钢结构课程设计普通钢屋架设计(18m梯形屋架)

钢结构课程设计

学生姓名: 学 号:

所在学院:机电工程学院 专业班级: 指导教师:

2013年7月

《钢结构设计》课程设计任务书

1. 课程设计题目 普通钢屋架设计 2. 课程设计的目的和要求

课程设计的目的是加深学生对钢结构课程理论基础的认识和理解,并学习运用这些理论知识来指导具体的工程实践,通过综合运用本课程所学知识完成普通钢屋架这一完整结构的设计计算和施工图的绘制等工作,帮助学生熟悉设计的基本步骤,掌握主要设计过程的设计内容和计算方法,培养学生一定的看图能力和工程图纸绘制的基本技能,提高学生分析和解决工程实际问题的能力。 3. 课程设计内容和基本参数(各人所取参数应有不同)

(1)结构参数: 屋架跨度18m,屋架间距6m, 屋面坡度1/10 (2)屋面荷载标准值(kN/m2)

(3)荷载组合 1)全跨永久荷载+全跨可变荷载

2)全跨永久荷载+半跨可变荷载

(4)材料 钢材Q235B.F,焊条E43型。

屋面材料采用1.5m×6.0m太空轻质大型屋面板。

4. 设计参考资料(包括课程设计指导书、设计手册、应用软件等)

(1)曹平周,钢结构,科学文献出版社。

(2)陈绍蕃,钢结构(下)房屋建筑钢结构设计,中国建筑工业出版社。 5. 课程设计任务

完成普通钢屋架的设计计算及施工图纸绘制,提交完整规范的设计技术文档。

5.1设计说明书(或报告)

(1)课程设计计算说明书记录了全部的设计计算过程,应完整、清楚、正确。

(2)课程设计计算说明书应包括屋架结构的腹杆布置,屋架的内力计算,杆件的设计计算、节点的设计计算等内容。

5.2技术附件(图纸、源程序、测量记录、硬件制作)

(1)施工图纸应包括杆件的布置图、节点构造图,材料明细表等内容。 (2)图面布置要求合理,线条清楚,表达正确。 5.3图样、字数要求

(1)课程设计计算说明书应装订成一册,包括封面、目录、课程设计计算说明书正文、参考文献等部分内容。

(2)课程设计计算说明书可以采用手写。

(3)施工图纸要求采用AutoCAD绘制或者手工绘制。 6. 工作进度计划(19周~20周)

目 录

1、设计资料„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„1 2、屋架形式、几何尺寸及支撑布置„„„„„„„„„„„„„„„„„„„„„„„„1 3、荷载和内力计算„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„1 3.1荷载计算„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„1 3.2荷载组合„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„2 3.3内力计算„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„2 4、杆件截面计算„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„3 4.1上弦„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„4 4.2下弦„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„5 4.3腹杆A-a与I-e„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„6 4.4腹杆B-a与H-e „„„„„„„„„„„„„„„„„„„„„„„„„„„„„6 4.5腹杆B-b与H-d „„„„„„„„„„„„„„„„„„„„„„„„„„„„„6 4.6腹杆C-b与G-d „„„„„„„„„„„„„„„„„„„„„„„„„„„„„7 4.7腹杆D-b与F-d „„„„„„„„„„„„„„„„„„„„„„„„„„„„„7 4.8腹杆D-c „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„8 4.9腹杆F-c „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„8 4.10腹杆E-c„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„9 5、节点设计„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„9 5.1下弦节点b„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„10 5.2上弦节点B „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„11 5.3上弦节点C „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„12 5.4上弦节点D „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„13 5.5下弦节点c „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„13 5.6上弦节点E „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„14 5.7上弦节点A „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„15 5.8支座设计 „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„16 6、主要参考资料 „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„18

1. 设计资料

(1)结构参数:屋架跨度18m,屋架间距6m, 屋面坡度1/10

(2)屋面荷载标准值(kN/m2)可变荷载:0.4KN/m2 永久荷载:0.82 KN/m2 (3)荷载组合:1)全跨永久荷载+全跨可变荷载

2)全跨永久荷载+半跨可变荷载

(4)材料:钢材Q235B.F,焊条E43型

屋面材料采用1.5m×6.0m太空轻质大型屋面板

2. 屋架形式、几何尺寸及支撑布置

梯形屋架上弦较平坦,适合于采用压型钢板和大型钢筋混凝土面板,薄坡度一般在1/12~1/8之间,依据题意要求选择了梯形屋架,其中屋架的跨度L为18m,又因为H(1/10~1/6)L,H0(1/16~1/10)L,取H2.4m,H01.5m。其余杆件尺寸如下图所示:

图1屋架结构图

图2屋架尺寸及内力图

3.荷载和内力计算 3.1 荷载计算

可变荷载:0.4kN/m2 永久荷载:0.82 KN/m2

恒载计算:恒载设计值按分项系数1.2为q10.821.20.984 KN/m2,节点载荷p162.25q113.284KN

活载计算:分项系数

1.4,活载q20.51.40.70 KN/m2,

p262.25q27.56KN

3.2 荷载组合

(1)全跨永久荷载+全跨可变荷载 (2)全跨永久荷载+半跨可变荷载

3.3.内力计算

组合分为全跨活载荷和半跨活载荷两种情形,求这两种情形的内力系数的单位荷载见图3与图4,其中“恒+全”一栏所列数值表示恒载与全跨活载的组合值,而“恒+半”一栏所列数值表示恒载与半跨活载的组合值。

