高等数学 课后习题答案第十二章

习题十二

1.写出下列级数的一般项:

1+

(1)

13

+

15

+

17

+

(2)2

3

+

x 2⋅4

5

+

9

2⋅4⋅6

+

x

2

2⋅4⋅6⋅8

+

a

(3)3

-

a

5

+

a

7

71

-

a

9

+

解:(1)

U n =

2n -1;

n

U n =

(2)

x 2

(2n )!! ;

n +1

2n +1; (3)

2.求下列级数的和:

U n =(-1)

a

2n +1

(1)

∑(

n =1

1

x +n -1)(x +n )(x +n +1);

(2)

∑n =1

+15

3

1

(3)5

+

15

2

+

u n ==

解:(1)

1

(x +n -1)(x +n )(x +n +1)

111⎛⎫

- ⎪

2⎝(x +n -1)(x +n )(x +n )(x +n +1)⎭

S n =

11111⎛

-+-

2⎝x (x +1)(x +1)(x +2)(x +1)(x +2)(x +2)(x +3)

1

+ +

(x +n -1)(x +n )

-

(x +n )(x +n +1)⎪⎭

1

从而

111⎛⎫

-= ⎪

2⎝x (x +1)(x +n )(x +n +1)⎭

lim S n =

因此

n →∞

11

2x (x +1),故级数的和为2x (x +1)

(2)

因为

U n =

-

S n =

-

-

-1-

+1-

+

-

-

+

==

从而所以n →∞

+ +

-

lim S n =1-

S n =

15+15

2

1-

+ +

15

n

n

1⎡⎛1⎫⎤⎢1- ⎪⎥5⎣⎝5⎭⎦=

11-

5n

1⎡1⎫⎤⎛=⎢1- ⎪⎥4⎣⎝5⎭⎦

(3)因为

4,即级数的和为4. 从而n →∞

3.判定下列级数的敛散性:

lim S n =

11

(1)

∑n =1

1

(2) 1⋅6

+2323

16⋅11++23

33

+

111⋅16

+ +

1

(5n -4)(5n +1)

23

n n

+

2

(3) 3

-

- +(-1) +

n -1

+

1

(4)5

+

S n =

解:

(1) 从而n →∞

+

-1

,故级数发散.

+ +

-

=

lim S n =+∞

S n ==

(2) 从而n →∞

1⎛1111111⎫1-+-+-+ +- ⎪5⎝661111165n -45n +1⎭1⎛1⎫ 1-⎪5⎝5n +1⎭

12

3的等比级数,且|q |

lim S n =

1

5,故原级数收敛,其和为5.

q =-

(3)此级数为

U n =

(4)

lim U =1≠0n →∞n ,故级数发散.

4.利用柯西审敛原理判别下列级数的敛散性:

(1)

n =1∞

(-1)

n ⎛

1

n +1

; (2)

n =1

cos nx 2

n

(3) n =1

解:(1)当P 为偶数时,

+-⎪∑

⎝3n +13n +23n +3⎭

11⎫

n +1+U n +2+ +U n +p =

(-1)

1n +11

n +2

n +1

-

+1

(-1)

n +3

n +2+

1

+

(-1)

n +4

n +3- -

+ +1n +p

(-1)

n +p +1

n +p

=

n +2n +3

=

111⎛⎫1⎫⎛1

-- - ---⎪ ⎪

n +1⎝n +2n +3⎭⎝n +p -2n +p -1⎭n +p 1n +1

当P 为奇数时,

n +1+U n +2+ +U n +p =

(-1)

1n +11

n +2

n +1

-

+1

(-1)

n +3

n +2+

1

+

(-1)

n +4

n +3- +

+ +1n +p

(-1)

n +p +1

n +p

=

n +2n +3

=

11⎫⎛1⎫⎛1

-- - --⎪ ⎪

n +1⎝n +2n +3⎭⎝n +p -1n +p ⎭1n +1

1n +1

因而,对于任何自然数P ,都有

U n +1+U n +2+ +U n +p

N =

∀ε>0,取

⎡1⎤

+1⎢⎣ε⎥⎦

,则当n >N 时,对任何自然数P 恒有

n +1+U n +2+ +U n +p

成立,由

柯西审敛原理知,级数n =1

(2)对于任意自然数P ,都有

(-1)

n

n +1

收敛.

n +1+U n +2+ +U n +p =≤

cos (n +1)x

212

n +1

n +1

+

cos (n +2)x

22

n +2

+ +

cos (n +p )x

2

n +p

+

12

n +2

+ +

1

n +p

1⎛1⎫

1-n +1 p ⎪2⎝2⎭

=

11-

2=

1⎛1⎫

1- n p ⎪2⎝2⎭12

n

1⎤⎡

log 2⎢+U n +2+ +U n +p 0(0N 时,对任意的自然数P 都有n +1

成立,由柯西审敛原理知,该级数收敛.

(3)取P =n ,则

n +1+U n +2+ +U n +p

111111⎛⎫

= +-+ ++-⎪

3⋅2n +13⋅2n +23⋅2n +3⎝3(n +1)+13(n +1)+23(n +1)+3⎭≥≥>

13(n +1)+1

n 6(n +1)112

+ +

13⋅2n +1

12,则对任意的n ∈N ,都存在P =n 所得从而取

理知,原级数发散.

5.用比较审敛法判别下列级数的敛散性.

ε0=

1

n +1+U n +2+ +U n +p >ε0

,由柯西审敛原

1

(1)4⋅6

+

15⋅7

2

+ +1+31+3

2

1

(n +3)(n +5)

+ +

1+n 1+n

2

+

1+

(2)

1+21+2

++

(3)

n =

1∞

sin 1

π3;

n n

(4)

n =1∞

1n

(5)

∑1+a

n =1

(a >0)

(6)

∑(2

n =1

-1

)

U n =

解:(1)∵

1

(n +3)(n +5)

1n

2

n =1

1

n 收敛,由比较审敛法知

1+n 1+n

2

2

∑U

n =1

n

收敛.

(2)∵

U n =

1+n n +n

2

=

1n

n =1

1

n 发散,由比较审敛法知,原级数发散.

sin lim

(3)∵

πn

n

sin

=lim π⋅

n →∞

πn n

n →∞

13

π3π

∑3

n =1

π

n

收敛,故

n =1

sin

3也收敛.

n

U n =

(4)

=

1

3

n 2

n =1

1

3

n 2收敛,故

n =1

1

收敛.

(5)当a >1时,

U n =

1a ,而=121≠0

n

1+a

n

n =1

1a

n

收敛,故

∑1+a

n =1

1

n

也收敛.

当a =1时,

lim U n =lim

n →∞

n →∞

,级数发散.

n

当0

综上所述,当a >1时,原级数收敛,当0

1

lim U n =lim

n →∞

n →∞

1+a

=1≠0

x (6)由知

6.用比值判别法判别下列级数的敛散性:

x →0∞

lim

2-1

x

lim

2n -11n

=ln 2

x →∞

=ln 2

n =1

1

n 发散,由比较审敛法知

∑(2

n =1

1n

-1

)

发散.

(1)

n =1

n

2n

3;

(2)

∑3

n =1

n !

n

+1;

3

(3)1⋅2

+

n

3

22

2⋅2n

n

+

3

33

3⋅2

+ +

3

n n

n ⋅2

+

(1)

n =1

2⋅n !

2

U n

3,解:(1)

由比值审敛法知,级数收敛.

n

n →∞

U n =

n

2

lim

U n +1

=lim

(n +1)

3

n +1

n →∞

3n

n 2

=

13

lim

U n +1U n

n →∞

(n +1)! 3+1=lim n +1⋅n →∞3+1n !

=lim (n +1)⋅

n →∞

n

3+13

n +1

n

+1

=+∞(2)

所以原级数发散.

lim

U n +1U n

n →∞

=lim

33n

n +1

n +1

n →∞

(n +1)⋅2

2(n +1)

n ⋅23

n

n

=lim =3

n →∞

2(3)

所以原级数发散.

>1

lim

U n +1U n

n →∞

=lim

2

n +1

⋅(n +1)!

n +1n

n →∞

(n +1)

n

n

n

2⋅n !

⎛n ⎫

=lim 2 ⎪n →∞

⎝n +1⎭=2lim

11⎫⎛

1+⎪

n ⎭⎝

n →∞

n

=

2e

(4)

故原级数收敛.

7.用根值判别法判别下列级数的敛散性:

⎛⎫

⎪∑ 3n +1⎝⎭; n =1(1)

⎛n ⎫

⎪∑

(3) n =1⎝3n -1⎭

n

5n

n ∞

(2)

n =1

1

[ln (n +1)]

n

2n -1

⎛b ⎫∑ a ⎪

(4) n =1⎝n ⎭,其中a n →a (n →∞),a n ,b ,a 均为正数.

lim

解:

(1)

故原级数发散.

n →∞

=lim

5n 3n +1

n →∞

=

53

>1

lim

(2)

故原级数收敛.

n →∞

=lim

1ln (n +1)

2-

n →∞

=0

1n

lim

(3)

故原级数收敛.

n →∞

⎛n ⎫

=lim ⎪n →∞

⎝3n -1⎭

=

19

lim

(4)

n →∞

b b =lim =n →∞a a , n

b b b

当b a 时,a >1,原级数发散;当b =a 时,a =1,无法判定其敛散性. 8.判定下列级数是否收敛?若收敛,是绝对收敛还是条件收敛?

1-

(1)

1+

1-

1∞

(2)

∑(-1)

n =1

n -1

1ln (n +1);

11111111

⋅-⋅2+⋅3-⋅4+

5353(3) 5353;

(4)

∑(-1)

n =1∞

n -1

2

n

2

n ! ;

n

(5)

∑(-1)

n =1

n -1

1n

α

(α∈R )

111⎫(-1)⎛

1+++ +⎪∑

23n ⎭n . (6) n =1⎝

U n =(

-1)

解:(1)

n -1

n =1

U n

1

>

n

lim

n →∞

=0

,由莱布

尼茨判别法级数收敛,又

n =1

n =

n =1

1n

2

是P

n =1

发散,故原级数条件收敛.

U n =(-1)

(2)

n -1

1ln (n +1),

n -1

(-1)

n -1

111ln (n +1)

ln (n +1)为交错级数,且ln (n +1)

>

1ln (n +2),1n +1

lim

1ln (n +1)

n →∞

=0

,由莱布尼茨判别法知原级数收敛,但由于

U n =

所以,

n =1

U n

发散,所以原级数条件收敛.

n -1

(3)

U n =(-1)

1

5⋅3民,显然

n

∞∞

n =1

n =

∑5⋅3

n =1

1

n

=

1

∑3

5

n =1

1

n

,而

∑3

n =1

1

n

是收敛的等比级数,故

n =1

n

收敛,所以原级数绝对收敛.

lim

(4)因为故可得∴n →∞

U n +1U n

n →∞

=lim

2

2n +1

n →∞

n +1

=+∞

. ,

n +1>n

,得n →∞

lim n ≠0

lim U n ≠0

,原级数发散.

(5)当α>1时,由级数

n =1

1n

α

收敛得原级数绝对收敛.

n -1

当0

∑(-1)

n =1

n -1

1n

α

1

满足条件:n

α

>

1

α

(n +1);n →∞n α

lim

1

=0

,由莱布尼茨判别法

知级数收敛,但这时当α≤0时,n →∞

n =1

(-1)

1n

α

=

n =1

1n

α

发散,所以原级数条件收敛.

lim U n ≠0

,所以原级数发散.

111⎛1+++ +

23n (6)由于⎝

1⎫1

⋅>⎪

n ⎭n

n =1

1

n 发散,由此较审敛法知级数

n =1

111⎛

1+++ +

23n ⎝⎫(-1)

⎪⋅

n ⎭

n

发散.

111⎛

U n = 1+++ +

23n ⎝记⎫1

⎪⋅

⎭n ,则

1111⎫⎛11⎫⎛

U n -U n +1= 1+++ +⎪ --⎪2

23n ⎭⎝n n +1⎭(n +1)⎝

11111⎫⎛

= 1+++ +⎪-2

23n ⎭n (n +1)(n +1)⎝

111⎛⎫1⎫⎛11

-= ++ +⎪+ 2⎪

n ⎭n (n +1)⎝n (n +1)(n +1)⎭⎝23>0

即U n >U n +1

lim U n =lim

n →∞

n →∞

1⎛111⎫

1+++ + ⎪n ⎝23n ⎭

n

=

1

⎰n

1x

d x

1

由t →+∞t

lim

1

t 0

1

d x =lim t =0t →+∞1x

知n →∞

9.判别下列函数项级数在所示区间上的一致收敛性.

lim U n

111⎛1+++ + ∑=0

23n ,由莱布尼茨判别法,原级数n =1⎝

n

⎫(-1)

⎪⋅

n 收敛,而且是条件收敛.⎭

n

(1)

∑(

n =1∞

x

n -1)! ,x ∈[-3,3];

n

(2)

n =1

x

n 2

n ,x ∈[0,1];

(3)

n =1

sin nx 3

,x ∈(-∞,+∞) ;

(4)

n =1

e

-nx

n ! ,|x |

(5)

n =1

x ∈(-∞,+∞)

x

解:(1)∵

n

(n -1)!

3

n

(n -1)!

,x ∈[-3,3],

而由比值审敛法可知

∑(

n =1

3

n

n -1)! 收敛,所以原级数在 [-3,3]上一致收敛.

x

(2)∵n

n 2

1

n ,x ∈[0,1],

2

n =1

1

n 收敛,所以原级数在[0,1]上一致收敛. sin nx 31

n

2

(3)∵

n

1

3,x ∈(-∞,+∞) ,

n

∑3

n =1

是收敛的等比级数,所以原级数在(-∞,+∞) 上一致收敛.

-nx

e

e

5n

(4)因为n !

n ! ,x ∈(-5,5) ,

由比值审敛法可知

n =1

e

5n

n ! 收敛,故原级数在(-5,5) 上一致收敛.

5

(5)

1

5

1

n 3,x ∈(-∞,+∞) ,

n =1

n 3是收敛的P -级数,所以原级数在(-∞,+∞) 上一致收敛.

10.若在区间Ⅰ上,对任何自然数n .都有|U n (x )|≤V n (x ) ,则当

∑V

n =1

n

(x )

在Ⅰ上一致收敛时,级数

∑U

n =1

n

(x )

在这区间Ⅰ上也一致收敛.

