所谓蓄电池即是贮存化学能量

所谓蓄电池即是贮存化学能量,于必要时放出电能的一种电气化学设备。构成铅蓄电池之主要成份如下:

阳极板(过氧化铅.PbO 2)---> 活性物质

阴极板(海绵状铅.Pb) ---> 活性物质

电解液(稀硫酸) ---> 硫酸.H 2SO 4 + 水 .H2O

电池外壳

隔离板

其它(液口栓. 盖子等)

一、铅蓄电池之原理与动作

铅蓄电池内的阳极(PbO2)及阴极(Pb)浸到电解液(稀硫酸) 中,两极间会产生2V 的电力,这是根据铅蓄电池原理,经由充放电,则阴阳极及电解液即会发生如下的变化: (阳极) (电解液) (阴极)

PbO 2 + 2H2SO 4 + Pb ---> PbSO4 + 2H2O + PbSO4 (放电反应)

(过氧化铅) (硫酸) (海绵状铅)

(阳极) (电解液) (阴极)

PbSO 4 + 2H 2O + PbSO 4 ---> PbO2 + 2H2SO 4 + Pb (充电反应)

(硫酸铅) (水) (硫酸铅)

1. 放电中的化学变化

蓄电池连接外部电路放电时,稀硫酸即会与阴、阳极板上的活性物质产生反应, 生成新化合物『硫酸铅』。经由放电硫酸成分从电解液中释出,放电愈久,硫酸浓度愈稀薄。所消耗之成份与放电量成比例,只要测得电解液中的硫酸浓度,亦即测其比重,即可得知放电量或残余电量。

2. 充电中的化学变化

由于放电时在阳极板,阴极板上所产生的硫酸铅会在充电时被分解还原成硫酸, 铅及过氧化铅, 因此电池内电解液的浓度逐渐增加, 亦即电解液之比重上升,并逐渐回复到放电前的浓度,这种变化显示出蓄电池中的活性物质已还原到可以再度供电的状态,当两极的硫酸铅被还原成原来的活性物质时,即等于充电结束,而阴极板就产生氢,阳极板则产生氧,充电到最后阶段时,电流几乎都用在水的电解,因而电解液会减少,此时应以纯水补充之。

二、电动车用蓄电池的构造

电动车用蓄电池, 必须具备以下条件:

◎ 高性能

◎ 耐震. 耐冲击

◎ 寿命长

◎ 保养容易

由于玻璃纤维管式铅蓄电池是累积多次实验结果而制成,故具有多项优点。

1. 极板

根据蓄电池容量选择适当规格极板及数量组合而成。于充放电时, 两极活性物质随着体积的变化而反复膨胀与收缩。两极活性物质中,阴极板之海绵状铅的结合力较强,而阳极板之过氧化铅的结合力弱,因而在充放电之际,会徐徐脱落,此即为铅蓄电池寿命受到限制的原因。期使蓄电池使用期限延长,能耐震并耐冲击,则阳极板的改良即成当急要务。

∙ 玻璃纤维管式的阳极板: 此乃以玻璃纤维制的软管接在铅合金制的栉状格子(蕊

金) 上,在软管和蕊金间充填铅粉之后,将软管密封,使其发生变化,产生活性化物质,由于活性化物质不会脱落,与电解液接触亦良好, 是一种非常好的极板材料。使用具有这种极板的蓄电池是电动车唯一的选择。编织式软管乃以9microm(μ) 的玻璃纤维编成管袋状,弹性好,可耐膨胀或收缩,而且对电解液的渗透度也非常良好,此软管乃是最佳产品,长久以来,实用绩效良好。

∙ 糊状式极板: 就是将稀硫酸炼制之糊状铅粉涂覆在铅合金制的格子上,俟其 干燥

后所形成之活性物质。这种方式一直被采用在铅蓄电池的阴极板上,同时亦使用在汽车,小货车的蓄电池阳极板上。

2. 隔离板

能防止阴、阳极板间产生短路,但不会妨碍两极间离子的流通。而且经长时间使用,也不会劣化,或释放杂质。铅蓄电池一般都使用胶质隔离板。

3. 电池外壳

耐酸性强,兼具机械性强度。电动车用的蓄电池外壳乃使用材质强韧之合成树脂经特殊处理制成,其机械性强度特别强,上盖亦使用相同材质,以热熔接着。

4. 电解液

电解液比重以20℃的值为标准,电动车用的蓄电池完全充电时之电解液标准比重为1.280。

5. 液口栓

液口栓的功能为排出充电时所产生的气体及补充纯水,测定比重。

三、蓄电池的容量

电动车用蓄电池的容量以下列条件表示之:

