料的箱子或袋子沿传送带运动,直到装有料的电子称下面,传送带停止运动,电磁线圈2通电,电子称料斗翻转,使料全部倒入箱子或袋子中,当料倒完,传送带马达再次通电,将装满料的箱子或袋子移出,并保护传送带继续运行,直到下一次空袋或空箱切断光电传感器的光源,与此同时,电子称料箱复位,电磁线圈1通电,漏斗给电子秤自动加料,重量由微机控制,当电子秤中的料与给定值相等时,电磁线圈1断电,弹簧力使漏斗门关上。装料系统开始下一个装料的循环。当漏斗中的料和传送带上的箱子足够多时,这个过程可以持续不断地进行下去。必要时,*作人员可以随时停止传送带,通过拔码盘输入不同的给定值,然后再启动,即可改变箱或袋中的重量。

图2 自动称重和装料装置

本系统选用不同的传感器,改变称重范围,则可以用到水泥、食糖、面粉加工等行业的自动包装中。

2.传感器在商用电子秤中的应用

目前,商用电子计价秤的使用非常普及,逐渐会取代传统的杆称和机械案秤。电子计价秤在秤台结构上有一个显著的特点:一个相当大的秤台,只在中间装置一个专门设计的传感器来承担物料的全部重

图3 计价秤内部结构示意图

量,如图3所示。常用的电子计价秤传感器的结构如图4所示,其中图4(a)为双连椭圆孔弹性体,秤盘用悬臂梁端部上平面的两个螺孔紧固;图4(b)为梅花型四连孔弹性体,秤盘用悬臂梁端部侧面的三个螺

孔坚固,中间支杆上粘贴补偿用的应变片。这两种形式的传感器,在计价秤中用得最多。图4(c)为三梁式弯曲弹性体,采样弯曲应力,对重量反应敏感,宜用来制作小称量计价秤。图4(d)为三梁式剪切弹性体,采样中间敏感梁的剪切应力,宜用来制作几百公斤称量范围计价秤。

图4 计价秤用弹性体结构

用这些复梁型高精度传感器来支承一个大的称重平台,被称重物又可能放置在任何称台的任意位置上,必然会产生四角示值误差,对图4(a),(b)两种结构形式的传感器,可通过锉磨的形式进行角差修正。对图4(c),(d),它有上下两根局部削弱的柔性辅助梁,使传感器对侧向力、横向力和扭转力矩具有很强的抵抗能力,可以通过锉磨辅助梁的柔性部位来调整传感器的灵敏系数和四角误差。图5为一种商用电子计价秤的电路框图。传感器采用的是图4(b)所示的梅花型四连孔结构,该秤具有置零、自动清除单价、零位自动跟踪、自动去皮、次数累计和金额累计、打印输出等功能,7段绿色荧光数码管显示,使用十分方便。

图5 电子计价秤的电路框图

图6是采用CHBL3型号S型双连孔弹性体称重传感器制作的便携式家用电子手提秤的原理图,由称重传感器、放大电路、A/D转换和液晶显示四部分组成。图中,E为9V的叠层电池,R1-R4是称重传感器的4个电阻应变片,R5、R6与W1组成零点调整电路。当载荷为零时,调节RW1使液晶显示屏显示为零。A1,A2为双运放集成电路LM358中的两个单元电路,组成了一个对称的同相放大器,A/D转换器采用ICL7106双积分型A/D转换器,液晶显示采用3 1/2液晶显示片。该电子秤精度高,简单实用,携带方便。

称重传感器是一种高精度的传感器,必须按规定的规格使用。若不按规定的规格使用,不仅不能发挥称重的作用,而且容易损坏,尤其是绝对不准超过负荷安全值使用。

图6 手提秤的电路框图

对于因温度变化对桥接零点和输出,灵敏度的影响,即使采用同一批应变片,也会因应变片之间稍有温度特性之差而引起误差,所以对要求精度较高的传感器,必须进行温度补偿,解决的方法是在被粘贴的基片上采用适当温度系数的自动补偿片,并从外部对它加以适当的补偿。

非线性误差是传感器特性中最重要的一点。产生非线性误差的原因很多,一般来说主要是由结构设计决定,通过线性补偿,也可得到改善。

滞后和蠕变是关于应变片及粘合剂的误差。由于粘合剂为高分子材料,其特性随温度变化较大,所以称重传感器必须在规定的温度范围内使用。

在露天下使用传感器,还应考虑阳光直射产生的温度影响和风压的影响。

电子秤的设计

摘 要

本系统采用单片机 AT89S52 为控制核心,实现电子秤的基本控制功能。系统的硬件部分包括最小系统板,数据采集、人机交互界面三大部分。最小系统部分主要是扩展了外部数据存储器,数据采集部分由压力传感器、信号的前级处理和 A/D 转换部分组成。人机界面部分为键盘输入 , 128 64 点阵式液晶显示,可以直观的显示中文,使用方便。

