视频编码的基本原理及基本框架

视频编码的基本原理及基本框架

视频图像数据有极强的相关性,也就是说有大量的冗余信息。其中冗余信息可分为空域冗余信息和时域冗余信息。压缩技术就是将数据中的冗余信息去掉(去除数据之间的相关性),压缩技术包含帧内图像数据压缩技术、帧间图像数据压缩技术和熵编码压缩技术。 去时域冗余信息

使用帧间编码技术可去除时域冗余信息,它包括以下三部分:

- 运动补偿

运动补偿是通过先前的局部图像来预测、补偿当前的局部图像,它是减少帧序列冗余信息的有效方法。

- 运动表示

不同区域的图像需要使用不同的运动矢量来描述运动信息。运动矢量通过熵编码进行压缩。 - 运动估计

运动估计是从视频序列中抽取运动信息的一整套技术。

注:通用的压缩标准都使用基于块的运动估计和运动补偿

去空域冗余信息

主要使用帧内编码技术和熵编码技术:

- 变换编码

帧内图像和预测差分信号都有很高的空域冗余信息。变换编码将空域信号变换到另一正交矢量空间,使其相关性下降,数据冗余度减小。

- 量化编码

经过变换编码后,产生一批变换系数,对这些系数进行量化,使编码器的输出达到一定的位率。这一过程导致精度的降低。

- 熵编码

熵编码是无损编码。它对变换、量化后得到的系数和运动信息,进行进一步的压缩。 视频编码的基本框架

H.261

H.261标准是为ISDN设计,主要针对实时编码和解码设计,压缩和解压缩的信号延时不超过150ms,码率px64kbps(p=1~30)。

H.261标准主要采用运动补偿的帧间预测、DCT变换、自适应量化、熵编码等压缩技术。 只有I帧和P帧,没有B帧,运动估计精度只精确到像素级。支持两种图像扫描格式:QCIF和CIF。

H.263

H.263标准是甚低码率的图像编码国际标准,它一方面以H.261为基础,以混合编码为核心,其基本原理框图和H.261十分相似,原始数据和码流组织也相似;另一方面,H.263也吸收了MPEG等其它一些国际标准中有效、合理的部分,如:半像素精度的运动估计、PB帧预测等,使它性能优于H.261。

H.263使用的位率可小于64Kb/s,且传输比特率可不固定(变码率)。H.263支持多种分辨率: SQCIF(128x96)、 QCIF、CIF、4CIF、16CIF。

与H.261和H.263相关的国际标准

与H.261有关的国际标准

H.320:窄带可视电话系统和终端设备;

H.221:视听电信业务中64~1 920Kb/s信道的帧结构;

H.230:视听系统的帧同步控制和指示信号;

H.242:使用直到2Mb/s数字信道的视听终端的系统。

与H.263有关的国际标准

H.324:甚低码率多媒体通信终端设备;

H.223:甚低码率多媒体通信复合协议;

H.245:多媒体通信控制协议;

G.723.1.1:传输速率为5.3Kb/s和6.3Kb/s的语音编码器。

JPEG

国际标准化组织于1986年成立了JPEG(Joint Photographic Expert Group)联合图片专家小组,主要致力于制定连续色调、多级灰度、静态图像的数字图像压缩编码标准。常用的基于离散余弦变换(DCT)的编码方法,是JPEG算法的核心内容。

MPEG-1/2

MPEG-1标准用于数字存储体上活动图像及其伴音的编码,其数码率为1.5Mb/s。 MPEG-1的视频原理框图和H.261的相似。

MPEG-1视频压缩技术的特点:1. 随机存取;2. 快速正向/逆向搜索;3 .逆向重播;4. 视听同步;5. 容错性;6. 编/解码延迟。 MPEG-1视频压缩策略:为了提高压缩比,帧内/帧间图像数据压缩技术必须同时使用。帧内压缩算法与JPEG压缩算法大致相同,采用基于DCT的变换编码技术,用以减少空域冗余信息。帧间压缩算法,采用预测法和插补法。预测误差可在通过DCT变换编码处理,进一步压缩。帧间编码技术可减少时间轴方向的冗余信息。

