灰色预测法
灰色预测是就灰色系统所做的预测。所谓灰色系统是介于白色系统和黑箱系统之间的过渡系统,其具体的含义是:如果某一系统的全部信息已知为白色系统,全部信息未知为黑箱系统,部分信息已知,部分信息未知,那么这一系统就是灰箱系统。一般地说,社会系统、经济系统、生态系统都是灰色系统。例如物价系统,导致物价上涨的因素很多,但已知的却不多,因此对物价这一灰色系统的预测可以用灰色预测方法。
灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测。尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测。
灰色预测一般有四种类型:
1、数列预测。对某现象随时间的顺延而发生的变化所做的预测定义为数列预测。例如对消费物价指数的预测,需要确定两个变量,一个是消费物价指数的水平。另一个是这一水平所发生的时间。
2、灾变预测。对发生灾害或异常突变时间可能发生的时间预测称为灾变预测。例如对地震时间的预测。
3、系统预测。对系统中众多变量间相互协调关系的发展变化所进行的预测称为系统预测。例如市场中替代商品、相互关联商品销售量互相制约的预测。
4、拓扑预测。将原始数据作曲线,在曲线上按定值寻找该定值发生的所有时点,并以该定值为框架构成时点数列,然后建立模型预测未来该定值所发生的时点。
目前使用座广泛的灰色预测模型就是关于数列预测的一个变量、一阶微分的GM (1,1)模型。GM (1,1)模型是基于随机的原始时间序列,经按时间累加后所形成的新的时间序列呈现的规律可用一阶线性微分方程的解来逼近。经证明,经一阶线性微分方程的解逼近所揭示的原始时间数列呈指数变化规律。因此,当原始时间序列隐含着指数变化规律时,灰色模型GM (1,1)的预测将是非常成功的。灰色预测模型GM (1,1)的构造如下所述:
1、给出GM (1,1)模型。
其中,p=m/n(m 为小于上述条件的误差个数)
通过检验的标准为精度等级越小越好,四级为不通过。精度等级表如下表1所示:
表1GM(1,1) 模型等级
灰色预测法
灰色预测是就灰色系统所做的预测。所谓灰色系统是介于白色系统和黑箱系统之间的过渡系统,其具体的含义是:如果某一系统的全部信息已知为白色系统,全部信息未知为黑箱系统,部分信息已知,部分信息未知,那么这一系统就是灰箱系统。一般地说,社会系统、经济系统、生态系统都是灰色系统。例如物价系统,导致物价上涨的因素很多,但已知的却不多,因此对物价这一灰色系统的预测可以用灰色预测方法。
灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测。尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测。
灰色预测一般有四种类型:
1、数列预测。对某现象随时间的顺延而发生的变化所做的预测定义为数列预测。例如对消费物价指数的预测,需要确定两个变量,一个是消费物价指数的水平。另一个是这一水平所发生的时间。
2、灾变预测。对发生灾害或异常突变时间可能发生的时间预测称为灾变预测。例如对地震时间的预测。
3、系统预测。对系统中众多变量间相互协调关系的发展变化所进行的预测称为系统预测。例如市场中替代商品、相互关联商品销售量互相制约的预测。
4、拓扑预测。将原始数据作曲线,在曲线上按定值寻找该定值发生的所有时点,并以该定值为框架构成时点数列,然后建立模型预测未来该定值所发生的时点。
目前使用座广泛的灰色预测模型就是关于数列预测的一个变量、一阶微分的GM (1,1)模型。GM (1,1)模型是基于随机的原始时间序列,经按时间累加后所形成的新的时间序列呈现的规律可用一阶线性微分方程的解来逼近。经证明,经一阶线性微分方程的解逼近所揭示的原始时间数列呈指数变化规律。因此,当原始时间序列隐含着指数变化规律时,灰色模型GM (1,1)的预测将是非常成功的。灰色预测模型GM (1,1)的构造如下所述:
1、给出GM (1,1)模型。
其中,p=m/n(m 为小于上述条件的误差个数)
通过检验的标准为精度等级越小越好,四级为不通过。精度等级表如下表1所示:
表1GM(1,1) 模型等级