软件部分应用单片机 C 语言实现了本设计的全部控制功能,包括基本的称重功能,和发挥部分的显示购物清单的功能,可以设置日期和重新设定 10 种商品的单价,具有超重报警功能,由于系统资源丰富,还可以方便的扩展其应用

关键词

压力传感器 单片机 A/D转换器 LED显示器

第一部分: 方案论证与比较

一、控制器部分

本系统基于 51系列单片机来实现,因为系统需要大量的控制液晶显示和键盘。不宜采用大规模可编程逻辑器件:CPLD、FPGA来实现。另外系统没有其它高标准的要求,我们最终选择了AT89S52通用的比较普通单片机来实现系统设计。内部带有8KB的程序存储器,在外面扩展了32K数据存储器,以满足系统要求。

二、数据采集部分

( 1 )、传感器

题目没有要求具体的称重范围,我们选择最大量值为20千克。我们选择的是 L-PSIII 型传感器,量程 20Kg ,精度为

,满量程时误差

0.002Kg

。可以满足系统的精度要求。其原理如下图所示。

称重传感器主要由弹性体、电阻应变片电缆线等组成,内部线路采用惠更斯电桥,当弹性体承受载荷产生变形时,输出信号电压可由下式给出:

( 2 )、前级放大器部分

压力传感器输出的电压信号为毫伏级,所以对运算放大器要求很高。 具体方案:高精度低漂移运算放大器构成差动放大器。

差动放大器具有高输入阻抗,增益高的特点,可以利用普通运放 ( 如 OP07) 做成一个差动放大器。

电阻 R1 、 R2 电容 C1 、 C2 、 C3 、 C4 用于滤除前级的噪声, C1 、 C2 为普通小电容,可以滤除高频干扰, C3 、 C4 为大的电解电容,主要用于滤除低频噪声。

优点:输入级加入射随放大器,增大了输入阻抗,中间级为差动放大电路,滑动变阻器 R6 可以调节输出零点,最后一级可以用于微调放大倍数,使输出满足满量程要求。输出级为反向放大器,所以输出电阻不是很大,比较符合应用要求。 缺点:此电路要求 R3 、 R4 相等,误差将会影响输出精度,难度较大。实际测量,每一级运放都会引入较大噪声。对精度影响较大。

( 3 )、 A/D 转换器

由上面对传感器量程和精度的分析可知: A/D 转换器误差应在

12 位 A/D 精度: 10Kg/4096=2.44g

14 位 A/D 精度: 10Kg/16384=0.61g

考虑到其他部分所带来的干扰 ,12 位 A/D 无法满足系统精度要求。 所以我们需要选择 14位或者精度更高的A/D。 具体方案双积分型 A/D转换器:如:ICL7135、ICL7109 。 双积分型 A/D转换器精度高,但速度较慢(如:ICL7135),具有精确的差分输入,输入阻抗高(大于

),可自动调零,超量程信号,全部输出于TTL电平兼容。

双积分型 A/D转换器具有很强的抗干扰能力。对正负对称的工频干扰信号积分为零,所以对50HZ的工频干扰抑制能力较强,对高于工频干扰(例如噪声电压)已有良好的滤波作用。只要干扰电压的平均值为零,对输出就不产生影响。尤其以下

对本系统,缓慢变化的压力信号,很容易受到工频信号的影响。故而采用双积分型A/D转换器可大大降低对滤波电路的要求。

作为电子秤,系统对 AD的转换速度要求并不高,精度上14位的AD足以满足要求。另外双积分型A/D转换器较强的抗干扰能力,和精确的差分输入,低廉的价格。综合的分析其优点和缺点,我们最终选择了ICL7135

具体方案、双积分型 A/D转换器:如:ICL7135、ICL7109。

双积分型 A/D转换器精度高,但速度较慢(如:ICL7135),具有精确的差分输入,输入阻抗高(大于

),可自动调零,超量程信号,全部输出于TTL电平兼容。

双积分型 A/D转换器具有很强的抗干扰能力。对正负对称的工频干扰信号积分为零,所以对50HZ的工频干扰抑制能力较强,对高于工频干扰(例如噪声电压)已有良好的滤波作用。只要干扰电压的平均值为零,对输出就不产生影响。尤其对本系统,缓慢变化的压力信号,很容易受到工频信号的影响。故而采用双积分型A/D转换器可大大降低对滤波电路的要求。