MPEG-2被称为“21世纪的电视标准”,它在MPEG-1的基础上作了许多重要的扩展和改进,但基本算法和MPEG-1相同。

MPEG-4

MPEG-4标准并非是MPEG-2的替代品,它着眼于不同的应用领域。MPEG-4的制定初衷主要针对视频会议、可视电话超低比特率压缩(小于64Kb/s)的需求。在制定过程中,MPEG组织深深感受到人们对媒体信息,特别是对视频信息的需求由播放型转向基于内容的访问、检索和操作。

MPEG-4与前面提到的JPEG、MPEG-1/2有很大的不同,它为多媒体数据压缩编码提供了更为广阔的平台,它定义的是一种格式、一种框架,而不是具体算法,它希望建立一种更自由的通信与开发环境。于是MPEG-4新的目标就是定义为:支持多种多媒体的应用,特别是多媒体信息基于内容的检索和访问,可根据不同的应用需求,现场配置解码器。编码系统也是开放的,可随时加入新的有效的算法模块。应用范围包括实时视听通信、多媒体通信、远地监测/监视、VOD、家庭购物/娱乐等。

JVT:新一代的视频压缩标准

JVT是由ISO/IEC MPEG和ITU-T VCEG成立的联合视频工作组(Joint Video Team),致力于新一代数字视频压缩标准的制定。

JVT标准在ISO/IEC中的正式名称为:MPEG-4 AVC(part10)标准;在ITU-T中的名称:H.264(早期被称为H.26L)

H264/AVC

H264集中了以往标准的优点,并吸收了以往标准制定中积累的经验, 采用简洁设计,使它比MPEG4更容易推广。H.264创造性了多参考帧、多块类型、整数变换、帧内预测等新的压缩技术,使用了更精细的分象素运动矢量(1/4、1/8)和新一代的环路滤波器,使得压缩性

能大大提高,系统更加完善。

H.264主要有以下几大优点:

- 高效压缩:与H.263+和MPEG4 SP相比,减小50%比特率

- 延时约束方面有很好的柔韧性

- 容错能力

- 编/解码的复杂性可伸缩性

- 解码全部细节:没有不匹配

- 高质量应用

- 网络友善

监控中的视频编码技术

目前监控中主要采用MJPEG、MPEG1/2、MPEG4(SP/ASP)、H.264/AVC等几种视频编码技术。对于最终用户来言他最为关心的主要有:清晰度、存储量(带宽)、稳定性还有价格。采用不同的压缩技术,将很大程度影响以上几大要素。

MJPEG

MJPEG(Motion JPEG)压缩技术,主要是基于静态视频压缩发展起来的技术,它的主要特点是基本不考虑视频流中不同帧之间的变化,只单独对某一帧进行压缩。

MJPEG压缩技术可以获取清晰度很高的视频图像,可以动态调整帧率、分辨率。但由于没有考虑到帧间变化,造成大量冗余信息被重复存储,因此单帧视频的占用空间较大,目前流行的MJPEG技术最好的也只能做到3K字节/帧,通常要8~20K!

MPEG-1/2

MPEG-1标准主要针对SIF标准分辨率(NTSC制为352X240;PAL制为352X288)的图像进行压缩. 压缩位率主要目标为1.5Mb/s.较MJPEG技术,MPEG1在实时压缩、每帧数据量、处理速度上有显著的提高。但MPEG1也有较多不利地方:存储容量还是过大、清晰度不够高和网络传输困难。

MPEG-2 在MPEG-1基础上进行了扩充和提升,和MPEG-1向下兼容,主要针对存储媒体、数字电视、高清晰等应用领域,分辨率为:低(352x288),中(720x480),次高(1440x1080),高(1920x1080)。MPEG-2视频相对MPEG-1提升了分辨率,满足了用户高清晰的要求,但由于压缩性能没有多少提高,使得存储容量还是太大,也不适和网络传输。