◎ 电解液比值 1.280/20℃

◎ 放电电流 5小时的电流

◎ 放电终止电压 1.70V/Cell

◎ 放电中的电解液温度 30±2℃

1. 放电中电压下降

放电中端子电压比放电前之无负载电压(开路电压)低,理由如下:

(1)V=E-I.R

V :端子电压(V) I:放电电流(A)

E :开路电压(V) R :内部阻抗(Ω)

(2)放电时,电解液比重下降,电压也降低。

(3)放电时,电池内部阻抗即随之增强,完全充电时若为1倍,则当完全放电时,即会增强2~3倍。

用于起重时之电瓶电压之所以比用于行走时的电压低,乃是由于起重用之油压马达比行走用之驱动马达功率大,因此放电流大,则上式的I.R 亦变大。

2. 蓄电池之容量表示

在容量试验中,放电率与容量的关系如下:

5HR....1.7V/cell

3HR....1.65V/cell

1HR....1.55V/cell

严禁到达上述电压时还继续继续放电,放电愈深,电瓶内温会升高, 则活性物质劣化愈严重,进而缩短蓄电池寿命。

因此,堆高机无负重扬升时的电池电压若已达1.75v/cell(24cell的42v,12cell 的21v) ,则应停止使用,马上充电。

3. 蓄电池温度与容量

当蓄电池温度降低,则其容量亦会因以下理由而显著减少。

(A)电解液不易扩散,两极活性物质的化学反应速率变慢。

(B)电解液之阻抗增加,电瓶电压下降, 蓄电池的5HR 容量会随蓄电池温度下降而减少。 因此:

(1)冬季比夏季的使用时间短。

(2)特别是使用于冷冻库的蓄电池由于放电量大,而使一天的实际使用时间显著减短。 若欲延长使用时间,则在冬季或是进入冷冻库前,应先提高其温度。

4. 放电量与寿命

每日反复充放电以供使用时,则电池寿命将会因放电量的深浅,而受到影响。

5. 放电量与比重

蓄电池之电解液比重几乎与放电量成比例。因此,根据蓄电池完全放电时的比重及10%放电时的比重,即可推算出蓄电池的放电量。

测定铅蓄电池之电解液比重为得知放电量的最佳方式。因此,定期性的测定使用后的比重,以避免过度放电,测比重的同时,亦侧电解液的温度,以20度C 所换算出的比重,切勿使其降到80%放电量的数值以下。

6. 放电状态与内部阻抗

内部阻抗会因放电量增加而加大,尤其放电终点时,阻抗最大,主因为放电的进行使得极板内产生电流的不良导体─硫酸铅及电解液比重的下降,都导致内部阻抗增强,故放电后,务必马上充电,若任其持续放电状态,则硫酸铅形成安定的白色结晶后(此即文献上所说的硫化现象), 即使充电, 极板的活性物资亦无法恢复原状, 而将缩短电瓶的使用年限。 ★白色硫酸铅化

蓄电池放电,则阴、阳极板同时产生硫酸铅(PbS04),若任其持续放电,不予充电,则最后会形成安定的白色硫酸铅结晶(即使再充电,亦难再恢复原来的活性物质) 此状态称为白色硫化现象。

7. 放电中的温度

当电池过度放电,内部阻抗即显著增加,因此蓄电池温度也会上升。放电时的温度高,会提高充电完成时温度,因此,将放电终了时的温度控制在40℃以下为最理想。

四、充电的管理

1. 蓄电池的充电特性

蓄电池充电的端子电压如下式表示

V= E+I.R,在此

E=电瓶电压(V) I=充电电流(A) R=内部阻抗(Ω)

2. 蓄电池温度与寿命

蓄电池温度(电解液温度)升高,则阴阳极板上的活性物质即会劣化,并腐蚀阳极格子,而缩短电池寿命,相对的,电池温度太低时,会使电池蓄电容量减少,容易过度放电,进而使电池寿命缩短。此种关系也会因电池型式,极板材质而有变化。故应遵守下列之使用条件:

通常蓄电池之电解液温度应维持在15~55℃为理想使用状态,不得已的情况下, 也不可超过放电时-15~55℃,充电时0~60℃的范围。实际使用时,由于充电时温度会上升,因此,放电终了时之电解液温度以维持在40℃以下为最理想。

3. 充电量与寿命

蓄电池所须之充电量为放电量的110~120%.放电量与蓄电池寿命具密切关系, 假设充电量为放电量120%时的电池,使用寿命为1200回(4年),则当电池的充电量达放电量之150%时,则可推算该电池的寿命为:

1200回×120/150=960回(3·2年)

又,此150%的充电, 迫使水被分解产生气体,电解液遽减,将使充电终点的温度上升, 结果温度上升造成耐用年限缩短。此外,充电不足即又重复放电使用,则会严重影响电池寿命。

◎ 堆高机举重时,若电池温度保持在10~40℃之间,其充电量亦维持在110~120%者,最能延长电池寿命,此时充电完成之比重,其20℃换算值约为1·28。

4. 气体的产生与通风换气

充电中产生的气体为氧与氢的混合气,氢气具爆炸性,若空气中氢气达3.8%以上,且又近火源,则会发生爆炸。充电场所必须通风良好,注意远离火源,避免触电。

五、电解液之管理

1. 比重测定

测量比重时,须使用吸取式比重计将电解液缓缓吸入外筒,从浮标之刻度即可测知比重。 铅蓄电池之电解液比重会随温度改变而变化,电解液比重乃以摄氏20度时的比重为标准,因此比重计上的读数,必须换算为摄氏20度时之标准比重。当温度变化摄氏一度时,则比重即变化0.0007,因此,在测量比重的同时,必须测量温度,测温时,请使用棒状酒精温度计。

该温度t℃时所测之比重为St ,则以下式换算标准温度20℃时之比重S20,

S20=St+0.0007(t-20)

S20... 为换算成20℃时的比重

St.... 为t℃时所测之比重

t.....为测得电解液之实际摄氏温度

例如:20℃时比重为1.280者,在10℃时变成1.287;30℃时,变成1.273。

2. 纯水之补充

重复放电时,电解液面会缓缓下降,因此定期检视电解液液位,随时补充纯水,以维持适当之液位,若因忽略补水,而露出极板,则会伤害极板。蓄电池用纯水的标准按日本蓄电池工业会SBA4001的规定如下:

3. 电解液中的不纯物与电池寿命 电解液中若含有硝酸、盐酸、亚硫酸、盐素、有机物等,则会腐蚀极板,加速缩短电池寿命,同时也会加速自我放电,此外,铜、镍、铁、锰亦会伤害电池导致自我放电量增加。 蓄电池补充液位时,一定要使用纯水,用水冲洗电瓶时,一定要将电池帽盖紧以避免冲洗用水流入电瓶内。

4. 补水过多所造成的弊端

补水时若超过最高液面(参照第4-1)则充电时就会发生满溢,而使稀硫酸成份流失,腐蚀电瓶箱, 电解液比重偏低造成蓄电容量不足等。

六、其它

1. 自我放电

蓄电池当其内部发生纯化学反应,或因不纯物污染造成电化学反应,或长久不用皆会耗电,此即称为自我放电。自我放电之耗电程度乃视蓄电池构造温度、比重、不纯物,使用过等

而有所不同,一般在一天内会放掉0.5~1%,蓄电池在使用前的保存期间就会自我放电,消耗蓄电量。

当蓄电池处于长期持续放电状态时,则一旦形成白色硫酸铅化,则即使再充电,也无法恢复其容量。库存期间务必每1个月就充电一次。

2. 电瓶寿命终期的判定

蓄电池到寿命终期,其容量就会减少,至于其容量在数字上退减的程度为何﹖则可依容量试验测定之。

放电前必须确定电池的比重与电压已达最高值,然后再持续充电1小时,才能完全充电。 充电终期是将比重调整到1.28±0.01(20℃)液面亦维持在规定液面的标准。

放电开始时期:充电完全放置1小时后。

放电电流:5HR 规格容量的1/5(5HR400AH时固定电流为80A)

放电终止电压:平均1.7V/cell (24cell为40.8V ,12cell 20.4V)