作为电子秤,系统对 AD的转换速度要求并不高,精度上14位的AD足以满足要求。另外双积分型A/D转换器较强的抗干扰能力,和精确的差分输入,低廉的价格。综合的分析其优点和缺点,我们最终选择了ICL7135

三、人机交互界面

显示输出:

虽然 ZLG7289 具有控制数码管显示的功能,但考虑到本题目要求中文显示,数码管无法满足,只能考虑用带有中文字库的液晶显示器。由于可以分页显示,无需太大屏幕,我们选择了点阵式 128 × 64 型 LCD — OCM4X8C 。

第二部分:具体实现方案

一、硬件组成:

(一)、硬件结构框图如下:

( 二)、各部分硬件电路实现 (1)、基于AT89S52的主控电路图

主控电路以 89C52为核心扩展32K RAM;单片机使用6M晶振,P0口外接上拉电阻,增大了带负载能力;A12~A15接74LS138译码器,输出作外部片选信号。 扩展了几个接口用于其它部分于单片机的通信

( 2)前端信号处理

INA126构成的放大器及滤波电路:

通过调节

的阻值来改变放大倍数。微弱信号Vi1和Vi2被分别放大后从INA126的第6脚输出。A/D转换器ICL7135的输入电压变化范围是-2V~+2V,传感器的输出电压信号在0~20mv左右,因此放大器的放大倍数在200~300左右,可将

接成

的滑动变阻器。 由于 ICL7135对高频干扰不敏感,所以滤波电路主要针对工频及其低次谐波引入的干扰。因为压力信号变化十分缓慢,所以滤波电路可以把频率做得很低。

( 3)A/D转换器

基准源选用芯片 MC1403 2.5V分压得到:

由于 ICL7135内部没有振荡器,所以需要外接。但A/D转换器精度与时钟频率的漂移无关。正向积分时间T1和反向积分时间T2按相同比例增加并不影响测量的结果。ICL7135的时钟频率典型值为200kHz最高允许为1200kHz,时钟频率越高,转换速度越快。每输出一位BCD码的时间为200个时钟周期,选通脉冲位于数据脉冲的中部,如果时钟频率太高,则数据的接受程序还没有接受完毕,数据

就已经消失了。考虑到此系统频率要求不是太高,且单片机的工作频率也不是很高,因此我们取时钟频率的典型值:200kHz。由于频率比较低,对时钟漂移要求不高,我们采用阻容方式实现了基本的振荡电路。如下:

振荡频率约为 160kHz。

此外 ICL7135外部还需要外接积分电阻、积分电容,但A/D转换器精度与外接的积分电阻、积分电容的精度无关,故可以降低对元件质量的要求。不过积分电容和积分电容的介质损耗会影响到A/D转换器的精度,所以应采用介质损耗较小的聚丙乙烯电容

ICL7135还需要外接基准电源,这是因为芯片内部的基准源一般容易受到温度的影响,而基准电源的变化会直接影响转换精度。所以当精度要求较高时,应采用外接基准源。一般接其典型值1V。

(4) 、人机交互界面

LCD 显示接口电路

. LCD 复位信号通过反相器接到单片机的 RESET 上,上电或手动复位时将随单片机同时复位。由于复位后并行口输出高电平, LCD 处于选中状态,此时 LCD 将输出内部状态字,将会影响数据总线上的数据传输。所以外接一个反相器。 二、软件组成:

(一)、流程图 主程序流程如图所示: 中断服务程序流程图如下:

( 2)、软件说明

由于涉及到大量数据的运算,程序不宜采用汇编语言, C语言大大缩短了开发时间,且程序可读性非常好。

程序中对 AD采入的数据进行了数字滤波,进一步减小AD读入数据的误差。 7289键盘控制采用中断方式,加快了程序的执行效率。

九、设计体会

单片机课程设计结束了,在设计之初并没象想象的那么简单,因为平时总是学的理论,而这次是亲手的动手操作,虽然说很累,但感觉收获却特别大。

我现在很欣慰,因为我们毕竟付出了汗水,索性的是我我们也成功了。也使我更加体会到那种不付出汗水怎会有果实的快感。

同时我也学会了很多芯片的原理,虽然我们只用上几个芯片,可我们是从很多很多芯片中筛选出来了,因此对很多芯片都有了初步的了解。像89C51等芯片在平常学习时并不清楚它的具体功能,也没想到他们会与我们的生活联系那么密切,通过我们这几天的课程设计,我们查资料,仔细研究它们的逻辑功能,用途,要求等,终于基本完成了我们的秒表设计。这激发了我们学习专业知识的兴趣,也增强了我们的动手能力。但同时,由于掌握的知识有限,在设计过程中我们遇到一些问题我们暂时还没有能力去解决。

