网络阅卷中的一种涂点识别算法

  摘 要:网络阅卷模式随着教育信息化的发展和相关技术水平的进步,已经成为一种非常流行的考试信息化解决方案。在网络阅卷中,图像识别的最终目的是识别试卷图像上的涂点信息,正确判别考生的填涂结果。文中介绍了一种基于动态阈值的涂点识别算法,并对该方法进行了理论分析和推导,证明其具有很高的实际应用价值。

  关键词:动态阈值;涂点识别;网络阅卷;信息化

  中图分类号:TP393 文献标识码:A 文章编号:2095-1302(2016)11-00-02

  0 引 言

  随着在线教育和教育信息化的发展和推广,网络阅卷模式被越来越多的学校和教育机构所接受,已经逐渐成为一种业界通行的考试阅卷方案。具体来说,网络阅卷主要指学生参加纸质考试后,通过获取图像、图像识别、客观题判分、主观题阅卷、成绩汇总几个步骤,实现公平、公正判分,并生成成绩统计分析结果的过程。

  网络阅卷流程的最终目的是实现涂点的识别,而涂点识别的目的是为了准确判定考生的填涂情况。一般来说,网络阅卷中使用识别模板对图像进行识别,在识别区域中,通过采集识别区域像素点的灰度值,利用阈值对图像进行二值化处理,从而判定涂点的填涂密度,确定填涂与否。这种判断方式的最大问题在于阈值的选取,若选取阈值过低,或填涂较轻的涂点则无法识别,阈值过高又可能误识别一些没有填涂的图像。因此可以考虑一种基于动态阈值的涂点识别算法,根据图像像素灰度的分布确定实际阈值,根据计算后的阈值进行二值化处理和涂点密度的计算。此外,由于试卷图像在印刷、学生填涂以及扫描过程中,无可避免的会产生一定的噪声信息,因此需要对图像上的噪声进行去噪处理。

  1 涂点区域的特征

  1.1 涂点信息类型

  网络阅卷系统获取的试卷图像上可能存在多种涂点信息。具体来说可分为以下几类:

  (1)考生信息数据。考生信息包含了考生的考号、姓名、班级等个人信息,其中考号信息是最关键的信息,因为其唯一标识了一张试卷的归属情况。

  (2)客观题填涂数据。无论任何形式的网络阅卷,其客观题填涂信息一定是被系统识别并供后续判分使用的,因为这是保证网络阅卷高速、公平、准确判分的基础。

  (3)其他试卷信息。在试卷上还会存在一些其他类型的试卷信息,例如缺考标记、学科标记、选做题选做标记等,这些标记均以涂点的形式存在。

  对于客观题填涂信息而言,涂点识别的结果直接反映了学生填涂的结果,即学生作答的答案。对于其他试卷涂点信息,涂点识别的结果主要是学生在答题时的一些关键判别信息,如对试卷科目、缺考情况的认定以及学生答题的辅助信息,如选做题的选做标记信息等。

  1.2 涂点的噪声

  一个典型客观题区域经扫描后图像放大如图1所示。由图1可见,涂点区域的噪声主要有随机噪声和边缘噪声两种。

  (1)随机噪声。随机噪声是指图像上的一些干扰像素点的灰度深度随机分布。随机噪声对于图像信息的提取有很大的干扰作用,由图1可见,填涂区域的周围及内部均存在一定程度的高斯噪声。而在无噪声条件下,这些噪声点的位置像素应该和背景色相同。

  (2)边缘噪声。边缘噪声是指图像中存在的尖锐边缘,其定义主要取决于这些边缘对有效信息的提取是正作用还是负作用。在客观题填涂区域的识别当中,填涂区域的边框和填涂区域内部的字母A\B\C\D等标记均为边缘噪声,其对客观题填涂密度的识别有抑制作用,降低了像素灰度的分布空间。

  (2)前景和背景的类间方差是0,1,0,1 的函数,而它们又是t的函数,因此可对每一个t级别做遍历,统计对应的前景像素比例0,背景像素比例1以及对应的灰度均值0,1,从而计算出对应每一个t值的类间方差g (t)。

  (3)选择类间方差最大的点 g=max {g (t)},即得到该区

  域的阈值t。

  (4)由于该算法计算出的阈值可以随图像的颜色深浅和黑白对比程度动态变化,但涂点识别需要将尽可能多的点判定为黑点,因此需要对阈值t做加权处理,取权重为1.3,即最终阈值t0=t×1.3。若加权后的阈值大于255,则取t0=255。

  2.4 涂点密度计算

  确定动态阈值后,即可计算涂点的填涂密度。设计算得到的阈值为t0,则灰度值小于t0的像素点个数统计为n0,总像素点数为涂点宽度与高度的乘积m×n,即可得涂点密度=n0/(m×n)。若>0.75,则认为该点已被填涂。

  3 结 语

  本文介绍了网络阅卷中涂点识别的意义和主要内容,分析了涂点信息的类型和涂点噪声的形式,提出了一种基于动态阈值的涂点识别算法,并对算法流程、去噪处理、动态阈值的计算进行了理论分析和推导。该方法可以有效避免填涂深浅带来的阈值选取问题,根据实际图像灰度分布计算阈值,具有较高的实用价值。

  参考文献

  [1]宋锦秀.基于图像识别的答题卡自动阅卷研究[J].中小学电教月刊,2015(8):69.