证:由n =1在Ⅰ上一致收敛知, ∀ε>0,∃N (ε)>0,使得当n >N 时,∀x ∈Ⅰ有 |V n +1(x )+V n +2(x )+…+V n +p (x )|

于是,∀ε>0,∃N (ε)>0,使得当n >N 时,∀x ∈Ⅰ有

|U n +1(x )+U n +2(x )+…+U n +p (x )|≤V n +1(x )+V n +2(x )+…+V n +p (x ) ≤|V n +1(x )+V n +2(x )+…+V n +p (x )|

n

∑V

n

(x )

因此,级数n =1在区间Ⅰ上处处收敛,由x 的任意性和与x 的无关性,可知收敛.

11.求下列幂级数的收敛半径及收敛域:

∑U

(x )

∑U

n =1

n

(x )

在Ⅰ上一致

(1)x +2x 2+3x 3+…+nx n +…;

⎛x ⎫

⎪∑n ! n ⎝⎭; (2)n =1

n

(3)

n =1

x

2n -1

2n -1;

(4)

n =1

(x -1)

2

n

n ⋅2n ;

ρ=lim

解:(1)因为

a n +1a n

n →∞

=lim

n +1n

n

n →∞

=1

,所以收敛半径

R =

1

ρ

=1

收敛区间为(-1,1) ,而当x =±1时,

级数变为

∑(-1)

n =1

n

n

,由

lim (-1) n ≠0

x →n

知级数

n

∑(-1)

n =1

n

n

发散,所以级数的收敛域为(-1,1) .

n

-1

ρ=lim

(2)因为

a n +1a n

n →∞

=lim

(n +1)! (n +1)

n +1

n →∞

n

⎡⎛⎛⎫1⎫⎤

⋅=lim ⎪=lim ⎢ 1+⎪⎥n →∞n ! n →∞⎝n +1⎭n ⎭⎦⎣⎝

n n

=e

-1

R =

所以收敛半径

1

ρ

=e

,收敛区间为(-e,e) .

当x =e时,级数变为

n =1

e n n

n

n

1

lim

;应用洛必达法则求得

(1+x )x -e

x

x →0

=-

e 2,故有

⎛a n +1⎫1

-1⎪=-

n →∞2⎝a n ⎭由拉阿伯判别法知,级数发散;易知x =-e 时,级数也发散,故收敛域为(-e,e) .

(3)级数缺少偶次幂项.根据比值审敛法求收敛半径.

lim

U n +1U n

n →∞

=lim

x

2n +1

n →∞

2n +12n -12n +1

2n -1x

22n -1

=lim =x

2

n →∞

⋅x

所以当x 21即|x |>1时,级数发散,故收敛半径R =1.

1

当x =1时,级数变为

n =1

1

2n -1,当x =-1时,级数变为

n =1

-12n -1,由

1

lim =>0n →∞12

n

知,

n =1

1

2n -1发散,从而

n =1

-1

2n -1也发散,故原级数的收敛域为(-1,1) .

(4)令t =x -1,则级数变为n =1n ⋅2n ,因为

所以收敛半径为R =1.收敛区间为 -1

n →∞

t

2

n

ρ=lim

a n +1a n

=lim

n ⋅2n

2

n →∞

(n +1)⋅2(n +1)

2

=1

当t =1时,级数n =12n 收敛,当t =-1时,级数敛.

所以,原级数收敛域为 0≤x ≤2,即[0,2]

12.利用幂级数的性质,求下列级数的和函数:

1

3

∑(-1)

n =1

n

1

2⋅n 为交错级数,由莱布尼茨判别法知其收

3

n +2

(1)

∑nx

n =1

; (2)

n +3

n =0

x

2n +2

2n +1;

lim

(n +1)x

n +2

nx 解:(1)由知,当|x |=

从而发散,故级数的收敛域为(-1,1) .

n +2

n -1

n →∞

=x

∑nx

n +2

的通项不趋于0,

S (x )=

∑nx

n =1

=x

3

∑nx

n =1

易知

∑nx

n =1

n -1

S 1(x )=

的收敛域为(-1,1) ,记

∑nx

n =1

n -1

x 0

S 1(x )=

n =1

x =

n

x 1-x

⎛x

S 1(x )=

⎝1-x 于是

lim

(2)由

3'x 1⎫

S (x )=⎪=22

(1-x ),所以(1-x )⎭

(x

x

2n +4

n →∞

2n +3

2n +1x

2n +2

=x

2

知,原级数当|x |

S (x )=

域为(-1,1) ,记

n =0

x

2n +2∞

2n +1

=x ∑

n =0∞

x

2n +1∞

2n +1,易知级数n =02n +1收敛域为(-1,1) ,记=

11-x ,

12ln 1+x

1-x ,S 1(0)=0,所以

2

x

2n +1

S 1(x )=

n =0

x

2n +1

2n +1,则

12ln x

S 1'(x )=

n =0

x

2n

x 0

S 1'(x )d x =

1+x 1-x 即1+x

S 1(x )-S 1(0)=

21-x

13.将下列函数展开成x 的幂级数,并求展开式成立的区间: (1)f (x )=ln(2+x ) ; (2)f (x )=cos2x ;

S (x )=xS 1(x )=

ln

(x

f (

x )=

(3)f (x )=(1+x )ln(1+x ) ;

(4)

x

2

12

(5)

f (x )=

x 3+x ;

2

(6)

f (x )=(e x -e -x )

1

2

f (x )=

(7)f (x )=ex cos x ;

(8)

(2-x ).

x ⎫x ⎫⎛⎛

f (x )=ln (2+x )=ln 2 1+⎪=ln 2+ln 1+⎪

⎝2⎭⎝2⎭ 解:(1)

ln (1+x )=

由于

∑(-1)

n =0∞

n

n

x

n

n +1,(-1

n +1

n +1

x ⎫⎛

ln 1+⎪=

2⎭故⎝

∑(-1)

n =0

(n +1)2

,(-2≤x ≤2)

ln (2+x )=ln 2+

因此

∑(-1)

n =0

n

x

n +1

n +1

(n +1)2

,(-2≤x ≤2)

(2)

f (x )=cos x =

2

1+cos 2x

2

cos x =

∑(-1)

n =0

n

x

2n

(2n )! ,(-∞

n

cos 2x =

所以

∑(-1)

n =02

(2x )

2n

(2n )!

12

n

=

∑(-1)

n =0

n

4⋅x

n 2n

(2n )!

f (x ) =cos x =

=12+1

12

+cos 2x 4⋅x

n

2n

(-1)∑2

n =0

(2n )! ,(-∞

x

n +1

(3)f (x )=(1+x )ln(1+x )

ln (1+x )=

所以

∑(-1)

n =0

n

(n +1),(-1≤x ≤1)

f (x )=(1+x )∑(-1)

n =0

n

x

n +1

n +1

=

∑(-1)

n =0

∞n =1∞

n

x

n +1

n +1

n

+

∑(-1)

n =0

n

x

n +2

n +1

n +1

=x +

∑(-1)∑

n =1∞

x

n +1

n +1

n

+

∑(-1)

n =1n +1

x

n +1

n ⋅x

n +1

=x +

(-1)n +(-1)(-1)

2

n -1

(n +1)

n (n +1)

n (n +1)

2

=x +

n =1

x

n +1

(-1≤x ≤1)

f (

x )=

(4)

=x ∞

=1+

∑(-1)

n =1

n

(2n -1)!! (2n )!!

x

2n

(-1≤x ≤1)

f (x )=x 1+

⎝故

2

n =1

(-1)

n

n

(2n -1)!! (2n )!! (2n )!!

x

x

2n

⎪⎭

=x +

2

n =1

(-1)

(2n -1)!!

2(n +1)

(-1≤x ≤1)

f (x )=

x 3x

11+

x

2

3

n

2

n ⎛x ⎫

=⋅∑(-1) ⎪3n =0⎝3⎭

=

(5)

x

∑(

-1)

n =0

n

x

2n +1n +1

3

(x

e =

(6)由

n =0

x

n

n ! ,x ∈(-∞,+∞)

n

n

e

-x

=

n =0

(-1)⋅x

n !

,x ∈(-∞,+∞)

f (x )=

12

(e x -e -x )

1⎛∞x n = ∑-2⎝n =0n ! =12

n =0

n

n n

(-1)x ⎫

⎪n ! ⎭

∑⎡⎣1-(-1)

n =0∞

⎤⎦⋅

x

n

n !

=

所以

∑(

n =0

x

2n +1

2n +1)!

x

x ∈(-∞, +∞)

(1+i )x

x

(7)因为e cos x 为e (cos x +i sin x )=e

的实部,

e

(1+i )x

=

n =0∞

1n ! x

n

[(1+i )x ]

(

1+i )

n

n

=

n =0∞

n !

n

=

n =0∞

x ππ⎫⎤cos +i sin ⎪⎥n ! 44⎭⎦x

n

n

n

=

n =0

n πn π⎫⎛⋅22 cos +i sin ⎪n ! ⎝44⎭

n

22cos

n !

n π⋅x n

(-∞

e cos x =

取上式的实部.得

x

n =0

1

(8)由于(1-x )

2

=

∑nx

n =0

n -1

|x |

2

f (x )=

1

4⎛x ⎫ 1-⎪⎝2⎭,所以

n -1

1

⎛x ⎫

f (x )=⋅∑n ⎪

4n =0⎝2⎭

14.将

2

1

=

n =0

n ⋅x 2

n -1

n +1

(|x |

f (x )=1

1

x +3x +2展开成(x +4)的幂级数. =

1x +1

-

1x +2

2

解:x +3x +2而

1x +1

=

1-3+(x +4)131⋅1-

=-

1x +43

n

⎛x +4⎫

=-∑ ⎪

3n =0⎝3⎭

⎛x +4⎫

⎝3⎭

=-∑

n =0

(x +4)

3

n +1

n

(-7

1x +2

=

1-2+(x +4)1211-

=-

1x +42

n

⎛x +4⎫

=-∑ ⎪

2n =0⎝2⎭

⎛x +4⎫

⎝2⎭

=-∑

n =0

(x +4)

2

2

n +1

n

(-6

f (x )=

1x +3x +2

=-∑

n =0∞

(x +4)

3

n +1

n

+

n =0

(x +4)

2

n +1

n

=

所以

1⎛1-∑ n +1n +1

3n =0⎝2

⎫n

()x +4⎪⎭

(-6

15.将函数f (

x )=解:因为

(x -1) 的幂级数. m (m -1)

2!

2

(1+x )=1+

所以

m

m 1!

x +x + +

m (m -1) (m -n +1)

n !

x +

n

(-1

f (

x )=

3

=[1+(x -1)]2

3⎛33⎛3⎫⎫⎛3⎫⎛3⎫

-1-1-2 ⎪ ⎪ ⎪ -n +1⎪2⎝22⎝22n ⎭⎭⎝2⎭⎝2⎭

=1+(x -1)+(x -1)+ +(x -1)+

1! 2! n !

3

(-1

f (x )=1+

32

(x -1)+

3⋅12⋅2!

2

(x -1)+

n

2

3⋅1⋅(-1)2⋅3!

3

(x -1)+

3

3⋅1⋅(-1)⋅(-3) (-2n +5)

2⋅n !

n

(x -1)+

n

=1+

n =1

3⋅1⋅(-1)⋅(5-2n )

2⋅n !

n

(x -1)(0

16.利用函数的幂级数展开式,求下列各数的近似值: (1)ln3(误差不超过0.0001); (2)cos20(误差不超过0.0001)

352n -1

⎛⎫x x x

ln =2 x +++ ++ ⎪

352n -1⎝⎭,x ∈(-1,1) 解:(1)1-x

1+x

1+x

令1-x

=3

,可得

x =

12

∈(-1,1)

111⎡1⎤2+++ ++ ln 3=ln =2⎢352n -1⎥123⋅25⋅2(2n -1)⋅2⎣⎦1-

2故

1+

1

11⎡⎤

++ r n =2⎢2n +12n +3⎥(2n +3)⋅2⎣(2n +1)⋅2⎦=

2

(2n +1)2

2

2n +1

2n +12n +1

⎡⎤(2n +1)⋅2(2n +1)⋅21+++ ⎢⎥2n +32n +5

()⋅2()⋅22n +32n +5⎣⎦

(2n +1)2

2

2n +1

11⎛⎫1+++ ⎪24⎝22⎭⋅11-

14

(2n +1)2

1

2n +1

3(2n +1)2

1

r 5

3⨯11⨯2故 3⨯13⨯2

因而取n =6则

r 6

1

10

=

2n -2

≈0.00003

111⎛1⎫

ln 3=2 +≈1.0986++ +3511⎪

5⋅211⋅2⎭⎝23⋅2

⎛π⎫⎛π⎫ ⎪ ⎪

πn ⎝90⎭⎝90⎭0

cos 2=cos =1-+- +(-1)

902! 4! (2)⎛π⎫

⎪⎝90⎭

2

24

⎛π⎫ ⎪⎝90⎭

+

(2n )!

2n

2!

≈6⨯10

-4

⎛π⎫

⎪⎝90⎭

4

4!

≈10

-8

cos 2≈1-

⎛π⎫ ⎪⎝90⎭2!

2

≈1-0.0006≈0.9994

17.利用被积函数的幂级数展开式,求定积分

0.50

arctan x

x

d x

(误差不超过0.001)的近似值.

arctan x =x -

解:由于

x

3

3

+

x

5

5

- +(-1)

n

x

2n +1

2n +1

+

,(-1≤x ≤1)

0.50

arctan x

x

d x =

0.50

242n

⎡⎤x x x

()1-+- ++ -1⎢⎥d x

352n +1⎣⎦

0.5

357

⎛⎫x x x = x -+-+ ⎪

92549⎝⎭

=

12

-1

1

92⋅1

5

1

3

+

1

252

1

5

-

11

492⋅1

7

1

7

+

1

而92

1

3

≈0.0139

,252

≈0.0013

,492

≈0.0002

⎰因此

0.50

arctan x

x

n +

1n

n

d x ≈

12

-

1

92

1

3

+

1

252

1

5

≈0.487

18.判别下列级数的敛散性:

n =1

n

(1)

1⎫⎛n + ⎪

n ⎭; ⎝

(2)n =1

nx ⎫⎛

n cos ⎪

3⎭⎝

2

n

2

n =1

ln (n +2)1⎫⎛

3+ ⎪

n ⎭⎝

n

n +

n

(3) .

1n

⎛n 2⎫

>= n n 2⎪1⎫1⎫⎝1+n ⎭⎛⎛ n +⎪ n +⎪

n ⎭n ⎭⎝解:(1)∵⎝

n

n

n

⎡⎛⎛n ⎫-1⎫

lim =lim 1+⎢⎪ 22⎪n →∞n →∞

1+n ⎝⎭1+n ⎝⎭⎣而

2∞

n

n

-n

-(1+n 2

)

⎤1+n 2

=1≠0⎥⎦

⎛n 2⎫

∑ 2⎪

故级数n =1⎝1+n ⎭发散,由比较审敛法知原级数发散.