我们的数字秒便与理想中比较实际的数字秒表还有很大的差距。例如,不能使它多次记录时间和显示分、时时间等。因此,我们会在以后的学习中,尽可能地扩大自己的知识面,不能仅仅只局限课本,要更加刻苦地努力地去学习专业知识,充分利用图书馆和网络资源,多查多学多练,打好扎实功底,为以后的更好的发展奠定一个坚实的基础。

此次课程设计,我们还发现,理论上的理解,实践中不一定能够完全正确应用,自己的动手能力还有待一步的锻炼提高。同时经过这次课程设计我们也更懂得了知识的重要性,大科学家培根说的一点都不错“知识就是力量”,通过对知识的灵活运用,再加上恒心、毅力、团队协作、能够做到许多平时连想都不敢想的东西。

通过此次课程设计也更加坚定了我们学好后续课程和温习学过的知识还有利用课余时间拓展自己知识面的决心!相信在系里各位老师的指导下,再加上自己不懈努力,我们一定不会辜负社会,老师,家长的期望,成为一名真真正正学有专长而又兼有广博知识的现代化的高素质人才!争取早日为祖国,为社会,为人民献上我们的一腔热血,实现我们的人生价值!

我觉得这不仅仅是一个设计,更重要的是一个人生的锻炼,相信我会从中走向成熟,走向自己新的目标,并为此努力!

称重传感器的原理及应用

随着技术的进步,由称重传感器制作的电子衡器已广泛地应用到各行各业,实现了对物料的快速、准确的称量,特别是随着微处理机的出现,工业生产过程自动化程度化的不断提高,称重传感器已成为过程控制中的一种必需的装置,从以前不能称重的大型罐、料斗等重量计测以及吊车秤、汽车秤等计测控制,到混合分配多种原料的配料系统、生产工艺中的自动检测和粉粒体进料量控制等,都应用了称重传感器,目前,称重传感器几乎运用到了所有的称重领域。

1.高速定量分装系统

本系统由微机控制称重传感器的称重和比较,并输出控制信号,执行定值称量,控制外部给料系统的运转,实行自动称量和快速分装的任务。

系统采用MCS-51单片机和V/F电压频率变换器等电子器件,其硬件电路框图如图1所示,用8031作为中央处理器,BCD拔码盘作为定值设定输入器,物料装在料斗里,其重量使传感器弹性体发生变形,输出与重量成正比的电信号,传感器输出信号经放大器放大后,输入V/F转换器进行A/D转换,转换成的频率信号直接送入8031微处理器中,其数字量由微机进行处理。微机一方面把物重的瞬时数字量送入显示电路,显示出瞬时物重,另一方面则进行称重比较,开启和关闭加料口、放料于箱中等一系列的称重定值控制。

图1 原理框图

在整个定值分装控制系统中,称重传感器是影响电子秤测量精度的关键部件,选用GYL-3应变式称重测力传感器。四片电阻应变片构成全桥桥路,在所加桥压U不变的情况下,传感器输出信号与作用在传感器上的重力和供桥桥压成正比,而且,供桥桥压U的变化直接影响电子称的测量精度,所以要求桥压很稳定。毫伏级的传感器输出经放大后,变成了0-10V的电压信号输出,送入V/F变换器进行A/D转换,其输出端输出的频率信号加到单片机8031定时器1的计数、输入端T1上。在微机内部由定时器0作计数定时,定时器0的定时时间由要求的A/D转换分辩率设定。

定时器1的计数值反映了测量电压大小即物料的重量。在显示的同时,计算机还根据设定值与测量值进行定值判断。测量值与给定值进行比较,取差值提供PID运算,当重量不足,则继续送料和显示测量值。一旦重量相等或大于给定值,控制接口输出控制信号,控制外部给料设备停止送料,显示测量终值,然后发出回答令,表示该袋装料结束,可进行下袋的装料称重。

图2所示为自动称重和装料装置。每个装料的箱子或袋子沿传送带运动,直到装有料的电子称下面,传送带停止运动,电磁线圈2通电,电子称料斗翻转,使料全部倒入箱子或袋子中,当料倒完,传送带马达再次通电,将装满料的箱子或袋子移出,并保护传送带继续运行,直到下一次空袋或空箱切断光电传感器的光源,与此同时,电子称料箱复位,电磁线圈1通电,漏斗给电子秤自动加料,重量由微机控制,当电子秤中的料与给定值相等时,电磁线圈1断电,弹簧力使漏斗门关上。装料系统开始下一个装料的循环。当漏斗中的料和传送带上的箱子足够多时,这个过程可以持续不断地进行下去。必要时,*作人员可以随时停止传送带,通过拔码盘输入不同的给定值,然后再启动,即可改变箱或袋中的重量。