MPEG-4

MPEG-4视频压缩算法相对于MPEG-1/2在低比特率压缩上有着显著提高,在CIF

(352*288)或者更高清晰度(768*576)情况下的视频压缩,无论从清晰度还是从存储量上都比MPEG1具有更大的优势,也更适合网络传输。另外MPEG-4可以方便地动态调整

帧率、比特率,以降低存储量。

MPEG-4由于系统设计过于复杂,使得MPEG-4难以完全实现并且兼容,很难在视频会议、可视电话等领域实现,这一点有点偏离原来地初衷。另外对于中国企业来说还要面临高昂的专利费问题,目前规定:

- 每台解码设备需要交给MPEG-LA 0.25美元

- 编码/解码设备还需要按时间交费(4美分/天=1.2美元/月 =14.4美元/年)

H.264/AVC

H.264集中了以往标准的优点,在许多领域都得到突破性进展,使得它获得比以往标准好得多整体性能:

- 和H.263+和MPEG-4 SP相比最多可节省50%的码率,使存储容量大大降低; - H.264在不同分辨率、不同码率下都能提供较高的视频质量;

- 采用“网络友善”的结构和语法,使其更有利于网络传输。

H.264采用简洁设计,使它比MPEG4更容易推广,更容易在视频会议、视频电话中实现,更容易实现互连互通,可以简便地和G.729等低比特率语音压缩组成一个完整的系统。 MPEG LA吸收MPEG-4的高昂专利费而使它难以推广的教训,MPEG LA制定了以下低廉的H.264收费标准:H.264广播时基本不收费;产品中嵌入H.264编/解码器时,年产量10万台以下不收取费,超过10万台每台收取0.2美元,超过500万台每台收取0.1美元。低廉的专利费使得中国H.264监控产品更容易走向世界。

视频编码的基本原理及基本框架

视频图像数据有极强的相关性,也就是说有大量的冗余信息。其中冗余信息可分为空域冗余信息和时域冗余信息。压缩技术就是将数据中的冗余信息去掉(去除数据之间的相关性),压缩技术包含帧内图像数据压缩技术、帧间图像数据压缩技术和熵编码压缩技术。 去时域冗余信息

使用帧间编码技术可去除时域冗余信息,它包括以下三部分:

- 运动补偿

运动补偿是通过先前的局部图像来预测、补偿当前的局部图像,它是减少帧序列冗余信息的有效方法。

- 运动表示

不同区域的图像需要使用不同的运动矢量来描述运动信息。运动矢量通过熵编码进行压缩。 - 运动估计

运动估计是从视频序列中抽取运动信息的一整套技术。

注:通用的压缩标准都使用基于块的运动估计和运动补偿

去空域冗余信息

主要使用帧内编码技术和熵编码技术:

- 变换编码

帧内图像和预测差分信号都有很高的空域冗余信息。变换编码将空域信号变换到另一正交矢量空间,使其相关性下降,数据冗余度减小。

- 量化编码

经过变换编码后,产生一批变换系数,对这些系数进行量化,使编码器的输出达到一定的位率。这一过程导致精度的降低。

- 熵编码

熵编码是无损编码。它对变换、量化后得到的系数和运动信息,进行进一步的压缩。 视频编码的基本框架

H.261

H.261标准是为ISDN设计,主要针对实时编码和解码设计,压缩和解压缩的信号延时不超过150ms,码率px64kbps(p=1~30)。

H.261标准主要采用运动补偿的帧间预测、DCT变换、自适应量化、熵编码等压缩技术。 只有I帧和P帧,没有B帧,运动估计精度只精确到像素级。支持两种图像扫描格式:QCIF和CIF。