0

(2)∵

nx ⎫⎛

n cos ⎪

3⎭⎝

2

n

2

n 2

n

由比值审敛法知级数

n =1

n

n

2收敛,由比较审敛法知,原级数n =1

nx ⎫⎛

n cos ⎪

3⎭⎝

2

n

2

收敛.

0

(3)∵

ln (n +2)1⎫⎛

3+ ⎪

n ⎭⎝

n

ln (n +2)

3

n

lim

U n +1U n

n →∞

=lim ==1313

ln (n +3)3

n +1

n →∞

3

n

ln (n +2)

lim

ln (n +3)ln (n +2)

n →∞

知级数

n =1

ln (n +2)

3

2

n

n =1

ln (n +2)1⎫⎛

3+⎪

n ⎭收敛. ⎝

n

收敛,由比较审敛法知,原级数

19.若

n →∞

lim n U n lim n U n

2

存在,证明:级数

∑U

n =1

n

收敛.

证:∵n →∞存在,∴∃M >0,使|n 2U n |≤M ,

M

即n 2|U n |≤M ,|U n |≤n

2

n

n =1

M n

2

收敛,故

∑U

n =12

绝对收敛.

20.证明,若n =1

∑U n

1n

收敛,则

2

n =1

U n

n 绝对收敛.

2

U n

证:∵n

U n +

⋅U n ≤

1=12U n +

2

=

2

1

2

2

2n

1

2

而由

∑U n

n =1

收敛,

n =1

1

n 收敛,知

11⎫U n ⎛12

U +⋅∑ 2n 2n 2⎪∑

⎭收敛,故n =1n 收敛, n =1⎝

因而

n =1

U n

n 绝对收敛.

n

n

21.若级数

∑a

n =1

∑b

n =1

都绝对收敛,则函数项级数

∑(a

n =1

n

cos nx +b n sin nx )

在R 上一致收敛.

证:U n (x )=a n cos nx +b n sin nx ,∀x ∈R 有

U n (x )=a n cos nx +b n sin nx ≤a n cos nx +b n sin nx ≤a n +b n

n

由于

∑a

n =1

∑b

n =1

n

都绝对收敛,故级数

∑(a

n =1

n

n

+b n

)

收敛.

由魏尔斯特拉斯判别法知,函数项级数n =1

22.计算下列级数的收敛半径及收敛域:

∑(a

cos nx +b n sin nx )

在R 上一致收敛.

⎛∑ (1) n =1⎝

+1⎫n

⎪x

n +1⎭;

n

n

(2)

n =1

sin

π2

n

(x +1)

n

(3)

n =1

(x -1)

n ⋅2

2

n

ρ=lim

a n +1a n

n +2⎭+

1

n +1

n

n →∞

=lim n →∞

⎝=lim

解:

(1)

⎛⋅ ⎝n

n →∞

-1

n +2⋅e =

⎛⎛n +1⎫

⋅lim ⋅lim ⎪n →∞

⎝n +2⎭n →∞⎝

n

=e

R =

1

ρ

=

3,

⎛∑ x =±

3又当时,级数变为n =1⎝

+1⎫⎛⎫

±⎪ ⎪=

n +1⎭⎝3⎭

n n

⎫n ⎛3n +

(

)±1∑ ⎪n =1⎝3n +3⎭,

n

⎛3n +⎫

lim ⎪=e n →∞

⎝3n +3⎭因为

x =±

所以当

n

≠0

3,级数发散,故原级数的收敛半径

R =

3,收敛域(

-3

, 3) .

ρ=lim

(2)

a n +1a n

sin =lim

n →∞

πn +1

π

=lim n →∞

n +1

n →∞

sin

π2

n

π

n

=

12

2

R =

1

ρ

=2

lim sin

n →∞

π2

n

sin

⋅2=lim π

n →∞n

π2

n n

π2π

n

=π≠0

又∵

2所以当(x +1)=±2时,级数n =1发散,

从而原级数的收敛域为-2

sin

(x +1)

n

ρ=lim

(3)

a n +1a n

n →∞

=lim

n ⋅2

2

2n n +1

n →∞

(n +1)⋅2

1

2

=

12

∴R =2,收敛区间-2

当x =-1时,级数变为

因此原级数的收敛域为[-1,3].

n =1

x 0

(-1)

n

n ,其绝对收敛,当x =3时,级数变为n =1n ,收敛.

1

2

23.将函数

F (x )=

arctan t

t

n

d t

展开成x 的幂级数.

arctan t =

解:由于

x 0

x 0

∑(-1)

n =0

t

2n +1

2n +1

F (x )=

=

arctan t

t

d t =

n

⎰∑(-1)

0n =0

x

n

t

2n

2n +1

n

d t x

2n +1

2

2n +1n =0n =0所以

24.判别下列级数在指定区间上的一致收敛性:

∑⎰

(-1)

t

2n

d t =

∑(-1)

(2n +1)

(|x |≤1)

(1)n =1x +3

(-1)

n n

,x ∈[-3,+∞) ;

(2)n =1x

n

n

,x ∈(2,+∞) ;

(3)

∑(

n =1

n

2222

x +n )⎡⎣x +(n +1)⎤⎦,x ∈(-∞,+∞) ;

(-1)

n n

=

1x +3

解:(1)考虑n ≥2时,当x ≥-3时,有x +3

n

n

13-3

n

13

n -1

∑3

n =1

1

n -1

收敛,由魏尔斯特拉斯判别法知,级数

n =1

(-1)

x +3在[-3,+∞) 上一致收敛.

n

n

(2)当x >2时,有x

n

=

n 2

n

n +1

n →∞

lim n +1

n

n

=

12

知级数

2

n =1

n

n

2收敛,由魏尔斯特拉斯判别法知,级数n =1x 在(2,+∞) 上一致收敛.

n

n

n

(3)∀x ∈R 有

22

(x 2+n 2)⎡⎣x +(n +1)⎤⎦

n n ⋅(n +1)

22

n n

4

=

1n

3

而n =1

25.求下列级数的和函数:

1

22223⎤x +()n +1n 收敛,由魏尔斯特拉斯判别法知,级数n =1(x +n )⎡⎣⎦在(-∞,+∞) 上一致收敛.

n

(1)

∑(-1)

n =1

n -1

x

2n ∞

2n -1; (2)n =02n +1;

x

2n +1

(3)n =1

∑(

n n -1)!

x

n -1

; (4)n =1

∑n (

x

n

n +1).

解:(1)可求得原级数的收敛半径R =1,且当|x |=1时,级数

域为[-1,1]

∑(-1)

n =1

n -1

1

2n -1是收敛的交错级数,故收敛

S (x )=

∑(-1)

n =1

n -1

x

2n ∞

2n -1

=x ∑(-1)

n =12n -2

n -1

x

2n -1

2n -11

2

=xS 1(x )

S 1'(x )=

则S 1(0)=0,

n =1

(-1)

n -1

x =

1+x

所以 即S 1(x )=arctanx ,所以S (x )=x arctan x ,x ∈[-1,1].

S 1(x )-S 1(0)=

x 0

11+x

2

d x =arctan x

S (x )=

(2)可求得原级数的收敛半径R =1,且当|x |=1时,原级数发散.记

n =0

x

2n +1

2n +1则

S '(x )=

1-x

x x 111+x 11+x 'S ()d x =d x =ln S ()-S ()=ln x x 0⎰0⎰01-x 2

21-x ,即21-x ,S (0)=0

n =0

∑x

2n

=

1

2

所以

S (x )=

12

ln

1+x 1-x ,(|x |

n +1

n →∞

lim

a

n +1n

=lim

a

n →∞

n ! n

=0

S (x )=

知收敛域为(-∞,+∞) .记

(3)由

(n -1)!

∑(

n =1

n n -1)!

x

n -1

x 0

S (x )d x =

∑(

n =1

x

n

n -1)!

=x ∑

n =1

x

n -1

(n -1)!

=x e

x

,所以

S (x )=(x e x )'=(1+x )e ,(-∞

x

1

lim

(4)由

n →∞

(n +1)(n +2)

=1

1

n (n +1)

知收敛半径R =1,当x =1时,级数变为

n

n =1

11

n (n +1),由n (n +1)

1n

2

知级数收敛,当x =-1时,级数变为

∑n (

n =1

(-1)

n +1)是收敛的交错级数,故收敛域为[-1,1].

S (x )=

∑n (

n =1

x

n

n +1)则S (0)=0,

n -1

xS (x )=

∑n (

n =1

x

n +1

n +1),

[xS (x )]''=

x

n =1

x =

1

1-x (x ≠1)

(x )]''d x =-ln (1-x )[xS

所以⎰0

()()即[xS x ]=-ln 1-x

'

⎰0[xS (x )]d x =⎰0-ln (1-x )d x =(1-x )ln (1-x )+x

即xS (x )=(1-x )ln (1-x )+x

x

x

'

⎛1⎫

S (x )=1+ -1⎪ln (1-x )

⎝x ⎭当x ≠0时,,又当x =1时,可求得S (1)=1 1⎫⎛

lim S (x )=lim 1-⎪=1n →∞n →∞⎝n +1⎭(∵)

综上所述

⎧0,

S (x )=⎪1,

⎛1⎫⎪

1+ -1⎪ln (1-x ), ⎪⎝x ⎭⎩

x =0x =1

x ∈[-1, 0) (0,1)

⎧2

f (x )=⎨3

⎩x 26.设f (x ) 是周期为2π的周期函数,它在(-π,π]上的表达式为

试问f (x ) 的傅里叶级数在x =-π处收敛于何值?

解:所给函数满足狄利克雷定理的条件,x =-π是它的间断点,在x =-π处,f (x ) 的傅里叶级数收敛于

-+

f (-π)+f (-π)

2

=

12

[π3+2]=

12

(2+π3)

⎧-1

f (x )=⎨2

⎩x 27.写出函数

-π≤x ≤00

的傅里叶级数的和函数.

解:f (x ) 满足狄利克雷定理的条件,根据狄利克雷定理,在连续点处级数收敛于f (x ) ,在间断点x =0,x =±π

-+

f (0)+f (0)

处,分别收敛于

-+

f (-π)+f (-π)

2

=-

12,

-+

f (π)+f (π)

2

=

π-12

2

2

=

π-12

,综上所述和函数.

2

28.写出下列以2π为周期的周期函数的傅里叶级数,其中f (x ) 在[-π,π)上的表达式为:

⎧-1⎪2x ⎪⎪1

S (x )=⎨-

⎪2⎪π2-1⎪⎩2

⎧π⎪⎪4

f (x )=⎨

⎪-π⎪⎩4(1)

(2)

0≤x

f (x )=x

2

(-π≤x ≤π);

-π≤x

π2π2, ,

⎧π⎪-2, ⎪⎪

f (x )=⎨x ,

⎪⎪π⎪, ⎩2(3)

x

f (x )=cos

2(4)

≤x

(-π≤x ≤π)

.

解:(1)函数f (x ) 满足狄利克雷定理的条件,x =n π,n ∈z 是其间断点,在间断占处f (x ) 的傅里叶级数收敛于

f (0

+

)+f (0)

-

π=

⎛π⎫+ -⎪4⎝4⎭

2=1

2

a n =

=0

,在x ≠n π,有

π-π

f

(x )cos nx d x

1⎛π⎫

-cos nx d x +⎰ ⎪π-π⎝4⎭π

π0

π4

cos nx d x =0

b n =

π-π

1⎛π⎫

f (x )sin nx d x =⎰ -⎪sin nx d x +

π-π⎝4⎭πn =2, 4, 6, , n =1, 3, 5, .

1

π

π4

sin nx d x

⎧0,

⎪=⎨1⎪, ⎩n

于是f (x ) 的傅里叶级数展开式为

f (x )=

(x ≠n π)

(2)函数f (x ) 在(-∞,+∞) 上连续,故其傅里叶级数在(-∞,+∞) 上收敛于f (x ) ,注意到f (x ) 为偶函数,从而f (x )cos nx 为偶函数,f (x )sin nx 为奇函数,于是

n =1

∑2n -1sin (2n -1)x

π

1

b n =a n =

1π1π

-ππ-π

f (x )sin nx d x =0f

a 0=

π0

2

π-π

x d x =

2

2π3

2

n

(x )cos nx d x

n

=

x cos nx d x =(-1)⋅

4

n (n =1,2,…)

2

所以,f (x ) 的傅里叶级数展开式为:

f (x )=

π

2

(-∞

(3)函数在x =(2n +1)π (n ∈z ) 处间断,在间断点处,级数收敛于0,当x ≠(2n +1)π时,由f (x ) 为奇函数,有a n =0,(n =0,1,2,…)

n =1

3

+

∑(-1)

4n

2

cos nx

b n =

π0

π

2⎡2

f (x )sin nx d x =⎢⎰x sin nx d x +

π⎣0

ππ2

π

sin nx d x ⎥2⎦

=-

所以

1n

(-1)

n

+

2n π

n +1

2

sin

n π22n π

2

(n =1, 2, )

sin

f

(x )=∑⎢(-1)

n =1

⎡⎣

1n

+

n π⎤

sin nx 2⎥⎦ (x ≠(2n +1)π,n ∈z )

2作为以2π为周期的函数时,处处连续,故其傅里叶级数收敛于f (x ) ,注意到f (x ) 为(4)因为

偶函数,有b n =0(n =1,2,…) ,

f

(x )=cos

x

a n ==

11

⎰π

π

π-ππ0

cos

x 2

cos nx d x =

⎰π

2

π0

cos

x 2

cos nx d x ⎫⎤

⎪x ⎥d x ⎭⎦

π

⎡1⎛cos n + ⎢

2⎝⎣1⎫⎛x +cos n -⎪

2⎭⎝

⎡1⎛

sin n + 1⎢2⎝=⎢

1π⎢

n +⎢2⎣=(-1)

n +1

1⎫⎤⎫⎛

x sin n -⎪ ⎪x ⎥

2⎭⎭⎝

⎥+

1⎥n -

⎥2⎦0

4⎛1⎫

⎪2

π⎝4n -1⎭4π

(n =0,1, 2, )

所以f (x ) 的傅里叶级数展开式为:

f (x )=

+

∑(-1)

n =1

n +1

cos nx

4n -1 x ∈[-π,π] x

2

29. 将下列函数f (x ) 展开为傅里叶级数:

f

(1)(2)