图2 自动称重和装料装置

本系统选用不同的传感器,改变称重范围,则可以用到水泥、食糖、面粉加工等行业的自动包装中。

2.传感器在商用电子秤中的应用

目前,商用电子计价秤的使用非常普及,逐渐会取代传统的杆称和机械案秤。电子计价秤在秤台结构上有一个显著的特点:一个相当大的秤台,只在中间装置一个专门设计的传感器来承担物料的全部重

图3 计价秤内部结构示意图

量,如图3所示。常用的电子计价秤传感器的结构如图4所示,其中图4(a)为双连椭圆孔弹性体,秤盘用悬臂梁端部上平面的两个螺孔紧固;图4(b)为梅花型四连孔弹性体,秤盘用悬臂梁端部侧面的三个螺

孔坚固,中间支杆上粘贴补偿用的应变片。这两种形式的传感器,在计价秤中用得最多。图4(c)为三梁式弯曲弹性体,采样弯曲应力,对重量反应敏感,宜用来制作小称量计价秤。图4(d)为三梁式剪切弹性体,采样中间敏感梁的剪切应力,宜用来制作几百公斤称量范围计价秤。

图4 计价秤用弹性体结构

用这些复梁型高精度传感器来支承一个大的称重平台,被称重物又可能放置在任何称台的任意位置上,必然会产生四角示值误差,对图4(a),(b)两种结构形式的传感器,可通过锉磨的形式进行角差修正。对图4(c),(d),它有上下两根局部削弱的柔性辅助梁,使传感器对侧向力、横向力和扭转力矩具有很强的抵抗能力,可以通过锉磨辅助梁的柔性部位来调整传感器的灵敏系数和四角误差。图5为一种商用电子计价秤的电路框图。传感器采用的是图4(b)所示的梅花型四连孔结构,该秤具有置零、自动清除单价、零位自动跟踪、自动去皮、次数累计和金额累计、打印输出等功能,7段绿色荧光数码管显示,使用十分方便。

图5 电子计价秤的电路框图

图6是采用CHBL3型号S型双连孔弹性体称重传感器制作的便携式家用电子手提秤的原理图,由称重传感器、放大电路、A/D转换和液晶显示四部分组成。图中,E为9V的叠层电池,R1-R4是称重传感器的4个电阻应变片,R5、R6与W1组成零点调整电路。当载荷为零时,调节RW1使液晶显示屏显示为零。A1,A2为双运放集成电路LM358中的两个单元电路,组成了一个对称的同相放大器,A/D转换器采用ICL7106双积分型A/D转换器,液晶显示采用3 1/2液晶显示片。该电子秤精度高,简单实用,携带方便。

称重传感器是一种高精度的传感器,必须按规定的规格使用。若不按规定的规格使用,不仅不能发挥称重的作用,而且容易损坏,尤其是绝对不准超过负荷安全值使用。

图6 手提秤的电路框图

对于因温度变化对桥接零点和输出,灵敏度的影响,即使采用同一批应变片,也会因应变片之间稍有温度特性之差而引起误差,所以对要求精度较高的传感器,必须进行温度补偿,解决的方法是在被粘贴的基片上采用适当温度系数的自动补偿片,并从外部对它加以适当的补偿。

非线性误差是传感器特性中最重要的一点。产生非线性误差的原因很多,一般来说主要是由结构设计决定,通过线性补偿,也可得到改善。

滞后和蠕变是关于应变片及粘合剂的误差。由于粘合剂为高分子材料,其特性随温度变化较大,所以称重传感器必须在规定的温度范围内使用。

在露天下使用传感器,还应考虑阳光直射产生的温度影响和风压的影响。

电子秤的设计

摘 要

本系统采用单片机 AT89S52 为控制核心,实现电子秤的基本控制功能。系统的硬件部分包括最小系统板,数据采集、人机交互界面三大部分。最小系统部分主要是扩展了外部数据存储器,数据采集部分由压力传感器、信号的前级处理和 A/D 转换部分组成。人机界面部分为键盘输入 , 128 64 点阵式液晶显示,可以直观的显示中文,使用方便。

软件部分应用单片机 C 语言实现了本设计的全部控制功能,包括基本的称重功能,和发挥部分的显示购物清单的功能,可以设置日期和重新设定 10 种商品的单价,具有超重报警功能,由于系统资源丰富,还可以方便的扩展其应用

