新人教版六年级数学下册比和比例知识点
---------判断两个量是否成正比例、反比例或不成比例 一、写(写出数量关系式)
1、根据数量间的关系或公式,写出数量关系式。
如,①宽一定,长方形的面积和长是否成正比例。根据“长方形的面积=长×宽”得到“
长方形的面积
宽(一定)”,因为长方形的面积和长是相关联的量,宽一定,也就是它们的比值一定,
长
所以“宽一定,长方形的面积和长是成正比例”。
1
②圆锥的体积一定,底面积和高是否成反比例。根据“底面积×高×=圆锥的体积”得到“底面积×
3
高=圆锥的体积×3”,因为底面积和高是相关联的量,圆锥的体积一定,“圆锥的体积×3"的结果也一定,就是底面积和高的积一定(底面积×高=圆锥的体积×3(一定)),所以圆锥的体积一定,底面积和高是成反比例。
2、注意:写出的数量关系式,其中的一边(左边)只能有这两个相关联的量,不能有多余的量和数字。
如,“(长+宽)×2=长方形的周长”的左边就多了×2,应变为“(长+宽)=
长方形的周长
”
2
又如,梯形的上底和下底不变,面积和高。可以这样写关系式: (a+b)×h÷2=s→(a+b)×h÷2÷h=s÷h→(a+b)÷2 =s÷h→ s÷h=(a+b)÷2,因为上底和下底不变,(a+b)÷2的结果也是一定的,所以梯形的上底和下底不变,面积和高成正比例。
3、还有些数量之间是无法写关系式的。 如,“小明的身高和跳高的高度成正比例”是无法写出关系式的。
二、看(1、看是否相关联2、看是否能变化3、看是否商(积)一定) 1、看是否相关联:也就是一个量变化了,另一个量是否也会随着变化。
如,长方形的面积一定,长和宽就是相关联的量,因为长变化了,宽也会随着变化。
又如,圆的周长一定,π和直径就不是相关联的量。因为不管直径怎么变,π总是等于3.14„„,不会随直径而改变。
2、看是否能变化:也就是这两个量都是能变化的,不是固定的。 如,上例的π就不是能变化的量。 如,“边长×边长=正方形的面积(一定)”,因为正方形的面积(一定),所以边长也只能是固定的,不是变量。所以,正方形的面积(一定),边长和边长不成比例。
3、看是否商(积)一定:也就是这两个量相除(或相乘)的结果是否固定不变的。
如,圆的周长和直径成正比例。因为圆的周长和直径的比值等于π,π是固定的数,即圆的周长和直径的比值一定的。
圆的周长
π(一定)
直径
新人教版六年级数学下册比和比例知识点
---------判断两个量是否成正比例、反比例或不成比例 一、写(写出数量关系式)
1、根据数量间的关系或公式,写出数量关系式。
如,①宽一定,长方形的面积和长是否成正比例。根据“长方形的面积=长×宽”得到“
长方形的面积
宽(一定)”,因为长方形的面积和长是相关联的量,宽一定,也就是它们的比值一定,
长
所以“宽一定,长方形的面积和长是成正比例”。
1
②圆锥的体积一定,底面积和高是否成反比例。根据“底面积×高×=圆锥的体积”得到“底面积×
3
高=圆锥的体积×3”,因为底面积和高是相关联的量,圆锥的体积一定,“圆锥的体积×3"的结果也一定,就是底面积和高的积一定(底面积×高=圆锥的体积×3(一定)),所以圆锥的体积一定,底面积和高是成反比例。
2、注意:写出的数量关系式,其中的一边(左边)只能有这两个相关联的量,不能有多余的量和数字。
如,“(长+宽)×2=长方形的周长”的左边就多了×2,应变为“(长+宽)=
长方形的周长
”
2
又如,梯形的上底和下底不变,面积和高。可以这样写关系式: (a+b)×h÷2=s→(a+b)×h÷2÷h=s÷h→(a+b)÷2 =s÷h→ s÷h=(a+b)÷2,因为上底和下底不变,(a+b)÷2的结果也是一定的,所以梯形的上底和下底不变,面积和高成正比例。
3、还有些数量之间是无法写关系式的。 如,“小明的身高和跳高的高度成正比例”是无法写出关系式的。
二、看(1、看是否相关联2、看是否能变化3、看是否商(积)一定) 1、看是否相关联:也就是一个量变化了,另一个量是否也会随着变化。
如,长方形的面积一定,长和宽就是相关联的量,因为长变化了,宽也会随着变化。
又如,圆的周长一定,π和直径就不是相关联的量。因为不管直径怎么变,π总是等于3.14„„,不会随直径而改变。
2、看是否能变化:也就是这两个量都是能变化的,不是固定的。 如,上例的π就不是能变化的量。 如,“边长×边长=正方形的面积(一定)”,因为正方形的面积(一定),所以边长也只能是固定的,不是变量。所以,正方形的面积(一定),边长和边长不成比例。
3、看是否商(积)一定:也就是这两个量相除(或相乘)的结果是否固定不变的。
如,圆的周长和直径成正比例。因为圆的周长和直径的比值等于π,π是固定的数,即圆的周长和直径的比值一定的。
圆的周长
π(一定)
直径