(x )=

π4

-

x 2

(-π

f (x )=sin x

a 0=

(0≤

π

x ≤2π)

解:(1)

f (x )cos nx d x =

1

x ⎫π⎛π-d x =⎪⎰

π-π⎝42⎭2

π

a n =

=b n =

1

⎛πx

-⎰-π

π⎝42

π1⎫

cos nx d x =⎪

4⎭

π-π

cos nx d x -

⎰2π

1

π-π

x cos nx d x

14n 1

[sin nx ]-π-0=0

π

π

(n =1, 2, )

x ⎛π

-⎰

π-π⎝42

n

1⎫

sin nx d x =⎪

4⎭

π-π

sin nx d x -

⎰2π

1

π-π

x sin nx d x

=(-1)⋅f

1n

4n =1n (-π

(2)所给函数拓广为周期函数时处处连续, 因此其傅里叶级数在[0,2π]上收敛于f (x ) ,注意到f (x ) 为偶函数,

(x )=

π

+

∑(-1)

π-ππ0

n

sin nx

a 0==

有b n =0,

1

⎰π

f (x )cos 0x d x =

1

⎰π

π-π

sin x d x

sin x d x =

a n ===

⎰π

1

2

π0π0

f

(x )cos nx d x =

⎰π

2

π-π

sin x cos nx d x

⎰π

⎡⎣sin (n +1)x -sin (n -1)x ⎤⎦d x

⎡1+(-1)n ⎤2⎦π(n -1)⎣

n =1, 3, 5, n =2, 4, 6,

-2

⎧0, ⎪

-4=⎨

,

⎪π(n 2-1)⎩

所以

f (x )=

+

n =1

-4cos 2nx π(4n -1)

2

(0≤x ≤2π)

30. 设f (x )=x +1(0≤x ≤π),试分别将f (x ) 展开为正弦级数和余弦级数. 解:将f (x ) 作奇延拓,则有a n =0 (n =0,1,2,…)

b n =

π0

f (x )sin nx d x =

n

⎰(x +1)sin nx d x

π

21-(-1)(1+π)=⋅πn f (x )=

n

n n =1从而

若将f (x ) 作偶延拓,则有b n =0 (n =1,2,…)

∑π

2

1-(-1)(1+π)

sin nx

(0

a n =

π0

f

(x )cos nx d x

=

⎰(x +1)cos nx d x

π

从而

n =2, 4, 6 ⎧0,

⎪=⎨-4

⎪2, n =1, 3, 5, ⎩n π1π2π

a 0=⎰f (x )d x =⎰(x +1)d x =π+2

π-ππ0

π+24∞cos (2n -1)x

f (x )=-∑2

2πn =1(2n -1)

(0≤x ≤π)

31. 将f (x )=2+|x | (-1≤x ≤1) 展开成以2为周期的傅里叶级数,并由此求级数n =1n 的和.

解:f (x ) 在(-∞,+∞) 内连续,其傅里叶级数处处收敛,由f (x ) 是偶函数,故b n =0,(n =1,2,…)

1

2

a 0=

a n =

⎰⎰

1-11-1

f (x )d x =2⎰

f

10

(2+x )d x =5

10

(x )cos nx d x =2⎰

n =2, 4, 6 n =1, 3, 5,

(2+x )cos nx d x

⎧0, ⎪

=⎨-4

,

⎪n π2⎩()

所以

f

(x )=

52

-

2

n =1

cos (2n -1)πx

(2n -1)

2

2

,x ∈[-1,1]

取x =0得,

n =1∞

1

(2n -1)

1

2

=

π

2

8

,故

n =1

1n

2

=

n =12

(2n -1)

π

+

n =1

1

(2n )

2

=

1

∑4

1n

2

+

π

2

n =1

8

6 所以n =1n

32. 将函数f (x )=x -1(0≤x ≤2) 展开成周期为4的余弦级数.

解:将f (x ) 作偶延拓,作周期延拓后函数在(-∞,+∞) 上连续, 则有b n =0 (n =1,2,3,…) a 0=

1

1

=

⎰2

12

2

2-2

f

(x )d x =

⎰(x -1)d x =0

2

a n ==

4

2-2

f

(x )cos

n

n πx 2

d x =

⎰0(x -1)cos

2

n πx 2

d x

n π

2

[(-1)-1]

n =2, 4, 6, n =1, 3, 5,

⎧0, ⎪=⎨8

-, ⎪22⎩n π

f

(x )=-

2

n =1

1

(2n -1)

2

⋅cos

12

(2n -1)πx

2,

s (x )=

(0≤x ≤2)

⎧x , ⎪⎪

f (x )=⎨

⎪2-2x , ⎪⎩33. 设

0≤x ≤12

a 02

+

∑a

n =1

n

cos n πx

,-∞

a n =2⎰

10

⎛5⎫

s -⎪

f (x )cos n πx d x

,求⎝2⎭. 5

2处间断,所以

解:先对f (x ) 作偶延拓到[-1,1],再以2为周期延拓到(-∞,+∞) 将f (x ) 展开成余弦级数而得到 s (x ) ,延拓后

x =-

f (x ) 在

+

⎛5-⎫⎤1⎡⎛1+⎫⎛1-⎫⎤⎛5⎫1⎡⎛5⎫

s -⎪=⎢f -⎪+f -⎪⎥=⎢f -⎪+f -⎪⎥

22222⎝2⎭2⎢⎢⎭⎝⎭⎥⎭⎝⎭⎥⎣⎝⎦⎣⎝⎦

=

1⎛1⎫3+1 ⎪=2⎝2⎭4

34. 设函数f (x )=x (0≤x

2

s (x )=

∑b

n =1

n

sin n πx

,-∞

b n =2⎰

1

⎛1⎫

s -⎪

f (x )sin n πx d x

(n =1,2,3,…),求⎝2⎭.

解:先对f (x ) 作奇延拓到,[-1,1],再以2为周期延拓到(-∞,+∞) ,并将f (x ) 展开成正弦级数得到s (x ) ,延拓

x =-

后f (x ) 在

1

2处连续,故.

2

1⎛1⎫⎛1⎫⎛1⎫

s -⎪=-f -⎪=- -⎪=-

4. ⎝2⎭⎝2⎭⎝2⎭

35. 将下列各周期函数展开成为傅里叶级数,它们在一个周期内的表达式分别为:

1⎫⎛1

-≤x

0≤x

解:(1) f (x ) 在(-∞,+∞) 上连续,故其傅里叶级数在每一点都收敛于f (x ) ,由于f (x ) 为偶函数,有b n =0 (n =1,2,3,…)

1

1

f

(x )=⎨

⎧2x +1, -3≤x

a 0=2⎰21f

-2

(x )d x =4⎰02(1-x 2)d x =

1

116,

1

a n =2⎰21f

-2

(x )cos2n πx d x =4⎰02(1-x 2)cos2n πx d x

2

=

所以

(-1)

2

n +1

n π11121

(n =1, 2, )

2

f

(x )=

a 0=

+

3-3

n =1

(-1)

n

2

n +1

cos 2n πx

(-∞

30

(2)

⎰3

f

1⎡0

f (x )d x =(2x +1)d x +

⎣⎰-33⎢

d x ⎤=-1

⎥⎦,

a n ===

1313

3-30

(x )cos

n πx 3

d x d x +

13

⎰-3(2x +1)cos

6

n πx 3

30

cos

n πx 3

d x

⎡1-(-1)n ⎤, (n =1, 2, 3, )22⎦n π⎣

13n πx b n =⎰f (x )sin d x

3-33==13

⎰-3(2x +1)sin

(-1)

-12

n +1

n πx 3

d x +

13

30

sin

n πx 3

d x

6n π

, (n =1, 2, )

而函数f (x ) 在x =3(2k +1),k =0,±1,±2,…处间断,故

f

(x )=

+

n πx n πx ⎫n n +16⎧6⎡⎤1--1cos +-1sin ()()⎬∑⎨n 2π2⎣⎦3n π3⎭(x ≠3(2k +1),k =0,±1,±2,…) n =1⎩

36. 把宽为τ,高为h ,周期为T 的矩形波(如图所示)展开成傅里叶级数的复数形式

.

解:根据图形写出函数关系式

⎧⎪0, ⎪⎪

u (t )=⎨h ,

⎪⎪⎪0, ⎩

--

T 2

≤t

T 2

τ

2

τ

2

τ

2

τ

2

≤t ≤

T

c 0=c n ==1T

12l 12l

τ

⎰⎰

l -l l -l

u (t )d t =u (t )e

-i 2n πT

t

-i n πl

1T

t

2T -2

u (t )d t =1T

T

1T

τ

⎰τ

-2-i 2n πT

2

h d t =

t

h τT

d t =

2T -2

u (t )e

τ

d t

⎫t ⎪⎭

⎰τ

-2

2

h e

h ⎛-T ⎫2-i

d t =⋅ ⎪⎰τe

T ⎝2n πi ⎭-2

τ

2n πT

t

2n π⎛d -i

T ⎝

h ⎛

= -

⎝2n πi

h τT

h n πτ⎫⎡-i 2n πt ⎤2

=sin ⎪⎣e T ⎦-τ

n πT ⎭2

h π

故该矩形波的傅里叶级数的复数形式为

u (t )=

+

n =-∞

n ≠0

1n

sin

n πτT

e

-i

2n πT

t

22,…) (-∞

-37. 设f (x ) 是周期为2的周期函数,它在[-1,1]上的表达式为f (x )=ex ,试将f (x ) 展成傅里叶级数的复数形式. 解:函数f (x ) 在x ≠2k +1,k =0,±1,±2处连续.

t ≠±

τ

, ±

c n ==-

⎰2l

1

l -l

f

(x )e

-i

n πl

x

d x =

1

1

⎰2

1-1

e e

-x -in πx

d x

12(1+n πi )

-1

[e -(1+n πi )x ]-1

n

=

e -e 2

⋅(-1)⋅

n

11+n πi 1-n πi

2

=sinh 1⋅(-1)⋅

1+(n π)

n

故f (x ) 的傅里叶级数的复数形式为

in πx

f (x )=sinh 1∑

n =-∞

(-1)⋅(1-in π)

1+(n π)

2

e

(x ≠2k +1,k =0,±1,±2,…)

⎧A ,

f (t )=⎨

⎩0, 38. 求矩形脉冲函数

F (ω)=

0≤t ≤T 其他

的傅氏变换

-i ωx

解:

39. 求下列函数的傅里叶积分:

+∞-∞

f (t )e

-i ωx

d t =

T 0

A e d t =

A (1-e -i ωx )

i ω

⎧e -t ,

f (t )=⎨

⎩0, (1)

t ≥0t

⎧-1, ⎪

f (t )=⎨1,

⎪0, ⎩(2)

F (ω)=

=

解:(1)

-1

-i ωt

+∞-∞

f (t )e =

d t =

+∞0

e

-t

⋅e

-i ωt

d t

11+ωi

1-i ω1+ω

2

f (t )=

==

⎰2π⎰2π

11

1

+∞-∞+∞-∞

F (ω)e

i ωt

d ω=

⎰2π

d t

1

+∞-∞

1-i ω1+ω

2

e

i ωt

d ω

cos ωt +ωsin ωt

1+ω1+ω

22

⎰π

+∞0

cos ωt +ωsin ωt

+∞-∞0-1

-i ωt

d t

F (ω)=

==

(2)

⎰⎰

f (t )e

d t

(-e -i ωt )d t +

i ω

10

e

-i ωt

d t

2(1-cos ω)

i ωt

+∞-∞

f (t )=

===

⎰2π

1π1π2π

1

F (ω)e

d ω=

⎰2π

1

+∞-∞

2(1-cos ω)

i ω

e

i ωt

d ω

⎰⎰

+∞-∞+∞-∞+∞0

(1-cos ω)

i ω

(cos ωt +i sin ωt )d ω

d ωd ω

(1-cos ω)sin ωt

ω

(1-cos ω)sin ωt

40. 求如图所示的三角形脉冲函数的频谱函数

.

ω

(t ≠0,1)

2E ⎧E +t ⎪⎪T

f (t )=⎨

⎪E -2E t ⎪⎩T 解:F (ω)=

-

T 2

≤t ≤0T 2

0

+∞-∞0

f (t )e

-i ωt

2E ⎛=⎰T E +-

T 2⎝=

⎫-i ωt

d t +t ⎪e ⎭

T

20

2E ⎛ E -⎝T ⎫-i ωt

d t t ⎪e ⎭

4E ⎛ωT ⎫

1-cos ⎪2

T ω⎝2⎭

习题十二

1.写出下列级数的一般项:

1+

(1)

13

+

15

+

17

+

(2)2

3

+

x 2⋅4

5

+

9

2⋅4⋅6

+

x

2

2⋅4⋅6⋅8

+

a

(3)3

-

a

5

+

a

7

71

-

a

9

+

解:(1)

U n =

2n -1;

n

U n =

(2)

x 2

(2n )!! ;

n +1

2n +1; (3)

2.求下列级数的和:

U n =(-1)

a

2n +1

(1)

∑(

n =1

1

x +n -1)(x +n )(x +n +1);

(2)

∑n =1

+15

3

1

(3)5

+

15

2

+

u n ==

解:(1)

1

(x +n -1)(x +n )(x +n +1)

111⎛⎫

- ⎪

2⎝(x +n -1)(x +n )(x +n )(x +n +1)⎭

S n =

11111⎛

-+-

2⎝x (x +1)(x +1)(x +2)(x +1)(x +2)(x +2)(x +3)

1

+ +

(x +n -1)(x +n )

-

(x +n )(x +n +1)⎪⎭

1

从而

111⎛⎫

-= ⎪

2⎝x (x +1)(x +n )(x +n +1)⎭

lim S n =

因此

n →∞

11

2x (x +1),故级数的和为2x (x +1)

(2)

因为

U n =

-

S n =

-

-

-1-

+1-

+

-

-

+

==

从而所以n →∞

+ +

-

lim S n =1-

S n =

15+15

2

1-

+ +

15

n

n

1⎡⎛1⎫⎤⎢1- ⎪⎥5⎣⎝5⎭⎦=

11-

5n

1⎡1⎫⎤⎛=⎢1- ⎪⎥4⎣⎝5⎭⎦

(3)因为

4,即级数的和为4. 从而n →∞

3.判定下列级数的敛散性:

lim S n =

11

(1)

∑n =1

1

(2) 1⋅6

+2323

16⋅11++23

33

+

111⋅16

+ +

1

(5n -4)(5n +1)

23

n n

+

2

(3) 3

-

- +(-1) +

n -1

+

1

(4)5

+

S n =

解:

(1) 从而n →∞

+

-1

,故级数发散.