容量:放电电流×到达终止电压之前的放电时间

维客 维客聊天 Poapor 日志,维客日 志 泡泡生活资讯网 乐乐旅游 西

所谓蓄电池即是贮存化学能量,于必要时放出电能的一种电气化学设备。构成铅蓄电池之主要成份如下:

阳极板(过氧化铅.PbO 2)---> 活性物质

阴极板(海绵状铅.Pb) ---> 活性物质

电解液(稀硫酸) ---> 硫酸.H 2SO 4 + 水 .H2O

电池外壳

隔离板

其它(液口栓. 盖子等)

一、铅蓄电池之原理与动作

铅蓄电池内的阳极(PbO2)及阴极(Pb)浸到电解液(稀硫酸) 中,两极间会产生2V 的电力,这是根据铅蓄电池原理,经由充放电,则阴阳极及电解液即会发生如下的变化: (阳极) (电解液) (阴极)

PbO 2 + 2H2SO 4 + Pb ---> PbSO4 + 2H2O + PbSO4 (放电反应)

(过氧化铅) (硫酸) (海绵状铅)

(阳极) (电解液) (阴极)

PbSO 4 + 2H 2O + PbSO 4 ---> PbO2 + 2H2SO 4 + Pb (充电反应)

(硫酸铅) (水) (硫酸铅)

1. 放电中的化学变化

蓄电池连接外部电路放电时,稀硫酸即会与阴、阳极板上的活性物质产生反应, 生成新化合物『硫酸铅』。经由放电硫酸成分从电解液中释出,放电愈久,硫酸浓度愈稀薄。所消耗之成份与放电量成比例,只要测得电解液中的硫酸浓度,亦即测其比重,即可得知放电量或残余电量。

2. 充电中的化学变化

由于放电时在阳极板,阴极板上所产生的硫酸铅会在充电时被分解还原成硫酸, 铅及过氧化铅, 因此电池内电解液的浓度逐渐增加, 亦即电解液之比重上升,并逐渐回复到放电前的浓度,这种变化显示出蓄电池中的活性物质已还原到可以再度供电的状态,当两极的硫酸铅被还原成原来的活性物质时,即等于充电结束,而阴极板就产生氢,阳极板则产生氧,充电到最后阶段时,电流几乎都用在水的电解,因而电解液会减少,此时应以纯水补充之。

二、电动车用蓄电池的构造

电动车用蓄电池, 必须具备以下条件:

◎ 高性能

◎ 耐震. 耐冲击

◎ 寿命长

◎ 保养容易

由于玻璃纤维管式铅蓄电池是累积多次实验结果而制成,故具有多项优点。

1. 极板

根据蓄电池容量选择适当规格极板及数量组合而成。于充放电时, 两极活性物质随着体积的变化而反复膨胀与收缩。两极活性物质中,阴极板之海绵状铅的结合力较强,而阳极板之过氧化铅的结合力弱,因而在充放电之际,会徐徐脱落,此即为铅蓄电池寿命受到限制的原因。期使蓄电池使用期限延长,能耐震并耐冲击,则阳极板的改良即成当急要务。

∙ 玻璃纤维管式的阳极板: 此乃以玻璃纤维制的软管接在铅合金制的栉状格子(蕊

金) 上,在软管和蕊金间充填铅粉之后,将软管密封,使其发生变化,产生活性化物质,由于活性化物质不会脱落,与电解液接触亦良好, 是一种非常好的极板材料。使用具有这种极板的蓄电池是电动车唯一的选择。编织式软管乃以9microm(μ) 的玻璃纤维编成管袋状,弹性好,可耐膨胀或收缩,而且对电解液的渗透度也非常良好,此软管乃是最佳产品,长久以来,实用绩效良好。

∙ 糊状式极板: 就是将稀硫酸炼制之糊状铅粉涂覆在铅合金制的格子上,俟其 干燥

后所形成之活性物质。这种方式一直被采用在铅蓄电池的阴极板上,同时亦使用在汽车,小货车的蓄电池阳极板上。

2. 隔离板

能防止阴、阳极板间产生短路,但不会妨碍两极间离子的流通。而且经长时间使用,也不会劣化,或释放杂质。铅蓄电池一般都使用胶质隔离板。

3. 电池外壳

耐酸性强,兼具机械性强度。电动车用的蓄电池外壳乃使用材质强韧之合成树脂经特殊处理制成,其机械性强度特别强,上盖亦使用相同材质,以热熔接着。

4. 电解液

电解液比重以20℃的值为标准,电动车用的蓄电池完全充电时之电解液标准比重为1.280。

5. 液口栓

液口栓的功能为排出充电时所产生的气体及补充纯水,测定比重。

三、蓄电池的容量

电动车用蓄电池的容量以下列条件表示之:

◎ 电解液比值 1.280/20℃

◎ 放电电流 5小时的电流

◎ 放电终止电压 1.70V/Cell

◎ 放电中的电解液温度 30±2℃

1. 放电中电压下降

放电中端子电压比放电前之无负载电压(开路电压)低,理由如下:

(1)V=E-I.R

V :端子电压(V) I:放电电流(A)

E :开路电压(V) R :内部阻抗(Ω)

(2)放电时,电解液比重下降,电压也降低。

(3)放电时,电池内部阻抗即随之增强,完全充电时若为1倍,则当完全放电时,即会增强2~3倍。

用于起重时之电瓶电压之所以比用于行走时的电压低,乃是由于起重用之油压马达比行走用之驱动马达功率大,因此放电流大,则上式的I.R 亦变大。

2. 蓄电池之容量表示

在容量试验中,放电率与容量的关系如下:

5HR....1.7V/cell

3HR....1.65V/cell

1HR....1.55V/cell

严禁到达上述电压时还继续继续放电,放电愈深,电瓶内温会升高, 则活性物质劣化愈严重,进而缩短蓄电池寿命。

因此,堆高机无负重扬升时的电池电压若已达1.75v/cell(24cell的42v,12cell 的21v) ,则应停止使用,马上充电。

3. 蓄电池温度与容量

当蓄电池温度降低,则其容量亦会因以下理由而显著减少。

(A)电解液不易扩散,两极活性物质的化学反应速率变慢。

(B)电解液之阻抗增加,电瓶电压下降, 蓄电池的5HR 容量会随蓄电池温度下降而减少。 因此:

(1)冬季比夏季的使用时间短。

(2)特别是使用于冷冻库的蓄电池由于放电量大,而使一天的实际使用时间显著减短。 若欲延长使用时间,则在冬季或是进入冷冻库前,应先提高其温度。

4. 放电量与寿命

每日反复充放电以供使用时,则电池寿命将会因放电量的深浅,而受到影响。

5. 放电量与比重

蓄电池之电解液比重几乎与放电量成比例。因此,根据蓄电池完全放电时的比重及10%放电时的比重,即可推算出蓄电池的放电量。

测定铅蓄电池之电解液比重为得知放电量的最佳方式。因此,定期性的测定使用后的比重,以避免过度放电,测比重的同时,亦侧电解液的温度,以20度C 所换算出的比重,切勿使其降到80%放电量的数值以下。

6. 放电状态与内部阻抗

内部阻抗会因放电量增加而加大,尤其放电终点时,阻抗最大,主因为放电的进行使得极板内产生电流的不良导体─硫酸铅及电解液比重的下降,都导致内部阻抗增强,故放电后,务必马上充电,若任其持续放电状态,则硫酸铅形成安定的白色结晶后(此即文献上所说的硫化现象), 即使充电, 极板的活性物资亦无法恢复原状, 而将缩短电瓶的使用年限。 ★白色硫酸铅化

蓄电池放电,则阴、阳极板同时产生硫酸铅(PbS04),若任其持续放电,不予充电,则最后会形成安定的白色硫酸铅结晶(即使再充电,亦难再恢复原来的活性物质) 此状态称为白色硫化现象。

7. 放电中的温度

当电池过度放电,内部阻抗即显著增加,因此蓄电池温度也会上升。放电时的温度高,会提高充电完成时温度,因此,将放电终了时的温度控制在40℃以下为最理想。

四、充电的管理

1. 蓄电池的充电特性

蓄电池充电的端子电压如下式表示

V= E+I.R,在此

E=电瓶电压(V) I=充电电流(A) R=内部阻抗(Ω)