图3计算内力系数的全跨荷载

图4计算内力系数的半跨荷载

表1屋架内力组合表

4. 杆件截面选择

腹杆最大内力161.7286KN(压)由屋架节点板厚度参考表可知支座支节点板厚度取8mm。

杆件截面选择见下表2

表2 屋架杆件截面选择表

4.1 上弦

整个上弦不改变截面,按最大内力计算。

最大内力为-157.1KN,lox2261mm,则平面外计算长度:

N2145.03

loyl1.0750.2545220.750.215.14mm 4435N1157.10loy/lox4435014/22611.96

若获得平面xyz,则应有ly/lx1.86,选用两不等肢角钢短肢相并比较适当。

假定没有相似资料参照,故先设以帮助选择截面。设70,属于轴心压杆b类,有书上附录查得0.751。取强度设计值f=215 KN/m2,根据所设的,

截面应该有

AN1/f157.1103/(0.751215102)9.73cm2

ixlox/iy226.1/703.23cm,iy应大于loy/443.5/706.34cm,节点板厚度8mm,有型钢表查得2L125808(取a=8mm),并由短肢相并构成压杆,查得A=2×16=32cm2,ix2.28cm,iy6.0cm,用实际截面验算。

yloy/iy443.5/673.9xlox/ix99.2150(容许长细比)

边,

双可

取角

,,

b1/t12.5/0.8160.56443.5/12.519.9yzx73.9

maxx,yzx99.2,查得0.560,

N1157.110322

87.7N/mmf215N/mm2

A0.5603210

所选截面合适。

4.2 下弦

整个下弦杆采用同一截面,按最大内力计算。 最大内力为161.7KN,loylox450cm

AN1/f161.7103/(215102)7.52cm2

选用2L455(a取8mm),A=2×4.29=8.58cm2,ix1.37cm,iy2.18cm 强度和刚度验算:

NAb161.7103

188.5N/mm2f215N/mm2 2

An8.5810

容许的长细比验算:

xlox/ix450/1.37328.5350

yloy/iy450/2.18206.4350

所选截面符合要求。

4.3 腹杆A-a与I-e

最大内力为-10.42KN,loylox150cm

AN/f10.42103/(215102)0.484cm2

选用2L454(a取8mm),A=2×3.49=6.98cm2,ix1.38cm,iy2.16cm 容许的长细比验算:

xlox/ix150/1.38108.7150

yloy/iy150/2.1669.4150

强度和刚度验算:

根据108.7查得0.501

10.410322

29.7N/mmf215N/mm2

A0.5016.9810

所选截面符合要求。

N

4.4 腹杆B-a与H-e

最大内力为-119.9KN,loylox271.8cm

AN/f119.9103/(215102)5.58cm2

选用2L706(a取8mm),A=2×8.16=16.32cm2,ix2.15cm,iy3.19cm 容许的长细比验算:

xlox/ix271.8/2.15126.4150

yloy/iy271.8/3.1985.2150

强度和刚度验算:

根据126.4查得0.404

119.9103

181.8N/mm2f215N/mm2 2

A0.40416.3210

所选截面符合要求。

N

4.5 腹杆B-b与H-d

最大内力为61.9KN,loylox283.5cm

AN/f61.9103/(215102)2.28cm2

选用2L454(a取8mm),A=2×3.49=6.98cm2,ix1.38cm,iy2.16cm 容许的长细比验算:

xlox/ix283.5/1.38205.4350

yloy/iy283.5/2.16131.3350

强度和刚度验算:

61.9103

88.7N/mm2f215N/mm2 2

A6.9810

所选截面符合要求。

N

4.6 腹杆C-b与G-d

最大内力为-20.8KN,loylox195cm

AN/f20.8103/(215102)0.96cm2

选用2L454(a取8mm),A=2×3.49=6.98cm2,ix1.38cm,iy2.16cm 容许的长细比验算:

xlox/ix195/1.38141.3150

yloy/iy195/2.1690.3150

强度和刚度验算:

根据141.3查得0.340

20.810322

8.76N/mmf215N/mm2

A0.3406.9810

所选截面符合要求。

N

4.7 腹杆D-b与F-d

最大内力为-24.2KN,loylox312.9cm

AN/f24.2103/(215102)1.12cm2

选用2L706(a取8mm),A=2×8.16=16.32cm2,ix2.15cm,iy3.19cm

容许的长细比验算:

xlox/ix312.9/2.15145.5150

yloy/iy312.9/3.1998.1150

强度和刚度验算:

根据145.5查得0.324

24.210322

45.7N/mmf215N/mm2

A0.32416.3210

所选截面符合要求。

N

4.8 腹杆D-c

最大内力为-14.3KN,loylox312.9cm

AN/f14.3103/(215102)0.67cm2

选用2L706(a取8mm),A=2×8.16=16.32cm2,ix2.15cm,iy3.19cm 容许的长细比验算:

xlox/ix312.9/2.15145.5150

yloy/iy312.9/3.1998.1150

强度和刚度验算:

根据145.5查得0.324

14.3103

27.0N/mm2f215N/mm2 2

A0.32416.3210

所选截面符合要求。

N

4.9 腹杆F-c

最大内力为-11.5KN,loylox312.9cm

AN/f11.5103/(215102)0.535cm2

选用2L706(a取8mm),A=2×8.16=16.32cm2,ix2.15cm,iy3.19cm 容许的长细比验算:

xlox/ix312.9/2.15145.5150

yloy/iy312.9/3.1998.1150

强度和刚度验算:

根据145.5查得0.324

11.510322

21.7N/mmf215N/mm2

A0.32416.3210

所选截面符合要求。

N

4.10 腹杆E-c

最大内力为-10.4KN,loylox240cm

AN/f10.4103/(215102)0.48cm2

选用2L454(a取8mm),A=2×3.49=6.98cm2,ix1.38cm,iy2.16cm 容许的长细比验算:

xlox/ix240/1.38173.9350

yloy/iy240/2.16111.1350

强度和刚度验算:

10.410322

14.9N/mmf215N/mm2

A6.9810

所选截面符合要求。

N

5 节点设计

用E43焊条时,角焊缝的抗拉抗压和抗剪强度设计值ffw160N/mm2。 由书本可知角钢焊缝内力分配系数。对于等肢角钢一肢相连的情况

k10.7,k20.3;对于不等肢角钢短肢相连,k10.75,k20.25。

焊缝实际长度:l

k1k2N

2hf w

20.7hfff

计算长度:lwl2hf

肢背处焊缝面积:hflw

k1N

w

20.7ffk2N

w

20.7ff

肢尖处焊缝面积:hflw

由于此设计中上弦杆采用短肢相并,腹杆与下弦杆采用等边角钢相连。 根据以上公式可求得下表:

表3 焊缝计算表

5.1 下弦节点b

由上表3可知,Bb杆肢背焊缝为5-90,肢尖焊缝为4-90;Db杆肢背焊缝为5-90,肢尖焊缝为5-90,Cb杆肢背焊缝为5-90,肢尖焊缝为4-90。

根据求得的焊缝长度,比考虑到杆件肢尖应有的间隙以及制作装配等误差,那比例绘出节点详图(如下图5所示),可得到节点板的尺寸为440mm220mm。

下弦杆与节点板的焊缝连接长度为440mm,hf5mm,焊缝承受的力为左右两下弦杆的内力差△NN2N1161.7395.1566.58KN 验算肢背焊缝强度

k1△N0.766.5810315.5N/mm2160N/mm2

20.7hflw20.7544025满足要求。

图5 节点b

5.2 上弦节点B

根据求得的焊缝长度,比考虑到杆件肢尖应有的间隙以及制作装配等误差,那比例绘出节点详图(如下图6所示),可得到节点板的尺寸为510mm240mm。

下弦杆与节点板的焊缝连接长度为510mm,hf5mm,焊缝承受的力为左右两下弦杆的内力差△NN2N1145.0330145.033KN 验算肢背焊缝强度:

P13.2847.56103f10.2N/mm2ffw160N/mm2

f20.7hflw1.2220.75240

△N6M 20.7hl20.7hl

fwfwf

6(145.033103)60145.033103

1.2220.75(51025)220.75(51025)



2

2

22

48.1N/mm2ffw160N/mm2

满足要求。

图6上弦节点B

5.3 上弦节点C

根据求得的焊缝长度,比考虑到杆件肢尖应有的间隙以及制作装配等误差,那比例绘出节点详图(如下图7所示),可得到节点板的尺寸为如图所示。 验算肢背焊缝强度:

P13.2847.56103

f12.2N/mm2ffw160N/mm2

f20.7hflw1.2220.75200

满足要求。

图7 节点C

5.4 上弦节点D

根据求得的焊缝长度,比考虑到杆件肢尖应有的间隙以及制作装配等误差,那比例绘出节点详图(如下图8所示),可得到节点板的尺寸为440mm240mm。

下弦杆与节点板的焊缝连接长度为440mm,hf5mm,焊缝承受的力为左右两下弦杆的内力差△NN2N1157.101145.03312.068KN 验算肢背焊缝强度:

P13.2847.56103f10.2N/mm2ffw160N/mm2

f20.7hflw1.2220.75240

6M

f20.7hfl

△N 20.7hflw



2

2

2

2

6(12.068103)6012.068103

1.2220.75(44025)220.75(44025)



4.86N/mm2ffw160N/mm2

满足要求。

图8 节点D

5.5 下弦节点c

根据求得的焊缝长度,比考虑到杆件肢尖应有的间隙以及制作装配等误差,

那比例绘出节点详图(如下图9所示),可得到节点板的尺寸为450mm230mm。

按等强度设计,设角焊缝焊脚尺寸hf5mm,则接头一侧需要的焊缝计算长度为:

lw

Af858215

82.3mm w

40.7516040.7hfff

拼接角钢的总长度:

l2(lw10)a2(82.310)20204.6mm,取l210mm

拼接角钢需要切去的高度△thf515mm,即剩余竖肢高度为30mm。

图9 节点c

5.6 上弦节点E

角钢肢尖焊缝应取上弦内力的15%进行计算,即△N0.15157.10123.56KN,

N/mm 产生的偏心弯矩:Me△N6023.561031413909

现取节点板尺寸如图所示。

P13.2847.56103

f11.1N/mm2ffw160N/mm2

f20.7hflw1.2220.75220

△N6M 20.7hl220.7hflw

fwf

2

2

6141390923.56103

1.2220.75(20025)220.75(20025)