  [2]吴翔,夏英杰,李金屏.一种答题卡的自动阅读方法[J].济南大学学报(自然科学版),2014,28(4):246-250.

  [3]杨青燕,彭延军.基于灰度图像的答题卡识别技术[J].山东科技大学学报(自然科学版),2009,28(3):99-102.

  [4]李清.基于图像识别的网上阅卷系统的设计实现与优化[D].长春:东北师范大学,2013.

  摘 要:网络阅卷模式随着教育信息化的发展和相关技术水平的进步,已经成为一种非常流行的考试信息化解决方案。在网络阅卷中,图像识别的最终目的是识别试卷图像上的涂点信息,正确判别考生的填涂结果。文中介绍了一种基于动态阈值的涂点识别算法,并对该方法进行了理论分析和推导,证明其具有很高的实际应用价值。

  关键词:动态阈值;涂点识别;网络阅卷;信息化

  中图分类号:TP393 文献标识码:A 文章编号:2095-1302(2016)11-00-02

  0 引 言

  随着在线教育和教育信息化的发展和推广,网络阅卷模式被越来越多的学校和教育机构所接受,已经逐渐成为一种业界通行的考试阅卷方案。具体来说,网络阅卷主要指学生参加纸质考试后,通过获取图像、图像识别、客观题判分、主观题阅卷、成绩汇总几个步骤,实现公平、公正判分,并生成成绩统计分析结果的过程。

  网络阅卷流程的最终目的是实现涂点的识别,而涂点识别的目的是为了准确判定考生的填涂情况。一般来说,网络阅卷中使用识别模板对图像进行识别,在识别区域中,通过采集识别区域像素点的灰度值,利用阈值对图像进行二值化处理,从而判定涂点的填涂密度,确定填涂与否。这种判断方式的最大问题在于阈值的选取,若选取阈值过低,或填涂较轻的涂点则无法识别,阈值过高又可能误识别一些没有填涂的图像。因此可以考虑一种基于动态阈值的涂点识别算法,根据图像像素灰度的分布确定实际阈值,根据计算后的阈值进行二值化处理和涂点密度的计算。此外,由于试卷图像在印刷、学生填涂以及扫描过程中,无可避免的会产生一定的噪声信息,因此需要对图像上的噪声进行去噪处理。

  1 涂点区域的特征

  1.1 涂点信息类型

  网络阅卷系统获取的试卷图像上可能存在多种涂点信息。具体来说可分为以下几类:

  (1)考生信息数据。考生信息包含了考生的考号、姓名、班级等个人信息,其中考号信息是最关键的信息,因为其唯一标识了一张试卷的归属情况。

  (2)客观题填涂数据。无论任何形式的网络阅卷,其客观题填涂信息一定是被系统识别并供后续判分使用的,因为这是保证网络阅卷高速、公平、准确判分的基础。

  (3)其他试卷信息。在试卷上还会存在一些其他类型的试卷信息,例如缺考标记、学科标记、选做题选做标记等,这些标记均以涂点的形式存在。

  对于客观题填涂信息而言,涂点识别的结果直接反映了学生填涂的结果,即学生作答的答案。对于其他试卷涂点信息,涂点识别的结果主要是学生在答题时的一些关键判别信息,如对试卷科目、缺考情况的认定以及学生答题的辅助信息,如选做题的选做标记信息等。

  1.2 涂点的噪声

  一个典型客观题区域经扫描后图像放大如图1所示。由图1可见,涂点区域的噪声主要有随机噪声和边缘噪声两种。

  (1)随机噪声。随机噪声是指图像上的一些干扰像素点的灰度深度随机分布。随机噪声对于图像信息的提取有很大的干扰作用,由图1可见,填涂区域的周围及内部均存在一定程度的高斯噪声。而在无噪声条件下,这些噪声点的位置像素应该和背景色相同。

  (2)边缘噪声。边缘噪声是指图像中存在的尖锐边缘,其定义主要取决于这些边缘对有效信息的提取是正作用还是负作用。在客观题填涂区域的识别当中,填涂区域的边框和填涂区域内部的字母A\B\C\D等标记均为边缘噪声,其对客观题填涂密度的识别有抑制作用,降低了像素灰度的分布空间。

  (2)前景和背景的类间方差是0,1,0,1 的函数,而它们又是t的函数,因此可对每一个t级别做遍历,统计对应的前景像素比例0,背景像素比例1以及对应的灰度均值0,1,从而计算出对应每一个t值的类间方差g (t)。