2. 蓄电池温度与寿命

蓄电池温度(电解液温度)升高,则阴阳极板上的活性物质即会劣化,并腐蚀阳极格子,而缩短电池寿命,相对的,电池温度太低时,会使电池蓄电容量减少,容易过度放电,进而使电池寿命缩短。此种关系也会因电池型式,极板材质而有变化。故应遵守下列之使用条件:

通常蓄电池之电解液温度应维持在15~55℃为理想使用状态,不得已的情况下, 也不可超过放电时-15~55℃,充电时0~60℃的范围。实际使用时,由于充电时温度会上升,因此,放电终了时之电解液温度以维持在40℃以下为最理想。

3. 充电量与寿命

蓄电池所须之充电量为放电量的110~120%.放电量与蓄电池寿命具密切关系, 假设充电量为放电量120%时的电池,使用寿命为1200回(4年),则当电池的充电量达放电量之150%时,则可推算该电池的寿命为:

1200回×120/150=960回(3·2年)

又,此150%的充电, 迫使水被分解产生气体,电解液遽减,将使充电终点的温度上升, 结果温度上升造成耐用年限缩短。此外,充电不足即又重复放电使用,则会严重影响电池寿命。

◎ 堆高机举重时,若电池温度保持在10~40℃之间,其充电量亦维持在110~120%者,最能延长电池寿命,此时充电完成之比重,其20℃换算值约为1·28。

4. 气体的产生与通风换气

充电中产生的气体为氧与氢的混合气,氢气具爆炸性,若空气中氢气达3.8%以上,且又近火源,则会发生爆炸。充电场所必须通风良好,注意远离火源,避免触电。

五、电解液之管理

1. 比重测定

测量比重时,须使用吸取式比重计将电解液缓缓吸入外筒,从浮标之刻度即可测知比重。 铅蓄电池之电解液比重会随温度改变而变化,电解液比重乃以摄氏20度时的比重为标准,因此比重计上的读数,必须换算为摄氏20度时之标准比重。当温度变化摄氏一度时,则比重即变化0.0007,因此,在测量比重的同时,必须测量温度,测温时,请使用棒状酒精温度计。

该温度t℃时所测之比重为St ,则以下式换算标准温度20℃时之比重S20,

S20=St+0.0007(t-20)

S20... 为换算成20℃时的比重

St.... 为t℃时所测之比重

t.....为测得电解液之实际摄氏温度

例如:20℃时比重为1.280者,在10℃时变成1.287;30℃时,变成1.273。

2. 纯水之补充

重复放电时,电解液面会缓缓下降,因此定期检视电解液液位,随时补充纯水,以维持适当之液位,若因忽略补水,而露出极板,则会伤害极板。蓄电池用纯水的标准按日本蓄电池工业会SBA4001的规定如下:

3. 电解液中的不纯物与电池寿命 电解液中若含有硝酸、盐酸、亚硫酸、盐素、有机物等,则会腐蚀极板,加速缩短电池寿命,同时也会加速自我放电,此外,铜、镍、铁、锰亦会伤害电池导致自我放电量增加。 蓄电池补充液位时,一定要使用纯水,用水冲洗电瓶时,一定要将电池帽盖紧以避免冲洗用水流入电瓶内。

4. 补水过多所造成的弊端

补水时若超过最高液面(参照第4-1)则充电时就会发生满溢,而使稀硫酸成份流失,腐蚀电瓶箱, 电解液比重偏低造成蓄电容量不足等。

六、其它

1. 自我放电

蓄电池当其内部发生纯化学反应,或因不纯物污染造成电化学反应,或长久不用皆会耗电,此即称为自我放电。自我放电之耗电程度乃视蓄电池构造温度、比重、不纯物,使用过等

而有所不同,一般在一天内会放掉0.5~1%,蓄电池在使用前的保存期间就会自我放电,消耗蓄电量。

当蓄电池处于长期持续放电状态时,则一旦形成白色硫酸铅化,则即使再充电,也无法恢复其容量。库存期间务必每1个月就充电一次。

2. 电瓶寿命终期的判定

蓄电池到寿命终期,其容量就会减少,至于其容量在数字上退减的程度为何﹖则可依容量试验测定之。

放电前必须确定电池的比重与电压已达最高值,然后再持续充电1小时,才能完全充电。 充电终期是将比重调整到1.28±0.01(20℃)液面亦维持在规定液面的标准。

放电开始时期:充电完全放置1小时后。

放电电流:5HR 规格容量的1/5(5HR400AH时固定电流为80A)