H.263

H.263标准是甚低码率的图像编码国际标准,它一方面以H.261为基础,以混合编码为核心,其基本原理框图和H.261十分相似,原始数据和码流组织也相似;另一方面,H.263也吸收了MPEG等其它一些国际标准中有效、合理的部分,如:半像素精度的运动估计、PB帧预测等,使它性能优于H.261。

H.263使用的位率可小于64Kb/s,且传输比特率可不固定(变码率)。H.263支持多种分辨率: SQCIF(128x96)、 QCIF、CIF、4CIF、16CIF。

与H.261和H.263相关的国际标准

与H.261有关的国际标准

H.320:窄带可视电话系统和终端设备;

H.221:视听电信业务中64~1 920Kb/s信道的帧结构;

H.230:视听系统的帧同步控制和指示信号;

H.242:使用直到2Mb/s数字信道的视听终端的系统。

与H.263有关的国际标准

H.324:甚低码率多媒体通信终端设备;

H.223:甚低码率多媒体通信复合协议;

H.245:多媒体通信控制协议;

G.723.1.1:传输速率为5.3Kb/s和6.3Kb/s的语音编码器。

JPEG

国际标准化组织于1986年成立了JPEG(Joint Photographic Expert Group)联合图片专家小组,主要致力于制定连续色调、多级灰度、静态图像的数字图像压缩编码标准。常用的基于离散余弦变换(DCT)的编码方法,是JPEG算法的核心内容。

MPEG-1/2

MPEG-1标准用于数字存储体上活动图像及其伴音的编码,其数码率为1.5Mb/s。 MPEG-1的视频原理框图和H.261的相似。

MPEG-1视频压缩技术的特点:1. 随机存取;2. 快速正向/逆向搜索;3 .逆向重播;4. 视听同步;5. 容错性;6. 编/解码延迟。 MPEG-1视频压缩策略:为了提高压缩比,帧内/帧间图像数据压缩技术必须同时使用。帧内压缩算法与JPEG压缩算法大致相同,采用基于DCT的变换编码技术,用以减少空域冗余信息。帧间压缩算法,采用预测法和插补法。预测误差可在通过DCT变换编码处理,进一步压缩。帧间编码技术可减少时间轴方向的冗余信息。

MPEG-2被称为“21世纪的电视标准”,它在MPEG-1的基础上作了许多重要的扩展和改进,但基本算法和MPEG-1相同。

MPEG-4

MPEG-4标准并非是MPEG-2的替代品,它着眼于不同的应用领域。MPEG-4的制定初衷主要针对视频会议、可视电话超低比特率压缩(小于64Kb/s)的需求。在制定过程中,MPEG组织深深感受到人们对媒体信息,特别是对视频信息的需求由播放型转向基于内容的访问、检索和操作。

MPEG-4与前面提到的JPEG、MPEG-1/2有很大的不同,它为多媒体数据压缩编码提供了更为广阔的平台,它定义的是一种格式、一种框架,而不是具体算法,它希望建立一种更自由的通信与开发环境。于是MPEG-4新的目标就是定义为:支持多种多媒体的应用,特别是多媒体信息基于内容的检索和访问,可根据不同的应用需求,现场配置解码器。编码系统也是开放的,可随时加入新的有效的算法模块。应用范围包括实时视听通信、多媒体通信、远地监测/监视、VOD、家庭购物/娱乐等。

JVT:新一代的视频压缩标准

JVT是由ISO/IEC MPEG和ITU-T VCEG成立的联合视频工作组(Joint Video Team),致力于新一代数字视频压缩标准的制定。

JVT标准在ISO/IEC中的正式名称为:MPEG-4 AVC(part10)标准;在ITU-T中的名称:H.264(早期被称为H.26L)

H264/AVC

H264集中了以往标准的优点,并吸收了以往标准制定中积累的经验, 采用简洁设计,使它比MPEG4更容易推广。H.264创造性了多参考帧、多块类型、整数变换、帧内预测等新的压缩技术,使用了更精细的分象素运动矢量(1/4、1/8)和新一代的环路滤波器,使得压缩性