+ +

-

=

lim S n =+∞

S n ==

(2) 从而n →∞

1⎛1111111⎫1-+-+-+ +- ⎪5⎝661111165n -45n +1⎭1⎛1⎫ 1-⎪5⎝5n +1⎭

12

3的等比级数,且|q |

lim S n =

1

5,故原级数收敛,其和为5.

q =-

(3)此级数为

U n =

(4)

lim U =1≠0n →∞n ,故级数发散.

4.利用柯西审敛原理判别下列级数的敛散性:

(1)

n =1∞

(-1)

n ⎛

1

n +1

; (2)

n =1

cos nx 2

n

(3) n =1

解:(1)当P 为偶数时,

+-⎪∑

⎝3n +13n +23n +3⎭

11⎫

n +1+U n +2+ +U n +p =

(-1)

1n +11

n +2

n +1

-

+1

(-1)

n +3

n +2+

1

+

(-1)

n +4

n +3- -

+ +1n +p

(-1)

n +p +1

n +p

=

n +2n +3

=

111⎛⎫1⎫⎛1

-- - ---⎪ ⎪

n +1⎝n +2n +3⎭⎝n +p -2n +p -1⎭n +p 1n +1

当P 为奇数时,

n +1+U n +2+ +U n +p =

(-1)

1n +11

n +2

n +1

-

+1

(-1)

n +3

n +2+

1

+

(-1)

n +4

n +3- +

+ +1n +p

(-1)

n +p +1

n +p

=

n +2n +3

=

11⎫⎛1⎫⎛1

-- - --⎪ ⎪

n +1⎝n +2n +3⎭⎝n +p -1n +p ⎭1n +1

1n +1

因而,对于任何自然数P ,都有

U n +1+U n +2+ +U n +p

N =

∀ε>0,取

⎡1⎤

+1⎢⎣ε⎥⎦

,则当n >N 时,对任何自然数P 恒有

n +1+U n +2+ +U n +p

成立,由

柯西审敛原理知,级数n =1

(2)对于任意自然数P ,都有

(-1)

n

n +1

收敛.

n +1+U n +2+ +U n +p =≤

cos (n +1)x

212

n +1

n +1

+

cos (n +2)x

22

n +2

+ +

cos (n +p )x

2

n +p

+

12

n +2

+ +

1

n +p

1⎛1⎫

1-n +1 p ⎪2⎝2⎭

=

11-

2=

1⎛1⎫

1- n p ⎪2⎝2⎭12

n

1⎤⎡

log 2⎢+U n +2+ +U n +p 0(0N 时,对任意的自然数P 都有n +1

成立,由柯西审敛原理知,该级数收敛.

(3)取P =n ,则

n +1+U n +2+ +U n +p

111111⎛⎫

= +-+ ++-⎪

3⋅2n +13⋅2n +23⋅2n +3⎝3(n +1)+13(n +1)+23(n +1)+3⎭≥≥>

13(n +1)+1

n 6(n +1)112

+ +

13⋅2n +1

12,则对任意的n ∈N ,都存在P =n 所得从而取

理知,原级数发散.

5.用比较审敛法判别下列级数的敛散性.

ε0=

1

n +1+U n +2+ +U n +p >ε0

,由柯西审敛原

1

(1)4⋅6

+

15⋅7

2

+ +1+31+3

2

1

(n +3)(n +5)

+ +

1+n 1+n

2

+

1+

(2)

1+21+2

++

(3)

n =

1∞

sin 1

π3;

n n

(4)

n =1∞

1n

(5)

∑1+a

n =1

(a >0)

(6)

∑(2

n =1

-1

)

U n =

解:(1)∵

1

(n +3)(n +5)

1n

2

n =1

1

n 收敛,由比较审敛法知

1+n 1+n

2

2

∑U

n =1

n

收敛.

(2)∵

U n =

1+n n +n

2

=

1n

n =1

1

n 发散,由比较审敛法知,原级数发散.

sin lim

(3)∵

πn

n

sin

=lim π⋅

n →∞

πn n

n →∞

13

π3π

∑3

n =1

π

n

收敛,故

n =1

sin

3也收敛.

n

U n =

(4)

=

1

3

n 2

n =1

1

3

n 2收敛,故

n =1

1

收敛.

(5)当a >1时,

U n =

1a ,而=121≠0

n

1+a

n

n =1

1a

n

收敛,故

∑1+a

n =1

1

n

也收敛.

当a =1时,

lim U n =lim

n →∞

n →∞

,级数发散.

n

当0

综上所述,当a >1时,原级数收敛,当0

1

lim U n =lim

n →∞

n →∞

1+a

=1≠0

x (6)由知

6.用比值判别法判别下列级数的敛散性:

x →0∞

lim

2-1

x

lim

2n -11n

=ln 2

x →∞

=ln 2

n =1

1

n 发散,由比较审敛法知

∑(2

n =1

1n

-1

)

发散.

(1)

n =1

n

2n

3;

(2)

∑3

n =1

n !

n

+1;

3

(3)1⋅2

+

n

3

22

2⋅2n

n

+

3

33

3⋅2

+ +

3

n n

n ⋅2

+

(1)

n =1

2⋅n !

2

U n

3,解:(1)

由比值审敛法知,级数收敛.

n

n →∞

U n =

n

2

lim

U n +1

=lim

(n +1)

3

n +1

n →∞

3n

n 2

=

13

lim

U n +1U n

n →∞

(n +1)! 3+1=lim n +1⋅n →∞3+1n !

=lim (n +1)⋅

n →∞

n

3+13

n +1

n

+1

=+∞(2)

所以原级数发散.

lim

U n +1U n

n →∞

=lim

33n

n +1

n +1

n →∞

(n +1)⋅2

2(n +1)

n ⋅23

n

n

=lim =3

n →∞

2(3)

所以原级数发散.

>1

lim

U n +1U n

n →∞

=lim

2

n +1

⋅(n +1)!

n +1n

n →∞

(n +1)

n

n

n

2⋅n !

⎛n ⎫

=lim 2 ⎪n →∞

⎝n +1⎭=2lim

11⎫⎛

1+⎪

n ⎭⎝

n →∞

n

=

2e

(4)

故原级数收敛.

7.用根值判别法判别下列级数的敛散性:

⎛⎫

⎪∑ 3n +1⎝⎭; n =1(1)

⎛n ⎫

⎪∑

(3) n =1⎝3n -1⎭

n

5n

n ∞

(2)

n =1

1

[ln (n +1)]

n

2n -1

⎛b ⎫∑ a ⎪

(4) n =1⎝n ⎭,其中a n →a (n →∞),a n ,b ,a 均为正数.

lim

解:

(1)

故原级数发散.

n →∞

=lim

5n 3n +1

n →∞

=

53

>1

lim

(2)

故原级数收敛.

n →∞

=lim

1ln (n +1)

2-

n →∞

=0

1n

lim

(3)

故原级数收敛.

n →∞

⎛n ⎫

=lim ⎪n →∞

⎝3n -1⎭

=

19

lim

(4)

n →∞

b b =lim =n →∞a a , n

b b b

当b a 时,a >1,原级数发散;当b =a 时,a =1,无法判定其敛散性. 8.判定下列级数是否收敛?若收敛,是绝对收敛还是条件收敛?

1-

(1)

1+

1-

1∞

(2)

∑(-1)

n =1

n -1

1ln (n +1);

11111111

⋅-⋅2+⋅3-⋅4+

5353(3) 5353;

(4)

∑(-1)

n =1∞

n -1

2

n

2

n ! ;

n

(5)

∑(-1)

n =1

n -1

1n

α

(α∈R )

111⎫(-1)⎛

1+++ +⎪∑

23n ⎭n . (6) n =1⎝

U n =(

-1)

解:(1)

n -1

n =1

U n

1

>

n

lim

n →∞

=0

,由莱布

尼茨判别法级数收敛,又

n =1

n =

n =1

1n

2

是P

n =1

发散,故原级数条件收敛.

U n =(-1)

(2)

n -1

1ln (n +1),

n -1

(-1)

n -1

111ln (n +1)

ln (n +1)为交错级数,且ln (n +1)

>

1ln (n +2),1n +1

lim

1ln (n +1)

n →∞

=0

,由莱布尼茨判别法知原级数收敛,但由于

U n =

所以,

n =1

U n

发散,所以原级数条件收敛.

n -1

(3)

U n =(-1)

1

5⋅3民,显然

n

∞∞

n =1

n =

∑5⋅3

n =1

1

n

=

1

∑3

5

n =1

1

n

,而

∑3

n =1

1

n

是收敛的等比级数,故

n =1

n

收敛,所以原级数绝对收敛.

lim

(4)因为故可得∴n →∞

U n +1U n

n →∞

=lim

2

2n +1

n →∞

n +1

=+∞

. ,

n +1>n

,得n →∞

lim n ≠0

lim U n ≠0

,原级数发散.

(5)当α>1时,由级数

n =1

1n

α

收敛得原级数绝对收敛.

n -1

当0

∑(-1)

n =1

n -1

1n

α

1

满足条件:n

α

>

1

α

(n +1);n →∞n α

lim

1

=0

,由莱布尼茨判别法

知级数收敛,但这时当α≤0时,n →∞

n =1

(-1)

1n

α

=

n =1

1n

α

发散,所以原级数条件收敛.

lim U n ≠0

,所以原级数发散.

111⎛1+++ +

23n (6)由于⎝

1⎫1

⋅>⎪

n ⎭n

n =1

1

n 发散,由此较审敛法知级数

n =1

111⎛

1+++ +

23n ⎝⎫(-1)

⎪⋅

n ⎭

n

发散.

111⎛

U n = 1+++ +

23n ⎝记⎫1

⎪⋅

⎭n ,则

1111⎫⎛11⎫⎛

U n -U n +1= 1+++ +⎪ --⎪2

23n ⎭⎝n n +1⎭(n +1)⎝

11111⎫⎛

= 1+++ +⎪-2

23n ⎭n (n +1)(n +1)⎝

111⎛⎫1⎫⎛11

-= ++ +⎪+ 2⎪

n ⎭n (n +1)⎝n (n +1)(n +1)⎭⎝23>0

即U n >U n +1

lim U n =lim

n →∞

n →∞

1⎛111⎫

1+++ + ⎪n ⎝23n ⎭

n

=

1

⎰n

1x

d x

1

由t →+∞t

lim

1

t 0

1

d x =lim t =0t →+∞1x

知n →∞

9.判别下列函数项级数在所示区间上的一致收敛性.

lim U n

111⎛1+++ + ∑=0

23n ,由莱布尼茨判别法,原级数n =1⎝

n

⎫(-1)

⎪⋅

n 收敛,而且是条件收敛.⎭

n

(1)

∑(

n =1∞

x

n -1)! ,x ∈[-3,3];

n

(2)

n =1

x

n 2

n ,x ∈[0,1];

(3)

n =1

sin nx 3

,x ∈(-∞,+∞) ;

(4)

n =1

e

-nx

n ! ,|x |

(5)

n =1

x ∈(-∞,+∞)

x

解:(1)∵

n

(n -1)!

3

n

(n -1)!

,x ∈[-3,3],

而由比值审敛法可知

∑(

n =1

3

n

n -1)! 收敛,所以原级数在 [-3,3]上一致收敛.

x

(2)∵n

n 2

1

n ,x ∈[0,1],

2

n =1

1

n 收敛,所以原级数在[0,1]上一致收敛. sin nx 31

n

2

(3)∵

n

1

3,x ∈(-∞,+∞) ,

n

∑3

n =1

是收敛的等比级数,所以原级数在(-∞,+∞) 上一致收敛.

-nx

e

e

5n

(4)因为n !

n ! ,x ∈(-5,5) ,

由比值审敛法可知

n =1

e

5n

n ! 收敛,故原级数在(-5,5) 上一致收敛.

5

(5)

1

5

1

n 3,x ∈(-∞,+∞) ,

n =1

n 3是收敛的P -级数,所以原级数在(-∞,+∞) 上一致收敛.

10.若在区间Ⅰ上,对任何自然数n .都有|U n (x )|≤V n (x ) ,则当

∑V

n =1

n

(x )

在Ⅰ上一致收敛时,级数

∑U

n =1

n

(x )

在这区间Ⅰ上也一致收敛.

证:由n =1在Ⅰ上一致收敛知, ∀ε>0,∃N (ε)>0,使得当n >N 时,∀x ∈Ⅰ有 |V n +1(x )+V n +2(x )+…+V n +p (x )|

于是,∀ε>0,∃N (ε)>0,使得当n >N 时,∀x ∈Ⅰ有

|U n +1(x )+U n +2(x )+…+U n +p (x )|≤V n +1(x )+V n +2(x )+…+V n +p (x ) ≤|V n +1(x )+V n +2(x )+…+V n +p (x )|

n

∑V

n

(x )

因此,级数n =1在区间Ⅰ上处处收敛,由x 的任意性和与x 的无关性,可知收敛.

11.求下列幂级数的收敛半径及收敛域:

∑U

(x )

∑U

n =1

n

(x )

在Ⅰ上一致

(1)x +2x 2+3x 3+…+nx n +…;

⎛x ⎫

⎪∑n ! n ⎝⎭; (2)n =1

n

(3)

n =1

x

2n -1

2n -1;

(4)

n =1

(x -1)

2

n

n ⋅2n ;

ρ=lim

解:(1)因为

a n +1a n

n →∞

=lim

n +1n

n

n →∞

=1

,所以收敛半径

R =

1

ρ

=1

收敛区间为(-1,1) ,而当x =±1时,

级数变为

∑(-1)

n =1

n

n

,由

lim (-1) n ≠0

x →n

知级数

n

∑(-1)

n =1

n

n

发散,所以级数的收敛域为(-1,1) .

n

-1

ρ=lim

(2)因为

a n +1a n

n →∞

=lim

(n +1)! (n +1)

n +1

n →∞

n

⎡⎛⎛⎫1⎫⎤

⋅=lim ⎪=lim ⎢ 1+⎪⎥n →∞n ! n →∞⎝n +1⎭n ⎭⎦⎣⎝

n n

=e

-1

R =

所以收敛半径

1

ρ

=e

,收敛区间为(-e,e) .

当x =e时,级数变为

n =1

e n n

n

n

1

lim

;应用洛必达法则求得

(1+x )x -e

x

x →0

=-

e 2,故有

⎛a n +1⎫1

-1⎪=-

n →∞2⎝a n ⎭由拉阿伯判别法知,级数发散;易知x =-e 时,级数也发散,故收敛域为(-e,e) .