放电终止电压:平均1.7V/cell (24cell为40.8V ,12cell 20.4V)

容量:放电电流×到达终止电压之前的放电时间

维客 维客聊天 Poapor 日志,维客日 志 泡泡生活资讯网 乐乐旅游 西


相关内容

  • 低碳经济与氢能源
  • 低碳经济与氢能源 2班,黎东维,0211,中南大学 摘要:氢能是21世纪主要的新能源之一.作为一种新型的清洁能源,氢的廉价制取.安全高效储存与输送及规模应用是当今研究的重点课题,而氢的储存是氢能应用的关键.储氢材料可逆地大量吸放氢,在氢的储存与输送过程中是一种重要载体.本文综述了目前所采用或正在研究 ...

  • 燃料电池原理与发展论文
  • 燃料电池原理与发展 燃料电池是一种能够持续的通过发生在阳极和阴极的氧化还原反应将化学能转化为电 能的能量转换装置.燃料电池与常规电池的区别在于,它工作时需要连续不断地向电池内输 入燃料和氧化剂,只要持续供应,燃料电池就会不断提供电能.由于燃料电池能将燃料的化 学能直接转换为电能,因此,它没有像普通火 ...

  • 储氢材料的发展现状.应用与制备综述
  • 储氢材料的发展现状.应用与制备 摘要:能源危机和开发新能源一直是人类发展进程中相互依赖和相互促进的两个重要因素.为了保护环境,开发新能源,可以利用太阳能.地热.风能及海水等.其中,氢能是人类未来的理想能源,它是一种高能量密度.清洁的能源,是最有吸引力的能源形式之一,具有热值高.资源丰富.干净.无毒. ...

  • 电池的分类
  • 一. 电池的种类 <电动汽车及其性能优化>王贵明 电池的种类有多种多样,划分的方法也有多种.按电池原理划分,主要可分为生物电池.物理电池.化学电池三大类.生物电池是利用生物(如生物酶.微生物或叶绿素等)分解反应过程中表现出得带电现象所进行的能量交换,有酶电池.微生物电池和生物太阳电池等. ...

  • 燃料电池的发电技术
  • 燃料电池发电技术 摘要:概述了燃料电池的原理和分类,以及他们的反应原理及技术和燃料电池发电技术做了 初步介绍. 关键词:燃料电池,发电 引言:随着社会经济的高速发展,人们对能源的依赖越来越严重,而生存环境的持续恶化又 催促人们不断寻求清洁能源.燃料电池由于其环保性和高效性被誉为继火力发电.水力发电. ...

  • 电化学混合电容器
  • 第34卷 第4期2004年 8月电 池 BATTERY BIMONTHLYVol134,No14 Aug1,2004 电化学混合电容器 张治安,邓梅根,汪斌华,胡永达,杨邦朝 (电子科技大学微电子与固体电子学院,四川成都 610054) 摘要:电化学混合电容器是一种介于超级电容器和电池之间的新型贮能 ...

  • [化学电源]教学设计
  • 选修四第四章第二节<化学电源>教学建议 广州市育才中学 潘莉莉 一.教材分析 第一节原电池的内容是关于化学能怎样转换成电能的理论性问题,而本节教学是要进一步了解依据原电池原理开发的技术产品------化学电池,因此,这节课是对上节原电池内容的延伸和应用.化学电池是一类应用广泛.实用性强的 ...

  • 锂电池规范条件
  • 工信部拟对锂离子电池生产项目实施准入.12月11日,工业和信息化部发布了<锂离子电池行业规范条件>征求意见稿(下称<条件>),明确了锂离子电池企业和产品的准入规则.该<条件>如果实施,将竖起锂离子电池生产的门槛,以避免行业"散.小.乱"趋势持续 ...

  • 材料科学基础2
  • 材 料 科 学 基 础 ---燃料电池 学号:1102030250 系别:中文与传媒系新闻(2)班 姓名:朱秋霞 燃料电池是一种将存在于燃料与氧化剂中的化学能直接转化为电能的发电装置.燃料和空气分别送进燃料电池,电就被奇妙地生产出来.它从外表上看有正负极和电解质等,像一蓄电池,但实质上它不能&quo ...