能大大提高,系统更加完善。

H.264主要有以下几大优点:

- 高效压缩:与H.263+和MPEG4 SP相比,减小50%比特率

- 延时约束方面有很好的柔韧性

- 容错能力

- 编/解码的复杂性可伸缩性

- 解码全部细节:没有不匹配

- 高质量应用

- 网络友善

监控中的视频编码技术

目前监控中主要采用MJPEG、MPEG1/2、MPEG4(SP/ASP)、H.264/AVC等几种视频编码技术。对于最终用户来言他最为关心的主要有:清晰度、存储量(带宽)、稳定性还有价格。采用不同的压缩技术,将很大程度影响以上几大要素。

MJPEG

MJPEG(Motion JPEG)压缩技术,主要是基于静态视频压缩发展起来的技术,它的主要特点是基本不考虑视频流中不同帧之间的变化,只单独对某一帧进行压缩。

MJPEG压缩技术可以获取清晰度很高的视频图像,可以动态调整帧率、分辨率。但由于没有考虑到帧间变化,造成大量冗余信息被重复存储,因此单帧视频的占用空间较大,目前流行的MJPEG技术最好的也只能做到3K字节/帧,通常要8~20K!

MPEG-1/2

MPEG-1标准主要针对SIF标准分辨率(NTSC制为352X240;PAL制为352X288)的图像进行压缩. 压缩位率主要目标为1.5Mb/s.较MJPEG技术,MPEG1在实时压缩、每帧数据量、处理速度上有显著的提高。但MPEG1也有较多不利地方:存储容量还是过大、清晰度不够高和网络传输困难。

MPEG-2 在MPEG-1基础上进行了扩充和提升,和MPEG-1向下兼容,主要针对存储媒体、数字电视、高清晰等应用领域,分辨率为:低(352x288),中(720x480),次高(1440x1080),高(1920x1080)。MPEG-2视频相对MPEG-1提升了分辨率,满足了用户高清晰的要求,但由于压缩性能没有多少提高,使得存储容量还是太大,也不适和网络传输。

MPEG-4

MPEG-4视频压缩算法相对于MPEG-1/2在低比特率压缩上有着显著提高,在CIF

(352*288)或者更高清晰度(768*576)情况下的视频压缩,无论从清晰度还是从存储量上都比MPEG1具有更大的优势,也更适合网络传输。另外MPEG-4可以方便地动态调整

帧率、比特率,以降低存储量。

MPEG-4由于系统设计过于复杂,使得MPEG-4难以完全实现并且兼容,很难在视频会议、可视电话等领域实现,这一点有点偏离原来地初衷。另外对于中国企业来说还要面临高昂的专利费问题,目前规定:

- 每台解码设备需要交给MPEG-LA 0.25美元

- 编码/解码设备还需要按时间交费(4美分/天=1.2美元/月 =14.4美元/年)

H.264/AVC

H.264集中了以往标准的优点,在许多领域都得到突破性进展,使得它获得比以往标准好得多整体性能:

- 和H.263+和MPEG-4 SP相比最多可节省50%的码率,使存储容量大大降低; - H.264在不同分辨率、不同码率下都能提供较高的视频质量;

- 采用“网络友善”的结构和语法,使其更有利于网络传输。

H.264采用简洁设计,使它比MPEG4更容易推广,更容易在视频会议、视频电话中实现,更容易实现互连互通,可以简便地和G.729等低比特率语音压缩组成一个完整的系统。 MPEG LA吸收MPEG-4的高昂专利费而使它难以推广的教训,MPEG LA制定了以下低廉的H.264收费标准:H.264广播时基本不收费;产品中嵌入H.264编/解码器时,年产量10万台以下不收取费,超过10万台每台收取0.2美元,超过500万台每台收取0.1美元。低廉的专利费使得中国H.264监控产品更容易走向世界。


相关内容

  • 多媒体设计与制作
  • 多媒体设计与制作教案 第一章 多媒体技术基础 一.教学目标: 通过本章学习使学生了解多媒体技术的基本内容.多媒体技术的组成以及在信息技术中的作用. 二.教学基本要求: 1.熟悉多媒体的基本概念. 2.了解多媒体的一般用途. 3.掌握多媒体的组成元素. 4.了解多媒体处理技术的构成 三.学时分配:计划 ...