关键词

压力传感器 单片机 A/D转换器 LED显示器

第一部分: 方案论证与比较

一、控制器部分

本系统基于 51系列单片机来实现,因为系统需要大量的控制液晶显示和键盘。不宜采用大规模可编程逻辑器件:CPLD、FPGA来实现。另外系统没有其它高标准的要求,我们最终选择了AT89S52通用的比较普通单片机来实现系统设计。内部带有8KB的程序存储器,在外面扩展了32K数据存储器,以满足系统要求。

二、数据采集部分

( 1 )、传感器

题目没有要求具体的称重范围,我们选择最大量值为20千克。我们选择的是 L-PSIII 型传感器,量程 20Kg ,精度为

,满量程时误差

0.002Kg

。可以满足系统的精度要求。其原理如下图所示。

称重传感器主要由弹性体、电阻应变片电缆线等组成,内部线路采用惠更斯电桥,当弹性体承受载荷产生变形时,输出信号电压可由下式给出:

( 2 )、前级放大器部分

压力传感器输出的电压信号为毫伏级,所以对运算放大器要求很高。 具体方案:高精度低漂移运算放大器构成差动放大器。

差动放大器具有高输入阻抗,增益高的特点,可以利用普通运放 ( 如 OP07) 做成一个差动放大器。

电阻 R1 、 R2 电容 C1 、 C2 、 C3 、 C4 用于滤除前级的噪声, C1 、 C2 为普通小电容,可以滤除高频干扰, C3 、 C4 为大的电解电容,主要用于滤除低频噪声。

优点:输入级加入射随放大器,增大了输入阻抗,中间级为差动放大电路,滑动变阻器 R6 可以调节输出零点,最后一级可以用于微调放大倍数,使输出满足满量程要求。输出级为反向放大器,所以输出电阻不是很大,比较符合应用要求。 缺点:此电路要求 R3 、 R4 相等,误差将会影响输出精度,难度较大。实际测量,每一级运放都会引入较大噪声。对精度影响较大。

( 3 )、 A/D 转换器

由上面对传感器量程和精度的分析可知: A/D 转换器误差应在

12 位 A/D 精度: 10Kg/4096=2.44g

14 位 A/D 精度: 10Kg/16384=0.61g

考虑到其他部分所带来的干扰 ,12 位 A/D 无法满足系统精度要求。 所以我们需要选择 14位或者精度更高的A/D。 具体方案双积分型 A/D转换器:如:ICL7135、ICL7109 。 双积分型 A/D转换器精度高,但速度较慢(如:ICL7135),具有精确的差分输入,输入阻抗高(大于

),可自动调零,超量程信号,全部输出于TTL电平兼容。

双积分型 A/D转换器具有很强的抗干扰能力。对正负对称的工频干扰信号积分为零,所以对50HZ的工频干扰抑制能力较强,对高于工频干扰(例如噪声电压)已有良好的滤波作用。只要干扰电压的平均值为零,对输出就不产生影响。尤其以下

对本系统,缓慢变化的压力信号,很容易受到工频信号的影响。故而采用双积分型A/D转换器可大大降低对滤波电路的要求。

作为电子秤,系统对 AD的转换速度要求并不高,精度上14位的AD足以满足要求。另外双积分型A/D转换器较强的抗干扰能力,和精确的差分输入,低廉的价格。综合的分析其优点和缺点,我们最终选择了ICL7135

具体方案、双积分型 A/D转换器:如:ICL7135、ICL7109。

双积分型 A/D转换器精度高,但速度较慢(如:ICL7135),具有精确的差分输入,输入阻抗高(大于

),可自动调零,超量程信号,全部输出于TTL电平兼容。

双积分型 A/D转换器具有很强的抗干扰能力。对正负对称的工频干扰信号积分为零,所以对50HZ的工频干扰抑制能力较强,对高于工频干扰(例如噪声电压)已有良好的滤波作用。只要干扰电压的平均值为零,对输出就不产生影响。尤其对本系统,缓慢变化的压力信号,很容易受到工频信号的影响。故而采用双积分型A/D转换器可大大降低对滤波电路的要求。

作为电子秤,系统对 AD的转换速度要求并不高,精度上14位的AD足以满足要求。另外双积分型A/D转换器较强的抗干扰能力,和精确的差分输入,低廉的价格。综合的分析其优点和缺点,我们最终选择了ICL7135

三、人机交互界面

显示输出:

虽然 ZLG7289 具有控制数码管显示的功能,但考虑到本题目要求中文显示,数码管无法满足,只能考虑用带有中文字库的液晶显示器。由于可以分页显示,无需太大屏幕,我们选择了点阵式 128 × 64 型 LCD — OCM4X8C 。