22

32.73N/mm2ffw160N/mm2

按照等强度设计,设角焊缝焊脚尺寸hf5mm,则接头一侧需要的焊缝计算长度为:

N157.101103

lw70.1mm,取lw80mm w

40.7516040.7hfff

拼接角钢的总长度:

l2(lw10)a2(8010)50230mm,取l230mm

拼接角钢需要切去的高度△thf518mm,取△=20mm,即剩余竖肢高度为60mm。

图10 节点E

5.7 上弦节点A

根据求得的焊缝长度,比考虑到杆件肢尖应有的间隙以及制作装配等误差,

那比例绘出节点详图(如下图10所示),可得到节点板的尺寸为如图所示。 验算肢背焊缝强度:

P13.2847.560.5103

f10.17N/mm2ffw160N/mm2

f20.7hflw1.2220.75120

图11 节点A

5.8 支座设计

为便于施焊,下弦杆角钢水平肢的底面与支座底板的净距离取140mm,在节点中心线上设置加劲肋,加劲肋的高度与节点板的高度相等,厚度取12mm。

(1)支座底板的计算

支座反力:R(0.9840.70)1860.590.9KN

mm2 支座底板的平面尺寸采用210mm200mm42000

验算铸顶混凝土的抗压强度:

R90.9103

2.16N/mm2fc12.5N/mm2

An42000

(式中fc—混凝土强度设计值。对C25混凝土,fc12.5N/mm2)。

底板的厚度按屋架反力作用下的弯矩计算节点板和加劲肋将底板分成四块,

每块板为相邻边支撑而另两边自由的板,求每块板的单位宽度的最大弯矩。

底板下的平均应力2.16N/mm2

两支承边的对角线长度:

a1(10010/2)21002138mm,根据几何关系,有b169mm

Ma120.06022.1613822476N/mm2 底板厚度t6M624768.3mm,取t20mm f215

(2)加劲肋与节点板的连接焊缝计算

偏于安全的假定一个加劲肋的受力为屋架反力的1/4,即:则焊缝内力为:V22.725KN,

MVe22.725(4020)1363.5kNmm R22.725KN,4

设焊缝hf5mm,焊缝计算长度:lw410202hf378mm 则焊缝应力为:

6MV 20.7hl220.7hflwfwf22

613655001.2220.75(378)2222.72510320.75378 2

10.9N/mm2ffw160N/mm2

(3)节点板、加劲肋和底板的连接焊缝计算

设焊缝传递的全部支座反力R90.9kN,其中每块加劲肋个传递RR22.725KN,节点板传递45.45KN。 42

节点板与底板的连接焊缝长度hw2(20025)380mm,去焊缝尺寸为hf5mm,则

R/245.45103

f34.17N/mm2160N/mm2 0.7lwhf0.75380

加劲肋与底板的焊缝尺寸,取hf5mm,则

17

R/422.725103

f46.38N/mm2160N/mm2

0.7

lw2hf0.752(1002025)

图12 支座节点

6 主要参考资料

1.曹平周,朱召泉主编,钢结构(第三版),中国电力出本社,2007

2.陈绍蕃主编,钢结构(第二版),中国建筑工业出版社,2007

3.鲁屏宇主编,工程图学(第二版),机械工业出版社,2009 18

钢结构课程设计

学生姓名: 学 号:

所在学院:机电工程学院 专业班级: 指导教师:

2013年7月

《钢结构设计》课程设计任务书

1. 课程设计题目 普通钢屋架设计 2. 课程设计的目的和要求

课程设计的目的是加深学生对钢结构课程理论基础的认识和理解,并学习运用这些理论知识来指导具体的工程实践,通过综合运用本课程所学知识完成普通钢屋架这一完整结构的设计计算和施工图的绘制等工作,帮助学生熟悉设计的基本步骤,掌握主要设计过程的设计内容和计算方法,培养学生一定的看图能力和工程图纸绘制的基本技能,提高学生分析和解决工程实际问题的能力。 3. 课程设计内容和基本参数(各人所取参数应有不同)

(1)结构参数: 屋架跨度18m,屋架间距6m, 屋面坡度1/10 (2)屋面荷载标准值(kN/m2)

(3)荷载组合 1)全跨永久荷载+全跨可变荷载

2)全跨永久荷载+半跨可变荷载

(4)材料 钢材Q235B.F,焊条E43型。

屋面材料采用1.5m×6.0m太空轻质大型屋面板。

4. 设计参考资料(包括课程设计指导书、设计手册、应用软件等)

(1)曹平周,钢结构,科学文献出版社。

(2)陈绍蕃,钢结构(下)房屋建筑钢结构设计,中国建筑工业出版社。 5. 课程设计任务

完成普通钢屋架的设计计算及施工图纸绘制,提交完整规范的设计技术文档。

5.1设计说明书(或报告)

(1)课程设计计算说明书记录了全部的设计计算过程,应完整、清楚、正确。

(2)课程设计计算说明书应包括屋架结构的腹杆布置,屋架的内力计算,杆件的设计计算、节点的设计计算等内容。

5.2技术附件(图纸、源程序、测量记录、硬件制作)