(3)级数缺少偶次幂项.根据比值审敛法求收敛半径.

lim

U n +1U n

n →∞

=lim

x

2n +1

n →∞

2n +12n -12n +1

2n -1x

22n -1

=lim =x

2

n →∞

⋅x

所以当x 21即|x |>1时,级数发散,故收敛半径R =1.

1

当x =1时,级数变为

n =1

1

2n -1,当x =-1时,级数变为

n =1

-12n -1,由

1

lim =>0n →∞12

n

知,

n =1

1

2n -1发散,从而

n =1

-1

2n -1也发散,故原级数的收敛域为(-1,1) .

(4)令t =x -1,则级数变为n =1n ⋅2n ,因为

所以收敛半径为R =1.收敛区间为 -1

n →∞

t

2

n

ρ=lim

a n +1a n

=lim

n ⋅2n

2

n →∞

(n +1)⋅2(n +1)

2

=1

当t =1时,级数n =12n 收敛,当t =-1时,级数敛.

所以,原级数收敛域为 0≤x ≤2,即[0,2]

12.利用幂级数的性质,求下列级数的和函数:

1

3

∑(-1)

n =1

n

1

2⋅n 为交错级数,由莱布尼茨判别法知其收

3

n +2

(1)

∑nx

n =1

; (2)

n +3

n =0

x

2n +2

2n +1;

lim

(n +1)x

n +2

nx 解:(1)由知,当|x |=

从而发散,故级数的收敛域为(-1,1) .

n +2

n -1

n →∞

=x

∑nx

n +2

的通项不趋于0,

S (x )=

∑nx

n =1

=x

3

∑nx

n =1

易知

∑nx

n =1

n -1

S 1(x )=

的收敛域为(-1,1) ,记

∑nx

n =1

n -1

x 0

S 1(x )=

n =1

x =

n

x 1-x

⎛x

S 1(x )=

⎝1-x 于是

lim

(2)由

3'x 1⎫

S (x )=⎪=22

(1-x ),所以(1-x )⎭

(x

x

2n +4

n →∞

2n +3

2n +1x

2n +2

=x

2

知,原级数当|x |

S (x )=

域为(-1,1) ,记

n =0

x

2n +2∞

2n +1

=x ∑

n =0∞

x

2n +1∞

2n +1,易知级数n =02n +1收敛域为(-1,1) ,记=

11-x ,

12ln 1+x

1-x ,S 1(0)=0,所以

2

x

2n +1

S 1(x )=

n =0

x

2n +1

2n +1,则

12ln x

S 1'(x )=

n =0

x

2n

x 0

S 1'(x )d x =

1+x 1-x 即1+x

S 1(x )-S 1(0)=

21-x

13.将下列函数展开成x 的幂级数,并求展开式成立的区间: (1)f (x )=ln(2+x ) ; (2)f (x )=cos2x ;

S (x )=xS 1(x )=

ln

(x

f (

x )=

(3)f (x )=(1+x )ln(1+x ) ;

(4)

x

2

12

(5)

f (x )=

x 3+x ;

2

(6)

f (x )=(e x -e -x )

1

2

f (x )=

(7)f (x )=ex cos x ;

(8)

(2-x ).

x ⎫x ⎫⎛⎛

f (x )=ln (2+x )=ln 2 1+⎪=ln 2+ln 1+⎪

⎝2⎭⎝2⎭ 解:(1)

ln (1+x )=

由于

∑(-1)

n =0∞

n

n

x

n

n +1,(-1

n +1

n +1

x ⎫⎛

ln 1+⎪=

2⎭故⎝

∑(-1)

n =0

(n +1)2

,(-2≤x ≤2)

ln (2+x )=ln 2+

因此

∑(-1)

n =0

n

x

n +1

n +1

(n +1)2

,(-2≤x ≤2)

(2)

f (x )=cos x =

2

1+cos 2x

2

cos x =

∑(-1)

n =0

n

x

2n

(2n )! ,(-∞

n

cos 2x =

所以

∑(-1)

n =02

(2x )

2n

(2n )!

12

n

=

∑(-1)

n =0

n

4⋅x

n 2n

(2n )!

f (x ) =cos x =

=12+1

12

+cos 2x 4⋅x

n

2n

(-1)∑2

n =0

(2n )! ,(-∞

x

n +1

(3)f (x )=(1+x )ln(1+x )

ln (1+x )=

所以

∑(-1)

n =0

n

(n +1),(-1≤x ≤1)

f (x )=(1+x )∑(-1)

n =0

n

x

n +1

n +1

=

∑(-1)

n =0

∞n =1∞

n

x

n +1

n +1

n

+

∑(-1)

n =0

n

x

n +2

n +1

n +1

=x +

∑(-1)∑

n =1∞

x

n +1

n +1

n

+

∑(-1)

n =1n +1

x

n +1

n ⋅x

n +1

=x +

(-1)n +(-1)(-1)

2

n -1

(n +1)

n (n +1)

n (n +1)

2

=x +

n =1

x

n +1

(-1≤x ≤1)

f (

x )=

(4)

=x ∞

=1+

∑(-1)

n =1

n

(2n -1)!! (2n )!!

x

2n

(-1≤x ≤1)

f (x )=x 1+

⎝故

2

n =1

(-1)

n

n

(2n -1)!! (2n )!! (2n )!!

x

x

2n

⎪⎭

=x +

2

n =1

(-1)

(2n -1)!!

2(n +1)

(-1≤x ≤1)

f (x )=

x 3x

11+

x

2

3

n

2

n ⎛x ⎫

=⋅∑(-1) ⎪3n =0⎝3⎭

=

(5)

x

∑(

-1)

n =0

n

x

2n +1n +1

3

(x

e =

(6)由

n =0

x

n

n ! ,x ∈(-∞,+∞)

n

n

e

-x

=

n =0

(-1)⋅x

n !

,x ∈(-∞,+∞)

f (x )=

12

(e x -e -x )

1⎛∞x n = ∑-2⎝n =0n ! =12

n =0

n

n n

(-1)x ⎫

⎪n ! ⎭

∑⎡⎣1-(-1)

n =0∞

⎤⎦⋅

x

n

n !

=

所以

∑(

n =0

x

2n +1

2n +1)!

x

x ∈(-∞, +∞)

(1+i )x

x

(7)因为e cos x 为e (cos x +i sin x )=e

的实部,

e

(1+i )x

=

n =0∞

1n ! x

n

[(1+i )x ]

(

1+i )

n

n

=

n =0∞

n !

n

=

n =0∞

x ππ⎫⎤cos +i sin ⎪⎥n ! 44⎭⎦x

n

n

n

=

n =0

n πn π⎫⎛⋅22 cos +i sin ⎪n ! ⎝44⎭

n

22cos

n !

n π⋅x n

(-∞

e cos x =

取上式的实部.得

x

n =0

1

(8)由于(1-x )

2

=

∑nx

n =0

n -1

|x |

2

f (x )=

1

4⎛x ⎫ 1-⎪⎝2⎭,所以

n -1

1

⎛x ⎫

f (x )=⋅∑n ⎪

4n =0⎝2⎭

14.将

2

1

=

n =0

n ⋅x 2

n -1

n +1

(|x |

f (x )=1

1

x +3x +2展开成(x +4)的幂级数. =

1x +1

-

1x +2

2

解:x +3x +2而

1x +1

=

1-3+(x +4)131⋅1-

=-

1x +43

n

⎛x +4⎫

=-∑ ⎪

3n =0⎝3⎭

⎛x +4⎫

⎝3⎭

=-∑

n =0

(x +4)

3

n +1

n

(-7

1x +2

=

1-2+(x +4)1211-

=-

1x +42

n

⎛x +4⎫

=-∑ ⎪

2n =0⎝2⎭

⎛x +4⎫

⎝2⎭

=-∑

n =0

(x +4)

2

2

n +1

n

(-6

f (x )=

1x +3x +2

=-∑

n =0∞

(x +4)

3

n +1

n

+

n =0

(x +4)

2

n +1

n

=

所以

1⎛1-∑ n +1n +1

3n =0⎝2

⎫n

()x +4⎪⎭

(-6

15.将函数f (

x )=解:因为

(x -1) 的幂级数. m (m -1)

2!

2

(1+x )=1+

所以

m

m 1!

x +x + +

m (m -1) (m -n +1)

n !

x +

n

(-1

f (

x )=

3

=[1+(x -1)]2

3⎛33⎛3⎫⎫⎛3⎫⎛3⎫

-1-1-2 ⎪ ⎪ ⎪ -n +1⎪2⎝22⎝22n ⎭⎭⎝2⎭⎝2⎭

=1+(x -1)+(x -1)+ +(x -1)+

1! 2! n !

3

(-1

f (x )=1+

32

(x -1)+

3⋅12⋅2!

2

(x -1)+

n

2

3⋅1⋅(-1)2⋅3!

3

(x -1)+

3

3⋅1⋅(-1)⋅(-3) (-2n +5)

2⋅n !

n

(x -1)+

n

=1+

n =1

3⋅1⋅(-1)⋅(5-2n )

2⋅n !

n

(x -1)(0

16.利用函数的幂级数展开式,求下列各数的近似值: (1)ln3(误差不超过0.0001); (2)cos20(误差不超过0.0001)

352n -1

⎛⎫x x x

ln =2 x +++ ++ ⎪

352n -1⎝⎭,x ∈(-1,1) 解:(1)1-x

1+x

1+x

令1-x

=3

,可得

x =

12

∈(-1,1)

111⎡1⎤2+++ ++ ln 3=ln =2⎢352n -1⎥123⋅25⋅2(2n -1)⋅2⎣⎦1-

2故

1+

1

11⎡⎤

++ r n =2⎢2n +12n +3⎥(2n +3)⋅2⎣(2n +1)⋅2⎦=

2

(2n +1)2

2

2n +1

2n +12n +1

⎡⎤(2n +1)⋅2(2n +1)⋅21+++ ⎢⎥2n +32n +5

()⋅2()⋅22n +32n +5⎣⎦

(2n +1)2

2

2n +1

11⎛⎫1+++ ⎪24⎝22⎭⋅11-

14

(2n +1)2

1

2n +1

3(2n +1)2

1

r 5

3⨯11⨯2故 3⨯13⨯2

因而取n =6则

r 6

1

10

=

2n -2

≈0.00003

111⎛1⎫

ln 3=2 +≈1.0986++ +3511⎪

5⋅211⋅2⎭⎝23⋅2

⎛π⎫⎛π⎫ ⎪ ⎪

πn ⎝90⎭⎝90⎭0

cos 2=cos =1-+- +(-1)

902! 4! (2)⎛π⎫

⎪⎝90⎭

2

24

⎛π⎫ ⎪⎝90⎭

+

(2n )!

2n

2!

≈6⨯10

-4

⎛π⎫

⎪⎝90⎭

4

4!

≈10

-8

cos 2≈1-

⎛π⎫ ⎪⎝90⎭2!

2

≈1-0.0006≈0.9994

17.利用被积函数的幂级数展开式,求定积分

0.50

arctan x

x

d x

(误差不超过0.001)的近似值.

arctan x =x -

解:由于

x

3

3

+

x

5

5

- +(-1)

n

x

2n +1

2n +1

+

,(-1≤x ≤1)

0.50

arctan x

x

d x =

0.50

242n

⎡⎤x x x

()1-+- ++ -1⎢⎥d x

352n +1⎣⎦

0.5

357

⎛⎫x x x = x -+-+ ⎪

92549⎝⎭

=

12

-1

1

92⋅1

5

1

3

+

1

252

1

5

-

11

492⋅1

7

1

7

+

1

而92

1

3

≈0.0139

,252

≈0.0013

,492

≈0.0002

⎰因此

0.50

arctan x

x

n +

1n

n

d x ≈

12

-

1

92

1

3

+

1

252

1

5

≈0.487

18.判别下列级数的敛散性:

n =1

n

(1)

1⎫⎛n + ⎪

n ⎭; ⎝

(2)n =1

nx ⎫⎛

n cos ⎪

3⎭⎝

2

n

2

n =1

ln (n +2)1⎫⎛

3+ ⎪

n ⎭⎝

n

n +

n

(3) .

1n

⎛n 2⎫

>= n n 2⎪1⎫1⎫⎝1+n ⎭⎛⎛ n +⎪ n +⎪

n ⎭n ⎭⎝解:(1)∵⎝

n

n

n

⎡⎛⎛n ⎫-1⎫

lim =lim 1+⎢⎪ 22⎪n →∞n →∞

1+n ⎝⎭1+n ⎝⎭⎣而

2∞

n

n

-n

-(1+n 2

)

⎤1+n 2

=1≠0⎥⎦

⎛n 2⎫

∑ 2⎪

故级数n =1⎝1+n ⎭发散,由比较审敛法知原级数发散.

0

(2)∵

nx ⎫⎛

n cos ⎪

3⎭⎝

2

n

2

n 2

n

由比值审敛法知级数

n =1

n

n

2收敛,由比较审敛法知,原级数n =1

nx ⎫⎛

n cos ⎪

3⎭⎝

2

n

2

收敛.

0

(3)∵

ln (n +2)1⎫⎛

3+ ⎪

n ⎭⎝

n

ln (n +2)

3

n

lim

U n +1U n

n →∞

=lim ==1313

ln (n +3)3

n +1

n →∞

3

n

ln (n +2)

lim

ln (n +3)ln (n +2)

n →∞

知级数

n =1

ln (n +2)

3

2

n

n =1

ln (n +2)1⎫⎛

3+⎪

n ⎭收敛. ⎝

n

收敛,由比较审敛法知,原级数

19.若

n →∞

lim n U n lim n U n

2

存在,证明:级数

∑U

n =1

n

收敛.

证:∵n →∞存在,∴∃M >0,使|n 2U n |≤M ,

M

即n 2|U n |≤M ,|U n |≤n

2

n

n =1

M n

2

收敛,故

∑U

n =12

绝对收敛.

20.证明,若n =1

∑U n

1n

收敛,则

2

n =1

U n

n 绝对收敛.

2

U n

证:∵n

U n +

⋅U n ≤

1=12U n +

2

=

2

1

2

2

2n

1

2

而由

∑U n

n =1

收敛,

n =1

1

n 收敛,知

11⎫U n ⎛12

U +⋅∑ 2n 2n 2⎪∑

⎭收敛,故n =1n 收敛, n =1⎝

因而

n =1

U n

n 绝对收敛.

n

n

21.若级数

∑a

n =1

∑b

n =1

都绝对收敛,则函数项级数

∑(a

n =1

n

cos nx +b n sin nx )

在R 上一致收敛.