第二部分:具体实现方案

一、硬件组成:

(一)、硬件结构框图如下:

( 二)、各部分硬件电路实现 (1)、基于AT89S52的主控电路图

主控电路以 89C52为核心扩展32K RAM;单片机使用6M晶振,P0口外接上拉电阻,增大了带负载能力;A12~A15接74LS138译码器,输出作外部片选信号。 扩展了几个接口用于其它部分于单片机的通信

( 2)前端信号处理

INA126构成的放大器及滤波电路:

通过调节

的阻值来改变放大倍数。微弱信号Vi1和Vi2被分别放大后从INA126的第6脚输出。A/D转换器ICL7135的输入电压变化范围是-2V~+2V,传感器的输出电压信号在0~20mv左右,因此放大器的放大倍数在200~300左右,可将

接成

的滑动变阻器。 由于 ICL7135对高频干扰不敏感,所以滤波电路主要针对工频及其低次谐波引入的干扰。因为压力信号变化十分缓慢,所以滤波电路可以把频率做得很低。

( 3)A/D转换器

基准源选用芯片 MC1403 2.5V分压得到:

由于 ICL7135内部没有振荡器,所以需要外接。但A/D转换器精度与时钟频率的漂移无关。正向积分时间T1和反向积分时间T2按相同比例增加并不影响测量的结果。ICL7135的时钟频率典型值为200kHz最高允许为1200kHz,时钟频率越高,转换速度越快。每输出一位BCD码的时间为200个时钟周期,选通脉冲位于数据脉冲的中部,如果时钟频率太高,则数据的接受程序还没有接受完毕,数据

就已经消失了。考虑到此系统频率要求不是太高,且单片机的工作频率也不是很高,因此我们取时钟频率的典型值:200kHz。由于频率比较低,对时钟漂移要求不高,我们采用阻容方式实现了基本的振荡电路。如下:

振荡频率约为 160kHz。

此外 ICL7135外部还需要外接积分电阻、积分电容,但A/D转换器精度与外接的积分电阻、积分电容的精度无关,故可以降低对元件质量的要求。不过积分电容和积分电容的介质损耗会影响到A/D转换器的精度,所以应采用介质损耗较小的聚丙乙烯电容

ICL7135还需要外接基准电源,这是因为芯片内部的基准源一般容易受到温度的影响,而基准电源的变化会直接影响转换精度。所以当精度要求较高时,应采用外接基准源。一般接其典型值1V。

(4) 、人机交互界面

LCD 显示接口电路

. LCD 复位信号通过反相器接到单片机的 RESET 上,上电或手动复位时将随单片机同时复位。由于复位后并行口输出高电平, LCD 处于选中状态,此时 LCD 将输出内部状态字,将会影响数据总线上的数据传输。所以外接一个反相器。 二、软件组成:

(一)、流程图 主程序流程如图所示: 中断服务程序流程图如下:

( 2)、软件说明

由于涉及到大量数据的运算,程序不宜采用汇编语言, C语言大大缩短了开发时间,且程序可读性非常好。

程序中对 AD采入的数据进行了数字滤波,进一步减小AD读入数据的误差。 7289键盘控制采用中断方式,加快了程序的执行效率。

九、设计体会

单片机课程设计结束了,在设计之初并没象想象的那么简单,因为平时总是学的理论,而这次是亲手的动手操作,虽然说很累,但感觉收获却特别大。

我现在很欣慰,因为我们毕竟付出了汗水,索性的是我我们也成功了。也使我更加体会到那种不付出汗水怎会有果实的快感。

同时我也学会了很多芯片的原理,虽然我们只用上几个芯片,可我们是从很多很多芯片中筛选出来了,因此对很多芯片都有了初步的了解。像89C51等芯片在平常学习时并不清楚它的具体功能,也没想到他们会与我们的生活联系那么密切,通过我们这几天的课程设计,我们查资料,仔细研究它们的逻辑功能,用途,要求等,终于基本完成了我们的秒表设计。这激发了我们学习专业知识的兴趣,也增强了我们的动手能力。但同时,由于掌握的知识有限,在设计过程中我们遇到一些问题我们暂时还没有能力去解决。

我们的数字秒便与理想中比较实际的数字秒表还有很大的差距。例如,不能使它多次记录时间和显示分、时时间等。因此,我们会在以后的学习中,尽可能地扩大自己的知识面,不能仅仅只局限课本,要更加刻苦地努力地去学习专业知识,充分利用图书馆和网络资源,多查多学多练,打好扎实功底,为以后的更好的发展奠定一个坚实的基础。