  • 多媒体技术基础及应用课后答案(新)
  • 第一章 习题及解答 一.选择题 1. 下列选项不属于感觉媒体的是: D . A. 音乐 B. 香味 C. 鸟鸣 D. 乐谱 2. 下列选项属于表示媒体的是: D A. 照片 B.显示器 C.纸张 D.条形码 3. 下列选项属于显示媒体的是: B A.图片 B.扬声器 C.声音 D.语言编码 4. 下 ...

  • 多媒体应用设计师考试分析与总结
  • DOI:10.15966/j.cnki.dnydx.2014.04.005 经验交流学术探讨 2014年第4期 多媒体应用设计师考试分析与总结 丁向民张祖芹 (盐城师范学院信息科学与技术学院,江苏 盐城 224002) [摘要]文章首先分析了最近三次多媒体应用设计师考试的考点分布和试题内容,然后以表 ...

  • 图形.图像的数字化表示
  • 图形.图像的数字化表示 一.教学背景分析 (一)教材内容和地位分析: 本节主要内容包括图形.图像的数字化原理,数字图像的分类.存储.压缩的相关知识.信息的加工方式从人脑直接处理转变为计算机处理,大大地提高了效率,而这种方式转变的基础就是信息的数字化原理,使得模拟信号转化为数字信号存储到计算机当中,以 ...

  • 多媒体通信终端
  • 多媒体通信终端 --单机型嵌入式多媒体通信终端的设计 考号: 姓名:胡敏敏 [内容摘要] 提出了一种基于DSP芯片的嵌入式多媒体通信终端的设计方案,并重点阐述了终端的硬件设计及软件设计.该终端硬件平台采用Philips公司的TM1300芯片为中心处理芯片,通过芯片上的专用接口与其它外围电路相连:软件 ...

  • 从有损到无损的音频编解码框架
  • igital Si g nal Processing 文章编号:1002-8684(2010)12-0060-05 数字信号处理 AVS 无损音频编解码技术 从有损到无损的音频编解码框架 杨新辉1,舒海燕2,曲天书3,张 涛4,窦维蓓 5 论文·· (1. 中科开元信息技术(北京)有限公司,北京10 ...

  • [多媒体技术]课程标准
  • <多媒体技术及应用>课程标准 一.课程代码:022386 二.适用专业:适用于计算机多媒体专业. 三.课程性质 <多媒体技术与应用>是计算机多媒体专业方向必修课,属于计算机多媒体专业的基本理论和基本知识,是计算机多媒体专业的一门实践性较强的技术基础课.多媒体技术及是计算机多媒 ...

  • 毕业设计内容
  • 来自摘要: 率失真理论研究在限定失真的情况下,为了恢复信源符号所必需的信息率. 如果信源输出的信息率大于信道的传输能力,就必须对信源进行压缩,但同时要 保证压缩所引入的失真不超过预先规定的限度.由于数字视频的信息量巨大,如 何有效地存储视频信息以及在有限的带宽下对其进行传输及应用是一个亚待解决 的问 ...

  • 信息与信息技术docx
  • 第一章 信息与信息技术 1.信息:消息:无处不在,无色无味无形. 2.信息的特征: ①载体依附性:信息不能独立存在,必须依附于一定载体.同一个信息可以依附于不同的载体. ②价值性:体现其作用. ③时效性:强调时间的重要性. ④共享性:多个人公用信息. 3.信息的载体和形态:信息本身并不是实体,必须通 ...