证:U n (x )=a n cos nx +b n sin nx ,∀x ∈R 有

U n (x )=a n cos nx +b n sin nx ≤a n cos nx +b n sin nx ≤a n +b n

n

由于

∑a

n =1

∑b

n =1

n

都绝对收敛,故级数

∑(a

n =1

n

n

+b n

)

收敛.

由魏尔斯特拉斯判别法知,函数项级数n =1

22.计算下列级数的收敛半径及收敛域:

∑(a

cos nx +b n sin nx )

在R 上一致收敛.

⎛∑ (1) n =1⎝

+1⎫n

⎪x

n +1⎭;

n

n

(2)

n =1

sin

π2

n

(x +1)

n

(3)

n =1

(x -1)

n ⋅2

2

n

ρ=lim

a n +1a n

n +2⎭+

1

n +1

n

n →∞

=lim n →∞

⎝=lim

解:

(1)

⎛⋅ ⎝n

n →∞

-1

n +2⋅e =

⎛⎛n +1⎫

⋅lim ⋅lim ⎪n →∞

⎝n +2⎭n →∞⎝

n

=e

R =

1

ρ

=

3,

⎛∑ x =±

3又当时,级数变为n =1⎝

+1⎫⎛⎫

±⎪ ⎪=

n +1⎭⎝3⎭

n n

⎫n ⎛3n +

(

)±1∑ ⎪n =1⎝3n +3⎭,

n

⎛3n +⎫

lim ⎪=e n →∞

⎝3n +3⎭因为

x =±

所以当

n

≠0

3,级数发散,故原级数的收敛半径

R =

3,收敛域(

-3

, 3) .

ρ=lim

(2)

a n +1a n

sin =lim

n →∞

πn +1

π

=lim n →∞

n +1

n →∞

sin

π2

n

π

n

=

12

2

R =

1

ρ

=2

lim sin

n →∞

π2

n

sin

⋅2=lim π

n →∞n

π2

n n

π2π

n

=π≠0

又∵

2所以当(x +1)=±2时,级数n =1发散,

从而原级数的收敛域为-2

sin

(x +1)

n

ρ=lim

(3)

a n +1a n

n →∞

=lim

n ⋅2

2

2n n +1

n →∞

(n +1)⋅2

1

2

=

12

∴R =2,收敛区间-2

当x =-1时,级数变为

因此原级数的收敛域为[-1,3].

n =1

x 0

(-1)

n

n ,其绝对收敛,当x =3时,级数变为n =1n ,收敛.

1

2

23.将函数

F (x )=

arctan t

t

n

d t

展开成x 的幂级数.

arctan t =

解:由于

x 0

x 0

∑(-1)

n =0

t

2n +1

2n +1

F (x )=

=

arctan t

t

d t =

n

⎰∑(-1)

0n =0

x

n

t

2n

2n +1

n

d t x

2n +1

2

2n +1n =0n =0所以

24.判别下列级数在指定区间上的一致收敛性:

∑⎰

(-1)

t

2n

d t =

∑(-1)

(2n +1)

(|x |≤1)

(1)n =1x +3

(-1)

n n

,x ∈[-3,+∞) ;

(2)n =1x

n

n

,x ∈(2,+∞) ;

(3)

∑(

n =1

n

2222

x +n )⎡⎣x +(n +1)⎤⎦,x ∈(-∞,+∞) ;

(-1)

n n

=

1x +3

解:(1)考虑n ≥2时,当x ≥-3时,有x +3

n

n

13-3

n

13

n -1

∑3

n =1

1

n -1

收敛,由魏尔斯特拉斯判别法知,级数

n =1

(-1)

x +3在[-3,+∞) 上一致收敛.

n

n

(2)当x >2时,有x

n

=

n 2

n

n +1

n →∞

lim n +1

n

n

=

12

知级数

2

n =1

n

n

2收敛,由魏尔斯特拉斯判别法知,级数n =1x 在(2,+∞) 上一致收敛.

n

n

n

(3)∀x ∈R 有

22

(x 2+n 2)⎡⎣x +(n +1)⎤⎦

n n ⋅(n +1)

22

n n

4

=

1n

3

而n =1

25.求下列级数的和函数:

1

22223⎤x +()n +1n 收敛,由魏尔斯特拉斯判别法知,级数n =1(x +n )⎡⎣⎦在(-∞,+∞) 上一致收敛.

n

(1)

∑(-1)

n =1

n -1

x

2n ∞

2n -1; (2)n =02n +1;

x

2n +1

(3)n =1

∑(

n n -1)!

x

n -1

; (4)n =1

∑n (

x

n

n +1).

解:(1)可求得原级数的收敛半径R =1,且当|x |=1时,级数

域为[-1,1]

∑(-1)

n =1

n -1

1

2n -1是收敛的交错级数,故收敛

S (x )=

∑(-1)

n =1

n -1

x

2n ∞

2n -1

=x ∑(-1)

n =12n -2

n -1

x

2n -1

2n -11

2

=xS 1(x )

S 1'(x )=

则S 1(0)=0,

n =1

(-1)

n -1

x =

1+x

所以 即S 1(x )=arctanx ,所以S (x )=x arctan x ,x ∈[-1,1].

S 1(x )-S 1(0)=

x 0

11+x

2

d x =arctan x

S (x )=

(2)可求得原级数的收敛半径R =1,且当|x |=1时,原级数发散.记

n =0

x

2n +1

2n +1则

S '(x )=

1-x

x x 111+x 11+x 'S ()d x =d x =ln S ()-S ()=ln x x 0⎰0⎰01-x 2

21-x ,即21-x ,S (0)=0

n =0

∑x

2n

=

1

2

所以

S (x )=

12

ln

1+x 1-x ,(|x |

n +1

n →∞

lim

a

n +1n

=lim

a

n →∞

n ! n

=0

S (x )=

知收敛域为(-∞,+∞) .记

(3)由

(n -1)!

∑(

n =1

n n -1)!

x

n -1

x 0

S (x )d x =

∑(

n =1

x

n

n -1)!

=x ∑

n =1

x

n -1

(n -1)!

=x e

x

,所以

S (x )=(x e x )'=(1+x )e ,(-∞

x

1

lim

(4)由

n →∞

(n +1)(n +2)

=1

1

n (n +1)

知收敛半径R =1,当x =1时,级数变为

n

n =1

11

n (n +1),由n (n +1)

1n

2

知级数收敛,当x =-1时,级数变为

∑n (

n =1

(-1)

n +1)是收敛的交错级数,故收敛域为[-1,1].

S (x )=

∑n (

n =1

x

n

n +1)则S (0)=0,

n -1

xS (x )=

∑n (

n =1

x

n +1

n +1),

[xS (x )]''=

x

n =1

x =

1

1-x (x ≠1)

(x )]''d x =-ln (1-x )[xS

所以⎰0

()()即[xS x ]=-ln 1-x

'

⎰0[xS (x )]d x =⎰0-ln (1-x )d x =(1-x )ln (1-x )+x

即xS (x )=(1-x )ln (1-x )+x

x

x

'

⎛1⎫

S (x )=1+ -1⎪ln (1-x )

⎝x ⎭当x ≠0时,,又当x =1时,可求得S (1)=1 1⎫⎛

lim S (x )=lim 1-⎪=1n →∞n →∞⎝n +1⎭(∵)

综上所述

⎧0,

S (x )=⎪1,

⎛1⎫⎪

1+ -1⎪ln (1-x ), ⎪⎝x ⎭⎩

x =0x =1

x ∈[-1, 0) (0,1)

⎧2

f (x )=⎨3

⎩x 26.设f (x ) 是周期为2π的周期函数,它在(-π,π]上的表达式为

试问f (x ) 的傅里叶级数在x =-π处收敛于何值?

解:所给函数满足狄利克雷定理的条件,x =-π是它的间断点,在x =-π处,f (x ) 的傅里叶级数收敛于

-+

f (-π)+f (-π)

2

=

12

[π3+2]=

12

(2+π3)

⎧-1

f (x )=⎨2

⎩x 27.写出函数

-π≤x ≤00

的傅里叶级数的和函数.

解:f (x ) 满足狄利克雷定理的条件,根据狄利克雷定理,在连续点处级数收敛于f (x ) ,在间断点x =0,x =±π

-+

f (0)+f (0)

处,分别收敛于

-+

f (-π)+f (-π)

2

=-

12,

-+

f (π)+f (π)

2

=

π-12

2

2

=

π-12

,综上所述和函数.

2

28.写出下列以2π为周期的周期函数的傅里叶级数,其中f (x ) 在[-π,π)上的表达式为:

⎧-1⎪2x ⎪⎪1

S (x )=⎨-

⎪2⎪π2-1⎪⎩2

⎧π⎪⎪4

f (x )=⎨

⎪-π⎪⎩4(1)

(2)

0≤x

f (x )=x

2

(-π≤x ≤π);

-π≤x

π2π2, ,

⎧π⎪-2, ⎪⎪

f (x )=⎨x ,

⎪⎪π⎪, ⎩2(3)

x

f (x )=cos

2(4)

≤x

(-π≤x ≤π)

.

解:(1)函数f (x ) 满足狄利克雷定理的条件,x =n π,n ∈z 是其间断点,在间断占处f (x ) 的傅里叶级数收敛于

f (0

+

)+f (0)

-

π=

⎛π⎫+ -⎪4⎝4⎭

2=1

2

a n =

=0

,在x ≠n π,有

π-π

f

(x )cos nx d x

1⎛π⎫

-cos nx d x +⎰ ⎪π-π⎝4⎭π

π0

π4

cos nx d x =0

b n =

π-π

1⎛π⎫

f (x )sin nx d x =⎰ -⎪sin nx d x +

π-π⎝4⎭πn =2, 4, 6, , n =1, 3, 5, .

1

π

π4

sin nx d x

⎧0,

⎪=⎨1⎪, ⎩n

于是f (x ) 的傅里叶级数展开式为

f (x )=

(x ≠n π)

(2)函数f (x ) 在(-∞,+∞) 上连续,故其傅里叶级数在(-∞,+∞) 上收敛于f (x ) ,注意到f (x ) 为偶函数,从而f (x )cos nx 为偶函数,f (x )sin nx 为奇函数,于是

n =1

∑2n -1sin (2n -1)x

π

1

b n =a n =

1π1π

-ππ-π

f (x )sin nx d x =0f

a 0=

π0

2

π-π

x d x =

2

2π3

2

n

(x )cos nx d x

n

=

x cos nx d x =(-1)⋅

4

n (n =1,2,…)

2

所以,f (x ) 的傅里叶级数展开式为:

f (x )=

π

2

(-∞

(3)函数在x =(2n +1)π (n ∈z ) 处间断,在间断点处,级数收敛于0,当x ≠(2n +1)π时,由f (x ) 为奇函数,有a n =0,(n =0,1,2,…)

n =1

3

+

∑(-1)

4n

2

cos nx

b n =

π0

π

2⎡2

f (x )sin nx d x =⎢⎰x sin nx d x +

π⎣0

ππ2

π

sin nx d x ⎥2⎦

=-

所以

1n

(-1)

n

+

2n π

n +1

2

sin

n π22n π

2

(n =1, 2, )

sin

f

(x )=∑⎢(-1)

n =1

⎡⎣

1n

+

n π⎤

sin nx 2⎥⎦ (x ≠(2n +1)π,n ∈z )

2作为以2π为周期的函数时,处处连续,故其傅里叶级数收敛于f (x ) ,注意到f (x ) 为(4)因为

偶函数,有b n =0(n =1,2,…) ,

f

(x )=cos

x

a n ==

11

⎰π

π

π-ππ0

cos

x 2

cos nx d x =

⎰π

2

π0

cos

x 2

cos nx d x ⎫⎤

⎪x ⎥d x ⎭⎦

π

⎡1⎛cos n + ⎢

2⎝⎣1⎫⎛x +cos n -⎪

2⎭⎝

⎡1⎛

sin n + 1⎢2⎝=⎢

1π⎢

n +⎢2⎣=(-1)

n +1

1⎫⎤⎫⎛

x sin n -⎪ ⎪x ⎥

2⎭⎭⎝

⎥+

1⎥n -

⎥2⎦0

4⎛1⎫

⎪2

π⎝4n -1⎭4π

(n =0,1, 2, )

所以f (x ) 的傅里叶级数展开式为:

f (x )=

+

∑(-1)

n =1

n +1

cos nx

4n -1 x ∈[-π,π] x

2

29. 将下列函数f (x ) 展开为傅里叶级数:

f

(1)(2)

(x )=

π4

-

x 2

(-π

f (x )=sin x

a 0=

(0≤

π

x ≤2π)

解:(1)

f (x )cos nx d x =

1

x ⎫π⎛π-d x =⎪⎰

π-π⎝42⎭2

π

a n =

=b n =

1

⎛πx

-⎰-π

π⎝42

π1⎫

cos nx d x =⎪

4⎭

π-π

cos nx d x -

⎰2π

1

π-π

x cos nx d x

14n 1

[sin nx ]-π-0=0

π

π

(n =1, 2, )

x ⎛π

-⎰

π-π⎝42

n

1⎫

sin nx d x =⎪

4⎭

π-π

sin nx d x -

⎰2π

1

π-π

x sin nx d x

=(-1)⋅f

1n

4n =1n (-π

(2)所给函数拓广为周期函数时处处连续, 因此其傅里叶级数在[0,2π]上收敛于f (x ) ,注意到f (x ) 为偶函数,

(x )=

π

+

∑(-1)

π-ππ0

n

sin nx

a 0==

有b n =0,

1

⎰π

f (x )cos 0x d x =

1

⎰π

π-π

sin x d x

sin x d x =

a n ===

⎰π

1

2

π0π0

f

(x )cos nx d x =

⎰π

2

π-π

sin x cos nx d x

⎰π

⎡⎣sin (n +1)x -sin (n -1)x ⎤⎦d x

⎡1+(-1)n ⎤2⎦π(n -1)⎣

n =1, 3, 5, n =2, 4, 6,

-2

⎧0, ⎪

-4=⎨

,

⎪π(n 2-1)⎩

所以

f (x )=

+

n =1

-4cos 2nx π(4n -1)

2

(0≤x ≤2π)

30. 设f (x )=x +1(0≤x ≤π),试分别将f (x ) 展开为正弦级数和余弦级数. 解:将f (x ) 作奇延拓,则有a n =0 (n =0,1,2,…)

b n =

π0

f (x )sin nx d x =

n

⎰(x +1)sin nx d x

π

21-(-1)(1+π)=⋅πn f (x )=

n

n n =1从而

若将f (x ) 作偶延拓,则有b n =0 (n =1,2,…)

∑π

2

1-(-1)(1+π)

sin nx

(0

a n =

π0

f

(x )cos nx d x

=

⎰(x +1)cos nx d x

π

从而

n =2, 4, 6 ⎧0,

⎪=⎨-4

⎪2, n =1, 3, 5, ⎩n π1π2π

a 0=⎰f (x )d x =⎰(x +1)d x =π+2

π-ππ0

π+24∞cos (2n -1)x

f (x )=-∑2

2πn =1(2n -1)

(0≤x ≤π)

31. 将f (x )=2+|x | (-1≤x ≤1) 展开成以2为周期的傅里叶级数,并由此求级数n =1n 的和.