此次课程设计,我们还发现,理论上的理解,实践中不一定能够完全正确应用,自己的动手能力还有待一步的锻炼提高。同时经过这次课程设计我们也更懂得了知识的重要性,大科学家培根说的一点都不错“知识就是力量”,通过对知识的灵活运用,再加上恒心、毅力、团队协作、能够做到许多平时连想都不敢想的东西。

通过此次课程设计也更加坚定了我们学好后续课程和温习学过的知识还有利用课余时间拓展自己知识面的决心!相信在系里各位老师的指导下,再加上自己不懈努力,我们一定不会辜负社会,老师,家长的期望,成为一名真真正正学有专长而又兼有广博知识的现代化的高素质人才!争取早日为祖国,为社会,为人民献上我们的一腔热血,实现我们的人生价值!

我觉得这不仅仅是一个设计,更重要的是一个人生的锻炼,相信我会从中走向成熟,走向自己新的目标,并为此努力!


相关内容

  • 基于PLC的动态电子轨道衡设计
  • 摘要 当今社会,随着生产.贸易.科技的快速发展,衡器技术由简单的计重向信息化.一体化发展.然而,衡器技术在向这个趋势发展的时候,计量的准确化.快速化的矛盾一直是困扰衡器技术发展的瓶颈.直到上世纪70年代,技术上逐步成熟的动态电子衡器的发展,它有效的解决了快速性.准确性一衡器技术的两个最重要的性能指标 ...

  • DSC1型称重式降水传感器工作原理及维护维修
  • DSC1型称重式降水传感器工作原理及维护维修 刘冬冬,王海龙,马晓璐 (垦利县气象局,山东 垦利 257500) 摘要:DSC1型称重式降水传感器实现了固态.液态和混合性降水的自动化观测,较全面的.连续的反映了冰雪过程的变化情况,使观测结果客观化.观测资料连续化,有利于提高固态降水观测的准确性和效率 ...

  • 一种料斗秤校称装置及其方法的应用
  • 2012年6月第41卷增刊施工技术 CONSTRUCTION TECHNOLOGY 445 一种料斗秤校称装置及其方法的应用 季华锋,李德家 (中国一冶集团机电安装工程公司电装分公司,湖北武汉430081) [摘要]通过应用料斗秤快速校准装置代替砝码对料斗秤进行校准,不但解决了一直以来无法对料斗秤大 ...

  • 电子秤技术的发展
  • 浅析电子秤技术的发展 *** 040311**** 摘要:电子技术的发展推动了人类社会的进步,电子秤技术自20世纪开始得到迅猛发展,我国电子秤技术也取得了长足的发展.在未来的发展中呈现:小型化.模块化.高精度.集成化.智能化.综合性.组合性的发展趋势. 关键字:电子秤技术 发展现状 发展趋势 自主创 ...

  • 称重模块的选型和安装
  • 仪器仪表与应用 石 油 化 工 自 动 化, 2010, 4 54AU TOM AT ION IN PET RO CHE M ICAL INDUST RY 仪器仪表与应用 称重模块的选型和安装 王宇航 (广东寰球广业工程有限公司电仪室, 广州 510240) 摘要:作为一种新型传感器, 称重模块因其 ...

  • 仪器综合课程设计
  • <仪器综合课程设计> 任务书与说明书 智能化重量测量仪设计 Design of an Intelligent Weight Measuring Instrument 学院名称: 专业班级: 学生学号: 学生姓名: 指导教师姓名: 指导教师职称: 2015 年 1月 <仪器综合课程设 ...

  • 传感器应用设计20105225
  • 传感器应用设计 班级:微电子10-3班姓名:阮仕奎 学号:20105225 一.电阻应变式传感器---称重传感器 原理:弹性体(弹性元件,敏感梁)在外力作用下产生弹性变形,使粘贴在他表面的电阻应变片(转换元件)也随同产生变形,电阻应变片变形后,它的阻值将发生变化(增大或减小),再经相应的测量电路把这 ...

  • 失重秤在锌冶炼净化工艺控制中的应用
  • 失重秤在锌冶炼净化工艺控制中的应用 饶向明 徐天辉 肖良珍 (云南驰宏锌锗股份有限公司,曲靖655011) 摘 要 叙述了锌冶炼净化工艺使用的DEL型定量给料机的系统构成.称重原理及存在的问题,其计量误差对生产工艺控制造成的不利影响及对生产成本和生产环境的影响.叙述了改用失重秤后的系统构成.称重原理 ...

  • 电子称毕业设计
  • 目 录 前 言 ........................................... 1 1 整体设计方案 ................................... 2 1.1 称重技术和衡器的发展 .............................. 2 1 ...