  (3)选择类间方差最大的点 g=max {g (t)},即得到该区

  域的阈值t。

  (4)由于该算法计算出的阈值可以随图像的颜色深浅和黑白对比程度动态变化,但涂点识别需要将尽可能多的点判定为黑点,因此需要对阈值t做加权处理,取权重为1.3,即最终阈值t0=t×1.3。若加权后的阈值大于255,则取t0=255。

  2.4 涂点密度计算

  确定动态阈值后,即可计算涂点的填涂密度。设计算得到的阈值为t0,则灰度值小于t0的像素点个数统计为n0,总像素点数为涂点宽度与高度的乘积m×n,即可得涂点密度=n0/(m×n)。若>0.75,则认为该点已被填涂。

  3 结 语

  本文介绍了网络阅卷中涂点识别的意义和主要内容,分析了涂点信息的类型和涂点噪声的形式,提出了一种基于动态阈值的涂点识别算法,并对算法流程、去噪处理、动态阈值的计算进行了理论分析和推导。该方法可以有效避免填涂深浅带来的阈值选取问题,根据实际图像灰度分布计算阈值,具有较高的实用价值。

  参考文献

  [1]宋锦秀.基于图像识别的答题卡自动阅卷研究[J].中小学电教月刊,2015(8):69.

  [2]吴翔,夏英杰,李金屏.一种答题卡的自动阅读方法[J].济南大学学报(自然科学版),2014,28(4):246-250.

  [3]杨青燕,彭延军.基于灰度图像的答题卡识别技术[J].山东科技大学学报(自然科学版),2009,28(3):99-102.

  [4]李清.基于图像识别的网上阅卷系统的设计实现与优化[D].长春:东北师范大学,2013.


相关内容

  • 网上阅卷系统建设方案
  • 具体方案 .................................................................................................... 2 项目组成 ..................................... ...

  • 文献检索课程报告
  • 文献检索课程报告 班级:理工计科1211 学号: 03 姓名:dreamkunk 一 选题简介 课程名称:C语言网络考试系统的开发与研究 C-language network test system development and research 课程分析:关键词:网络考试系统.试卷生成算法 ne ...

  • 同济高等数学(第五版)150教时
  • 同济<高等数学>(第五版) 150教时 教学建议书 1 总体建议 1.1 总课时分配: 第1章 分析引论 16 第2章 导数与微分 14 第3章 中值定理与导数的应用 14 第4章 不定积分 14 第5章 定积分 12 第6章 定积分的应用 4 第7章 空间解析几何与向量代数 10 第8 ...

  • N多毕业设计题目
  • 基于Ajax技术的WEB应用的设计 又快到毕业的时候了,大家该准备做毕业设计了.大学问问特意收集了一些毕业设计(论文)的题目,供大家选择. VB售楼管理系统 VB无纸化考试系统 VB小区物业管理系统 VB航空公司管理信息系统 VB计算机机房管理系统 VB房地产评估系统VB+SQL2000 VB光盘信 ...

  • 基于安全网络的阅卷系统实现
  • 基于安全网络的阅卷系统实现 [日期:2006-06-10] 来源: 作者: [字体:大 中 小] 摘要:考试是现代社会选拔人才的重要方式,阅卷工作是其中的一个重要环节.在保证信息安全的前提下,该文探讨了一种基于网络的阅卷方式.利用OCR系统,将考生试卷以图像的方式录入到计算机,通过网络传至考试中心. ...

  • 路径规划的智能控制
  • (综述报告) 考 核 科 目 :机电系统智能控制 学生所在院(系):机电学院 学生所在学科 :机学生姓名 学号 : 学生类别 :工考 核 结 果 械制学 造 阅卷人 智能控制在机器人领域的应用 遗传算法在移动机器人路径规划上的研究 摘要:近些年来机器人技术飞速发展,对机器人运动的控制要求越来越高,机 ...

  • 七天网络阅卷学校用户规范操作指南
  • 七天网络阅卷学校用户规范操作指南 http://www.7net.cc 安庆市七天网络(septnet)有限责任公司 2012年12月 第一章 阅卷系统准备 1.1 阅卷系统准备工作包括:阅卷扫描专用场地建设,阅卷设备安装与调试,各年级各班在籍学生名册,学校在职教师名册等数据的登记和核对. 1.2 ...

  • 模式识别课程设计
  • 模式识别导论 课程设计 学号: 班级: 姓名: (2)分类器设计方法概述及选择依据分析:(10分) (3)感知器算法原理及算法步骤:(20分) (4)感知器算法流程设计:(20分) (5)感知器算法程序:(10分) (6)程序仿真及结果分析:(20分) (7)结论:(5分) (8)参考文献.(5分) ...

  • 跨地区联考远程网上阅卷系统的应用
  • 为切实做好高考前的教学诊断,统一教学水平与教学质量的评价基准,各级教育局及各类联考学校纷纷举行诸如高考模拟考.省市质检考及多校联考等统一考试,以期通过"统一命题.分散考试.集中评卷与整体分析"的方式达到为后续教学提供查缺补漏依据的目的.组织各类统考.统阅与统分(统一分析)工作,对 ...