解:f (x ) 在(-∞,+∞) 内连续,其傅里叶级数处处收敛,由f (x ) 是偶函数,故b n =0,(n =1,2,…)

1

2

a 0=

a n =

⎰⎰

1-11-1

f (x )d x =2⎰

f

10

(2+x )d x =5

10

(x )cos nx d x =2⎰

n =2, 4, 6 n =1, 3, 5,

(2+x )cos nx d x

⎧0, ⎪

=⎨-4

,

⎪n π2⎩()

所以

f

(x )=

52

-

2

n =1

cos (2n -1)πx

(2n -1)

2

2

,x ∈[-1,1]

取x =0得,

n =1∞

1

(2n -1)

1

2

=

π

2

8

,故

n =1

1n

2

=

n =12

(2n -1)

π

+

n =1

1

(2n )

2

=

1

∑4

1n

2

+

π

2

n =1

8

6 所以n =1n

32. 将函数f (x )=x -1(0≤x ≤2) 展开成周期为4的余弦级数.

解:将f (x ) 作偶延拓,作周期延拓后函数在(-∞,+∞) 上连续, 则有b n =0 (n =1,2,3,…) a 0=

1

1

=

⎰2

12

2

2-2

f

(x )d x =

⎰(x -1)d x =0

2

a n ==

4

2-2

f

(x )cos

n

n πx 2

d x =

⎰0(x -1)cos

2

n πx 2

d x

n π

2

[(-1)-1]

n =2, 4, 6, n =1, 3, 5,

⎧0, ⎪=⎨8

-, ⎪22⎩n π

f

(x )=-

2

n =1

1

(2n -1)

2

⋅cos

12

(2n -1)πx

2,

s (x )=

(0≤x ≤2)

⎧x , ⎪⎪

f (x )=⎨

⎪2-2x , ⎪⎩33. 设

0≤x ≤12

a 02

+

∑a

n =1

n

cos n πx

,-∞

a n =2⎰

10

⎛5⎫

s -⎪

f (x )cos n πx d x

,求⎝2⎭. 5

2处间断,所以

解:先对f (x ) 作偶延拓到[-1,1],再以2为周期延拓到(-∞,+∞) 将f (x ) 展开成余弦级数而得到 s (x ) ,延拓后

x =-

f (x ) 在

+

⎛5-⎫⎤1⎡⎛1+⎫⎛1-⎫⎤⎛5⎫1⎡⎛5⎫

s -⎪=⎢f -⎪+f -⎪⎥=⎢f -⎪+f -⎪⎥

22222⎝2⎭2⎢⎢⎭⎝⎭⎥⎭⎝⎭⎥⎣⎝⎦⎣⎝⎦

=

1⎛1⎫3+1 ⎪=2⎝2⎭4

34. 设函数f (x )=x (0≤x

2

s (x )=

∑b

n =1

n

sin n πx

,-∞

b n =2⎰

1

⎛1⎫

s -⎪

f (x )sin n πx d x

(n =1,2,3,…),求⎝2⎭.

解:先对f (x ) 作奇延拓到,[-1,1],再以2为周期延拓到(-∞,+∞) ,并将f (x ) 展开成正弦级数得到s (x ) ,延拓

x =-

后f (x ) 在

1

2处连续,故.

2

1⎛1⎫⎛1⎫⎛1⎫

s -⎪=-f -⎪=- -⎪=-

4. ⎝2⎭⎝2⎭⎝2⎭

35. 将下列各周期函数展开成为傅里叶级数,它们在一个周期内的表达式分别为:

1⎫⎛1

-≤x

0≤x

解:(1) f (x ) 在(-∞,+∞) 上连续,故其傅里叶级数在每一点都收敛于f (x ) ,由于f (x ) 为偶函数,有b n =0 (n =1,2,3,…)

1

1

f

(x )=⎨

⎧2x +1, -3≤x

a 0=2⎰21f

-2

(x )d x =4⎰02(1-x 2)d x =

1

116,

1

a n =2⎰21f

-2

(x )cos2n πx d x =4⎰02(1-x 2)cos2n πx d x

2

=

所以

(-1)

2

n +1

n π11121

(n =1, 2, )

2

f

(x )=

a 0=

+

3-3

n =1

(-1)

n

2

n +1

cos 2n πx

(-∞

30

(2)

⎰3

f

1⎡0

f (x )d x =(2x +1)d x +

⎣⎰-33⎢

d x ⎤=-1

⎥⎦,

a n ===

1313

3-30

(x )cos

n πx 3

d x d x +

13

⎰-3(2x +1)cos

6

n πx 3

30

cos

n πx 3

d x

⎡1-(-1)n ⎤, (n =1, 2, 3, )22⎦n π⎣

13n πx b n =⎰f (x )sin d x

3-33==13

⎰-3(2x +1)sin

(-1)

-12

n +1

n πx 3

d x +

13

30

sin

n πx 3

d x

6n π

, (n =1, 2, )

而函数f (x ) 在x =3(2k +1),k =0,±1,±2,…处间断,故

f

(x )=

+

n πx n πx ⎫n n +16⎧6⎡⎤1--1cos +-1sin ()()⎬∑⎨n 2π2⎣⎦3n π3⎭(x ≠3(2k +1),k =0,±1,±2,…) n =1⎩

36. 把宽为τ,高为h ,周期为T 的矩形波(如图所示)展开成傅里叶级数的复数形式

.

解:根据图形写出函数关系式

⎧⎪0, ⎪⎪

u (t )=⎨h ,

⎪⎪⎪0, ⎩

--

T 2

≤t

T 2

τ

2

τ

2

τ

2

τ

2

≤t ≤

T

c 0=c n ==1T

12l 12l

τ

⎰⎰

l -l l -l

u (t )d t =u (t )e

-i 2n πT

t

-i n πl

1T

t

2T -2

u (t )d t =1T

T

1T

τ

⎰τ

-2-i 2n πT

2

h d t =

t

h τT

d t =

2T -2

u (t )e

τ

d t

⎫t ⎪⎭

⎰τ

-2

2

h e

h ⎛-T ⎫2-i

d t =⋅ ⎪⎰τe

T ⎝2n πi ⎭-2

τ

2n πT

t

2n π⎛d -i

T ⎝

h ⎛

= -

⎝2n πi

h τT

h n πτ⎫⎡-i 2n πt ⎤2

=sin ⎪⎣e T ⎦-τ

n πT ⎭2

h π

故该矩形波的傅里叶级数的复数形式为

u (t )=

+

n =-∞

n ≠0

1n

sin

n πτT

e

-i

2n πT

t

22,…) (-∞

-37. 设f (x ) 是周期为2的周期函数,它在[-1,1]上的表达式为f (x )=ex ,试将f (x ) 展成傅里叶级数的复数形式. 解:函数f (x ) 在x ≠2k +1,k =0,±1,±2处连续.

t ≠±

τ

, ±

c n ==-

⎰2l

1

l -l

f

(x )e

-i

n πl

x

d x =

1

1

⎰2

1-1

e e

-x -in πx

d x

12(1+n πi )

-1

[e -(1+n πi )x ]-1

n

=

e -e 2

⋅(-1)⋅

n

11+n πi 1-n πi

2

=sinh 1⋅(-1)⋅

1+(n π)

n

故f (x ) 的傅里叶级数的复数形式为

in πx

f (x )=sinh 1∑

n =-∞

(-1)⋅(1-in π)

1+(n π)

2

e

(x ≠2k +1,k =0,±1,±2,…)

⎧A ,

f (t )=⎨

⎩0, 38. 求矩形脉冲函数

F (ω)=

0≤t ≤T 其他

的傅氏变换

-i ωx

解:

39. 求下列函数的傅里叶积分:

+∞-∞

f (t )e

-i ωx

d t =

T 0

A e d t =

A (1-e -i ωx )

i ω

⎧e -t ,

f (t )=⎨

⎩0, (1)

t ≥0t

⎧-1, ⎪

f (t )=⎨1,

⎪0, ⎩(2)

F (ω)=

=

解:(1)

-1

-i ωt

+∞-∞

f (t )e =

d t =

+∞0

e

-t

⋅e

-i ωt

d t

11+ωi

1-i ω1+ω

2

f (t )=

==

⎰2π⎰2π

11

1

+∞-∞+∞-∞

F (ω)e

i ωt

d ω=

⎰2π

d t

1

+∞-∞

1-i ω1+ω

2

e

i ωt

d ω

cos ωt +ωsin ωt

1+ω1+ω

22

⎰π

+∞0

cos ωt +ωsin ωt

+∞-∞0-1

-i ωt

d t

F (ω)=

==

(2)

⎰⎰

f (t )e

d t

(-e -i ωt )d t +

i ω

10

e

-i ωt

d t

2(1-cos ω)

i ωt

+∞-∞

f (t )=

===

⎰2π

1π1π2π

1

F (ω)e

d ω=

⎰2π

1

+∞-∞

2(1-cos ω)

i ω

e

i ωt

d ω

⎰⎰

+∞-∞+∞-∞+∞0

(1-cos ω)

i ω

(cos ωt +i sin ωt )d ω

d ωd ω

(1-cos ω)sin ωt

ω

(1-cos ω)sin ωt

40. 求如图所示的三角形脉冲函数的频谱函数

.

ω

(t ≠0,1)

2E ⎧E +t ⎪⎪T

f (t )=⎨

⎪E -2E t ⎪⎩T 解:F (ω)=

-

T 2

≤t ≤0T 2

0

+∞-∞0

f (t )e

-i ωt

2E ⎛=⎰T E +-

T 2⎝=

⎫-i ωt

d t +t ⎪e ⎭

T

20

2E ⎛ E -⎝T ⎫-i ωt

d t t ⎪e ⎭

4E ⎛ωT ⎫

1-cos ⎪2

T ω⎝2⎭


相关内容

  • 超多大学课后习题答案与大家分享啦~~
  • 超多大学课后习题答案与大家分享啦~~.txt男人应该感谢20多岁陪在自己身边的女人.因为20岁是男人人生的最低谷,没钱,没事业:而20岁,却是女人一生中最灿烂的季节.只要锄头舞得好,哪有墙角挖不到?2500份课后答案,很值得收藏,这里只介绍了一部分. 还有很多,可以去课后答案网(http://bbs ...

  • 大学课后习题答案
  • [大学四年100万份资料大集合] http://www.3che.com/forum.php?mod=viewthread&tid=7083&fromuid=582866 新视野大学英语课后习题答案1-4册全集 http://www.3che.com/forum.php?mod=vi ...

  • 高等数学的学习与意义
  • 高等数学的学习方法与意义 摘要:高数本来就是解决难题的.而难题本来就是不是留给生活而是留给以推理为乐的思维游戏的.它是测量人类思维强度的直尺,是人类高等的证明.高等数学就是种高于生活的艺术,艺术对很多人来说是可有可无的,但是却能给追求艺术的人无限的乐观和活着的动力.当然从实际角度说,高数在科学研究领 ...

  • 2015年英语类3D电子书(题库)
  • 2015年英语类3D电子书(题库)共428种 英语类考试 大学英语考试 大学英语四级               1.[圣才视频]大学英语四级考试真题解析班(网授)[免费下载] 8.[3D题库]2015年12月大学英语四级题库[历年真题+章节题库+模拟试题][免费下载] ...

  • 同济七版高等数学考研基础复习阶段必做课后习题
  • 同济七版高等数学考研基础复习阶段必做课后习题第一章习题1-1:2,5,6,13,习题1-2:2,3,6,7,8习题1-3:1,2,3,4,7,12习题1-4:1,5,6习题1-5:1,2,3,4,5习题1-6:1:(5),(6),2,4习题1-7:1,2,3,4,5:(2),(3),(4)习题1-8 ...

  • 2017苏州大学考研资料与专业综合解析
  • 2017苏州大学考研资料与专业综合解析 专业名称.代码:世界经济[020105] 所属门类代码.名称:经济学[02] 所属一级学科代码.名称:理论经济学[0201] 所属学院:东吴商学院 世界经济学专业介绍: 世界经济学是理论经济学一级学科下属的二级学科之一,世界经济学是一门前沿性和综合性很强的理论 ...

  • 高等教育出版社 无机化学 第二章 课后习题答案
  • 1. 某气体在293K 与9.97×104Pa 时占有体积1.910-1dm 3其质量为0.132g ,试求这种气体的 相对分子质量,它可能是何种气体? 解 2.一敝口烧瓶在280K 时所盛的气体,需加热到什么温度时,才能使其三分之一逸出? 解 3. 温度下,将1.013105Pa 的N 2 2dm ...

  • 高 三 数 学 一 轮 复 习 建 议
  • 高 三 数 学 一 轮 复 习 建 议 在潍坊市高三数学一轮复习研讨会上的发言 (2007年9月4日 安丘) 一轮复习是整个高三复习阶段最重要的环节,复习质量关乎高考的成败.学生经过了高一高二两年的学习,因为各种因素的影响,学习上或多或少地留下不少的缺憾和问题,能否通过一轮复习解决这些问题,关系到学 ...

  • 高等电力系统分析_课后习题
  • <高等电力系统分析> 课后习题 第一部分:电力网络方程 ● 对于一个简单的电力网络,计算机实现节点导纳矩阵 节点导纳矩阵的修改方法. ● 编制LDU 分解以及因子表求解线性方程组 消元,回代. ● 试对网络进行等值计算. 多级电网参数的标么值归算,主要元件的等值电路. 第二部分:潮流计算 ...

  • [高等数学]详细答案 下册(八--十二)
  • 2014届高联高级钻石卡基础阶段学习计划 <高等数学> 下册(八-十二) 第八章.向量代数和空间解析几何 计划对应教材:高等数学上册 同济大学数学系编 高等教育出版社 第六版 本单元中我们应当学习-- 1. 空间直角坐标系,向量的概念及其表示: 2. 向量的运算(线性运算.数量积.向量积 ...