(1)施工图纸应包括杆件的布置图、节点构造图,材料明细表等内容。 (2)图面布置要求合理,线条清楚,表达正确。 5.3图样、字数要求

(1)课程设计计算说明书应装订成一册,包括封面、目录、课程设计计算说明书正文、参考文献等部分内容。

(2)课程设计计算说明书可以采用手写。

(3)施工图纸要求采用AutoCAD绘制或者手工绘制。 6. 工作进度计划(19周~20周)

目 录

1、设计资料„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„1 2、屋架形式、几何尺寸及支撑布置„„„„„„„„„„„„„„„„„„„„„„„„1 3、荷载和内力计算„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„1 3.1荷载计算„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„1 3.2荷载组合„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„2 3.3内力计算„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„2 4、杆件截面计算„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„3 4.1上弦„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„4 4.2下弦„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„5 4.3腹杆A-a与I-e„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„6 4.4腹杆B-a与H-e „„„„„„„„„„„„„„„„„„„„„„„„„„„„„6 4.5腹杆B-b与H-d „„„„„„„„„„„„„„„„„„„„„„„„„„„„„6 4.6腹杆C-b与G-d „„„„„„„„„„„„„„„„„„„„„„„„„„„„„7 4.7腹杆D-b与F-d „„„„„„„„„„„„„„„„„„„„„„„„„„„„„7 4.8腹杆D-c „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„8 4.9腹杆F-c „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„8 4.10腹杆E-c„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„9 5、节点设计„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„9 5.1下弦节点b„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„10 5.2上弦节点B „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„11 5.3上弦节点C „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„12 5.4上弦节点D „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„13 5.5下弦节点c „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„13 5.6上弦节点E „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„14 5.7上弦节点A „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„15 5.8支座设计 „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„16 6、主要参考资料 „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„18

1. 设计资料

(1)结构参数:屋架跨度18m,屋架间距6m, 屋面坡度1/10

(2)屋面荷载标准值(kN/m2)可变荷载:0.4KN/m2 永久荷载:0.82 KN/m2 (3)荷载组合:1)全跨永久荷载+全跨可变荷载

2)全跨永久荷载+半跨可变荷载

(4)材料:钢材Q235B.F,焊条E43型

屋面材料采用1.5m×6.0m太空轻质大型屋面板

2. 屋架形式、几何尺寸及支撑布置

梯形屋架上弦较平坦,适合于采用压型钢板和大型钢筋混凝土面板,薄坡度一般在1/12~1/8之间,依据题意要求选择了梯形屋架,其中屋架的跨度L为18m,又因为H(1/10~1/6)L,H0(1/16~1/10)L,取H2.4m,H01.5m。其余杆件尺寸如下图所示:

图1屋架结构图

图2屋架尺寸及内力图

3.荷载和内力计算 3.1 荷载计算

可变荷载:0.4kN/m2 永久荷载:0.82 KN/m2

恒载计算:恒载设计值按分项系数1.2为q10.821.20.984 KN/m2,节点载荷p162.25q113.284KN

活载计算:分项系数

1.4,活载q20.51.40.70 KN/m2,

p262.25q27.56KN

3.2 荷载组合

(1)全跨永久荷载+全跨可变荷载 (2)全跨永久荷载+半跨可变荷载

3.3.内力计算

组合分为全跨活载荷和半跨活载荷两种情形,求这两种情形的内力系数的单位荷载见图3与图4,其中“恒+全”一栏所列数值表示恒载与全跨活载的组合值,而“恒+半”一栏所列数值表示恒载与半跨活载的组合值。

图3计算内力系数的全跨荷载

图4计算内力系数的半跨荷载

表1屋架内力组合表

4. 杆件截面选择

腹杆最大内力161.7286KN(压)由屋架节点板厚度参考表可知支座支节点板厚度取8mm。

杆件截面选择见下表2

表2 屋架杆件截面选择表

4.1 上弦

整个上弦不改变截面,按最大内力计算。

最大内力为-157.1KN,lox2261mm,则平面外计算长度:

N2145.03

loyl1.0750.2545220.750.215.14mm 4435N1157.10loy/lox4435014/22611.96

若获得平面xyz,则应有ly/lx1.86,选用两不等肢角钢短肢相并比较适当。

假定没有相似资料参照,故先设以帮助选择截面。设70,属于轴心压杆b类,有书上附录查得0.751。取强度设计值f=215 KN/m2,根据所设的,

截面应该有

AN1/f157.1103/(0.751215102)9.73cm2

ixlox/iy226.1/703.23cm,iy应大于loy/443.5/706.34cm,节点板厚度8mm,有型钢表查得2L125808(取a=8mm),并由短肢相并构成压杆,查得A=2×16=32cm2,ix2.28cm,iy6.0cm,用实际截面验算。

yloy/iy443.5/673.9xlox/ix99.2150(容许长细比)

边,

双可

取角

,,

b1/t12.5/0.8160.56443.5/12.519.9yzx73.9

maxx,yzx99.2,查得0.560,

N1157.110322

87.7N/mmf215N/mm2

A0.5603210

所选截面合适。

4.2 下弦

整个下弦杆采用同一截面,按最大内力计算。 最大内力为161.7KN,loylox450cm

AN1/f161.7103/(215102)7.52cm2

选用2L455(a取8mm),A=2×4.29=8.58cm2,ix1.37cm,iy2.18cm 强度和刚度验算:

NAb161.7103

188.5N/mm2f215N/mm2 2

An8.5810

容许的长细比验算:

xlox/ix450/1.37328.5350

yloy/iy450/2.18206.4350

所选截面符合要求。

4.3 腹杆A-a与I-e

最大内力为-10.42KN,loylox150cm

AN/f10.42103/(215102)0.484cm2

选用2L454(a取8mm),A=2×3.49=6.98cm2,ix1.38cm,iy2.16cm 容许的长细比验算:

xlox/ix150/1.38108.7150

yloy/iy150/2.1669.4150

强度和刚度验算:

根据108.7查得0.501

10.410322

29.7N/mmf215N/mm2

A0.5016.9810

所选截面符合要求。

N

4.4 腹杆B-a与H-e

最大内力为-119.9KN,loylox271.8cm

AN/f119.9103/(215102)5.58cm2

选用2L706(a取8mm),A=2×8.16=16.32cm2,ix2.15cm,iy3.19cm 容许的长细比验算:

xlox/ix271.8/2.15126.4150

yloy/iy271.8/3.1985.2150

强度和刚度验算:

根据126.4查得0.404

119.9103

181.8N/mm2f215N/mm2 2

A0.40416.3210

所选截面符合要求。

N

4.5 腹杆B-b与H-d

最大内力为61.9KN,loylox283.5cm

AN/f61.9103/(215102)2.28cm2

选用2L454(a取8mm),A=2×3.49=6.98cm2,ix1.38cm,iy2.16cm 容许的长细比验算:

xlox/ix283.5/1.38205.4350

yloy/iy283.5/2.16131.3350

强度和刚度验算:

61.9103

88.7N/mm2f215N/mm2 2

A6.9810

所选截面符合要求。

N

4.6 腹杆C-b与G-d

最大内力为-20.8KN,loylox195cm

AN/f20.8103/(215102)0.96cm2

选用2L454(a取8mm),A=2×3.49=6.98cm2,ix1.38cm,iy2.16cm 容许的长细比验算:

xlox/ix195/1.38141.3150

yloy/iy195/2.1690.3150

强度和刚度验算:

根据141.3查得0.340

20.810322

8.76N/mmf215N/mm2

A0.3406.9810

所选截面符合要求。

N

4.7 腹杆D-b与F-d

最大内力为-24.2KN,loylox312.9cm

AN/f24.2103/(215102)1.12cm2

选用2L706(a取8mm),A=2×8.16=16.32cm2,ix2.15cm,iy3.19cm

容许的长细比验算:

xlox/ix312.9/2.15145.5150

yloy/iy312.9/3.1998.1150

强度和刚度验算:

根据145.5查得0.324

24.210322

45.7N/mmf215N/mm2

A0.32416.3210

所选截面符合要求。

N

4.8 腹杆D-c

最大内力为-14.3KN,loylox312.9cm

AN/f14.3103/(215102)0.67cm2

选用2L706(a取8mm),A=2×8.16=16.32cm2,ix2.15cm,iy3.19cm 容许的长细比验算:

xlox/ix312.9/2.15145.5150

yloy/iy312.9/3.1998.1150

强度和刚度验算:

根据145.5查得0.324

14.3103

27.0N/mm2f215N/mm2 2

A0.32416.3210

所选截面符合要求。

N

4.9 腹杆F-c

最大内力为-11.5KN,loylox312.9cm

AN/f11.5103/(215102)0.535cm2

选用2L706(a取8mm),A=2×8.16=16.32cm2,ix2.15cm,iy3.19cm 容许的长细比验算:

xlox/ix312.9/2.15145.5150

yloy/iy312.9/3.1998.1150

强度和刚度验算:

根据145.5查得0.324

11.510322

21.7N/mmf215N/mm2

A0.32416.3210

所选截面符合要求。

N

4.10 腹杆E-c

最大内力为-10.4KN,loylox240cm

AN/f10.4103/(215102)0.48cm2

选用2L454(a取8mm),A=2×3.49=6.98cm2,ix1.38cm,iy2.16cm 容许的长细比验算:

xlox/ix240/1.38173.9350

yloy/iy240/2.16111.1350

强度和刚度验算:

10.410322

14.9N/mmf215N/mm2

A6.9810

所选截面符合要求。

N

5 节点设计

用E43焊条时,角焊缝的抗拉抗压和抗剪强度设计值ffw160N/mm2。 由书本可知角钢焊缝内力分配系数。对于等肢角钢一肢相连的情况

k10.7,k20.3;对于不等肢角钢短肢相连,k10.75,k20.25。

焊缝实际长度:l

k1k2N

2hf w

20.7hfff

计算长度:lwl2hf

肢背处焊缝面积:hflw

k1N

w

20.7ffk2N

w

20.7ff

肢尖处焊缝面积:hflw

由于此设计中上弦杆采用短肢相并,腹杆与下弦杆采用等边角钢相连。 根据以上公式可求得下表:

表3 焊缝计算表

5.1 下弦节点b

由上表3可知,Bb杆肢背焊缝为5-90,肢尖焊缝为4-90;Db杆肢背焊缝为5-90,肢尖焊缝为5-90,Cb杆肢背焊缝为5-90,肢尖焊缝为4-90。

根据求得的焊缝长度,比考虑到杆件肢尖应有的间隙以及制作装配等误差,那比例绘出节点详图(如下图5所示),可得到节点板的尺寸为440mm220mm。

下弦杆与节点板的焊缝连接长度为440mm,hf5mm,焊缝承受的力为左右两下弦杆的内力差△NN2N1161.7395.1566.58KN 验算肢背焊缝强度

k1△N0.766.5810315.5N/mm2160N/mm2

20.7hflw20.7544025满足要求。

图5 节点b

5.2 上弦节点B

根据求得的焊缝长度,比考虑到杆件肢尖应有的间隙以及制作装配等误差,那比例绘出节点详图(如下图6所示),可得到节点板的尺寸为510mm240mm。

下弦杆与节点板的焊缝连接长度为510mm,hf5mm,焊缝承受的力为左右两下弦杆的内力差△NN2N1145.0330145.033KN 验算肢背焊缝强度:

P13.2847.56103f10.2N/mm2ffw160N/mm2

f20.7hflw1.2220.75240

△N6M 20.7hl20.7hl

fwfwf

6(145.033103)60145.033103

1.2220.75(51025)220.75(51025)



2

2

22

48.1N/mm2ffw160N/mm2

满足要求。

图6上弦节点B

5.3 上弦节点C

根据求得的焊缝长度,比考虑到杆件肢尖应有的间隙以及制作装配等误差,那比例绘出节点详图(如下图7所示),可得到节点板的尺寸为如图所示。 验算肢背焊缝强度:

P13.2847.56103

f12.2N/mm2ffw160N/mm2

f20.7hflw1.2220.75200

满足要求。

图7 节点C

5.4 上弦节点D

根据求得的焊缝长度,比考虑到杆件肢尖应有的间隙以及制作装配等误差,那比例绘出节点详图(如下图8所示),可得到节点板的尺寸为440mm240mm。

下弦杆与节点板的焊缝连接长度为440mm,hf5mm,焊缝承受的力为左右两下弦杆的内力差△NN2N1157.101145.03312.068KN 验算肢背焊缝强度:

P13.2847.56103f10.2N/mm2ffw160N/mm2

f20.7hflw1.2220.75240

6M

f20.7hfl

△N 20.7hflw



2

2

2

2

6(12.068103)6012.068103

1.2220.75(44025)220.75(44025)



4.86N/mm2ffw160N/mm2

满足要求。

图8 节点D

5.5 下弦节点c

根据求得的焊缝长度,比考虑到杆件肢尖应有的间隙以及制作装配等误差,

那比例绘出节点详图(如下图9所示),可得到节点板的尺寸为450mm230mm。

按等强度设计,设角焊缝焊脚尺寸hf5mm,则接头一侧需要的焊缝计算长度为:

lw

Af858215

82.3mm w

40.7516040.7hfff

拼接角钢的总长度:

l2(lw10)a2(82.310)20204.6mm,取l210mm

拼接角钢需要切去的高度△thf515mm,即剩余竖肢高度为30mm。

图9 节点c

5.6 上弦节点E

角钢肢尖焊缝应取上弦内力的15%进行计算,即△N0.15157.10123.56KN,

N/mm 产生的偏心弯矩:Me△N6023.561031413909

现取节点板尺寸如图所示。

P13.2847.56103

f11.1N/mm2ffw160N/mm2

f20.7hflw1.2220.75220

△N6M 20.7hl220.7hflw

fwf

2

2

6141390923.56103

1.2220.75(20025)220.75(20025)



22

32.73N/mm2ffw160N/mm2

按照等强度设计,设角焊缝焊脚尺寸hf5mm,则接头一侧需要的焊缝计算长度为:

N157.101103

lw70.1mm,取lw80mm w

40.7516040.7hfff

拼接角钢的总长度:

l2(lw10)a2(8010)50230mm,取l230mm

拼接角钢需要切去的高度△thf518mm,取△=20mm,即剩余竖肢高度为60mm。

图10 节点E

5.7 上弦节点A

根据求得的焊缝长度,比考虑到杆件肢尖应有的间隙以及制作装配等误差,

那比例绘出节点详图(如下图10所示),可得到节点板的尺寸为如图所示。 验算肢背焊缝强度:

P13.2847.560.5103

f10.17N/mm2ffw160N/mm2

f20.7hflw1.2220.75120

图11 节点A

5.8 支座设计

为便于施焊,下弦杆角钢水平肢的底面与支座底板的净距离取140mm,在节点中心线上设置加劲肋,加劲肋的高度与节点板的高度相等,厚度取12mm。

(1)支座底板的计算

支座反力:R(0.9840.70)1860.590.9KN

mm2 支座底板的平面尺寸采用210mm200mm42000

验算铸顶混凝土的抗压强度:

R90.9103

2.16N/mm2fc12.5N/mm2

An42000

(式中fc—混凝土强度设计值。对C25混凝土,fc12.5N/mm2)。

底板的厚度按屋架反力作用下的弯矩计算节点板和加劲肋将底板分成四块,

每块板为相邻边支撑而另两边自由的板,求每块板的单位宽度的最大弯矩。

底板下的平均应力2.16N/mm2

两支承边的对角线长度:

a1(10010/2)21002138mm,根据几何关系,有b169mm

Ma120.06022.1613822476N/mm2 底板厚度t6M624768.3mm,取t20mm f215

(2)加劲肋与节点板的连接焊缝计算

偏于安全的假定一个加劲肋的受力为屋架反力的1/4,即:则焊缝内力为:V22.725KN,

MVe22.725(4020)1363.5kNmm R22.725KN,4

设焊缝hf5mm,焊缝计算长度:lw410202hf378mm 则焊缝应力为:

6MV 20.7hl220.7hflwfwf22

613655001.2220.75(378)2222.72510320.75378 2

10.9N/mm2ffw160N/mm2

(3)节点板、加劲肋和底板的连接焊缝计算

设焊缝传递的全部支座反力R90.9kN,其中每块加劲肋个传递RR22.725KN,节点板传递45.45KN。 42

节点板与底板的连接焊缝长度hw2(20025)380mm,去焊缝尺寸为hf5mm,则

R/245.45103

f34.17N/mm2160N/mm2 0.7lwhf0.75380

加劲肋与底板的焊缝尺寸,取hf5mm,则

17

R/422.725103

f46.38N/mm2160N/mm2

0.7

lw2hf0.752(1002025)

图12 支座节点

6 主要参考资料

1.曹平周,朱召泉主编,钢结构(第三版),中国电力出本社,2007

2.陈绍蕃主编,钢结构(第二版),中国建筑工业出版社,2007

3.鲁屏宇主编,工程图学(第二版),机械工业出版社,2009 18


相关内容

  • 27米钢结构课程设计钢屋架课程设计
  • <钢结构>课程设计指导书 普通钢屋架设计 河南工程学院土木工程学院 2015年12月 普通钢屋架设计指导书 本指导书根据设计任务书提出的设计内容和要求指出了设计中应考虑的原则和应注意的问题,对其中某些问题作了必要的说明.更为一般的设计原理.方法及参考数据,可查阅相关设计手册和规程规范. ...

  • 钢结构屋架计算说明书
  • 课 设 计 说 明 课程名称: 钢 结 构 设计题目: 钢屋架设计 院 系: 土木与建筑工程学院 学生姓名: 学 号: 专业班级: 10土木工程2班 指导教师: 李 珂 2012年12月16 日 程书 课 程 设 计 任 务 书 梯形钢屋架课程设计 摘 要:本设计说明说包括梯形钢屋架的形式及尺寸.支 ...

  • 梯形钢屋架课程设计
  • 目录 一.设计资料 ........................................ 2 二.屋架尺寸及结构形式与选型 ........................ 2 三. 荷载计算 ....................................... 3 1.永久荷 ...

  • 钢结构试题题库
  • 钢结构设计样题 参考资料:魏明钟.钢结构.武汉理工大学.第二版 一.填空题. 1.在设置柱间支撑的开间,应同时设置(屋盖横向支撑),以构成几何不变体系.(Page 246) 2.当横向水平支撑支撑设置在房屋温度区段端部第二个柱间时,在第一个柱间的相应位置应设置(刚性系杆).(Page 219) 3. ...

  • 钢结构屋架设计
  • 普通钢屋架设计 --------焊接梯形钢屋架设计 -.设计资料 1.某一单层单跨工业厂房,总长度为102m,跨度为24m. 2.厂房柱距6m,钢筋混凝土柱,混凝土的强度等级C20,柱头截面为400mm×400mm,屋架采用梯形钢屋架,其两端铰支于钢劲混凝土柱上. 3.车间设有两台中级工作制桥式吊车 ...

  • 21米梯形钢屋架课程设计计算书
  • <钢结构设计>课程设计 姓 名 学 号 专 业 指导老师 1 <钢结构>课程设计任务书 2 一.设计资料: 1.某工业厂房跨度为21m, 厂房总长度72m ,柱距6m . 2.采用1.5m ×6.0m ,预应力钢筋混凝土大型屋面板,Ⅱ级防水,卷材屋面桁架,板厚 100mm , ...

  • 钢结构下册考试知识点汇总
  • <钢结构>下册考试复习考点 第一章 1. 何谓单层门式刚架结构?有哪些特点?合理应用范围(P1-3)?其结构用钢量是多少(P2)? 单层门式钢架结构的组成:单层门式刚架结构是指以轻型焊接H形钢(等截面或变截面).热轧H形钢(等 截面)或冷弯薄壁型钢等构成的实腹式门式刚架或格构式门式刚架作 ...

  • 24m跨厂房普通钢屋架设计
  • 钢结构课程设计 班 级:姓 名:学 号:指导老师: 2012年 建工1003班 刘政华 201030135 周莉莉 1 月 2 日 目录 一.设计资料 .......................................................................... ...

  • 屋盖结构体系分为哪两大类
  • .屋盖结构体系分为哪两大类?各有何适用? 答:屋盖结构体系分为无檩屋盖与有檩屋盖. (1)无檩屋盖:无檩屋盖一般用于预应力混凝土大型屋面板等重型屋面,将屋面板直接放在屋架或天窗架上. 预应力混凝土大型屋面板的跨度通常采用6m,有条件时也可采用12m.当柱距大于所采用的屋面板跨度时,可采用托架支承中间 ...