弦切角定理证明

弦切角定理

编辑本段弦切角定义

顶点在圆上,一边和圆相交,另 一边和圆相切的角叫做弦切角。(弦切角就是切线与弦所夹的角)

如右图所示,直线PT切圆O于点C,BC、AC为圆O的弦,∠TCB,∠TCA,∠PCA,∠PCB都为弦切角。

编辑本段弦切角定理

弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半.弦切角定理证明:

证明一:设圆心为O,连接OC,OB,。

∵∠TCB=90-∠OCB

∵∠BOC=180-2∠OCB

∴,∠BOC=2∠TCB(定理:弦切角的度数等于它所夹的弧所对的圆心角的度数的一半)

∵∠BOC=2∠CAB(圆心角等于圆周角的两倍)

∴∠TCB=∠CAB(定理:弦切角的度数等于它所夹的弧的圆周角)

证明已知:AC是⊙O的弦,AB是⊙O的切线,A为切点,弧是弦切角∠BAC所夹的弧.

求证:(弦切角定理)

证明:分三种情况:

(1)圆心O在∠BAC的一边AC上

∵AC为直径,AB切⊙O于A,

∴弧CmA=弧CA

∵为半圆,

∴∠CAB=90=弦CA所对的圆周角 (2)圆心O在∠BAC的内部.

过A作直径AD交⊙O于D,

若在优弧m所对的劣弧上有一点E

那么,连接EC、ED、EA

则有:∠CED=∠CAD、∠DEA=∠DAB

∴ ∠CEA=∠CAB

∴ (弦切角定理)

(3)圆心O在∠BAC的外部,

过A作直径AD交⊙O于D

那么 ∠CDA+∠CAD=∠CAB+∠CAD=90

∴∠CDA=∠CAB

∴(弦切角定理)

编辑本段弦切角推论

推论内容

若两弦切角所夹的弧相等,则这两个弦切角也相等

应用举例

例1:如图,在Rt△ABC中,∠C=90,以AB为弦的⊙O与AC相切于点A,∠CBA=60° , AB=a 求BC长.

解:连结OA,OB.

∵在Rt△ABC中, ∠C=90

∴∠BAC=30°

∴BC=1/2a(RT△中30°角所对边等于斜边的一半)

例2:如图,AD是ΔABC中∠BAC的平分线,经过点A的⊙O与BC切于点D,与AB,AC分别相交于E,F.

求证:EF∥BC.

证明:连DF.

AD是∠BAC的平分线∠BAD=∠DAC

∠EFD=∠BAD

∠EFD=∠DAC

⊙O切BC于D ∠FDC=∠DAC

∠EFD=∠FDC

EF∥BC

例3:如图,ΔABC内接于⊙O,AB是⊙O直径,CD⊥AB于D,MN切⊙O于C,

求证:AC平分∠MCD,BC平分∠NCD.

证明:∵AB是⊙O直径

∴∠ACB=90

∵CD⊥AB

∴∠ACD=∠B,

∵MN切⊙O于C

∴∠MCA=∠B,

∴∠MCA=∠ACD,

即AC平分∠MCD,

同理:BC平分∠NCD.

弦切角定理

编辑本段弦切角定义

顶点在圆上,一边和圆相交,另 一边和圆相切的角叫做弦切角。(弦切角就是切线与弦所夹的角)

如右图所示,直线PT切圆O于点C,BC、AC为圆O的弦,∠TCB,∠TCA,∠PCA,∠PCB都为弦切角。

编辑本段弦切角定理

弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半.弦切角定理证明:

证明一:设圆心为O,连接OC,OB,。

∵∠TCB=90-∠OCB

∵∠BOC=180-2∠OCB

∴,∠BOC=2∠TCB(定理:弦切角的度数等于它所夹的弧所对的圆心角的度数的一半)

∵∠BOC=2∠CAB(圆心角等于圆周角的两倍)

∴∠TCB=∠CAB(定理:弦切角的度数等于它所夹的弧的圆周角)

证明已知:AC是⊙O的弦,AB是⊙O的切线,A为切点,弧是弦切角∠BAC所夹的弧.

求证:(弦切角定理)

证明:分三种情况:

(1)圆心O在∠BAC的一边AC上

∵AC为直径,AB切⊙O于A,

∴弧CmA=弧CA

∵为半圆,

∴∠CAB=90=弦CA所对的圆周角 (2)圆心O在∠BAC的内部.

过A作直径AD交⊙O于D,

若在优弧m所对的劣弧上有一点E

那么,连接EC、ED、EA

则有:∠CED=∠CAD、∠DEA=∠DAB

∴ ∠CEA=∠CAB

∴ (弦切角定理)

(3)圆心O在∠BAC的外部,

过A作直径AD交⊙O于D

那么 ∠CDA+∠CAD=∠CAB+∠CAD=90

∴∠CDA=∠CAB

∴(弦切角定理)

编辑本段弦切角推论

推论内容

若两弦切角所夹的弧相等,则这两个弦切角也相等

应用举例

例1:如图,在Rt△ABC中,∠C=90,以AB为弦的⊙O与AC相切于点A,∠CBA=60° , AB=a 求BC长.

解:连结OA,OB.

∵在Rt△ABC中, ∠C=90

∴∠BAC=30°

∴BC=1/2a(RT△中30°角所对边等于斜边的一半)

例2:如图,AD是ΔABC中∠BAC的平分线,经过点A的⊙O与BC切于点D,与AB,AC分别相交于E,F.

求证:EF∥BC.

证明:连DF.

AD是∠BAC的平分线∠BAD=∠DAC

∠EFD=∠BAD

∠EFD=∠DAC

⊙O切BC于D ∠FDC=∠DAC

∠EFD=∠FDC

EF∥BC

例3:如图,ΔABC内接于⊙O,AB是⊙O直径,CD⊥AB于D,MN切⊙O于C,

求证:AC平分∠MCD,BC平分∠NCD.

证明:∵AB是⊙O直径

∴∠ACB=90

∵CD⊥AB

∴∠ACD=∠B,

∵MN切⊙O于C

∴∠MCA=∠B,

∴∠MCA=∠ACD,

即AC平分∠MCD,

同理:BC平分∠NCD.


相关内容

  • 弦切角定理的证明
  • 弦切角定理:定义弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半. (弦切角就是切线与弦所夹的角)弦切角定理证明 证明:设圆心为O,连接OC,OB,OA。过点A作TP的平行线交BC于D, 则∠TCB=∠CDA ∵∠TCB=90-∠OCD ∵∠BOC=180-2∠OCD ∴,∠BOC=2∠T ...

  • 弦切角定理证明方法
  • (1)连OC、OA,则有OC⊥CD于点C。得OC‖AD,知∠OCA=∠CAD。 而∠OCA=∠OAC,得∠CAD=∠OAC。进而有∠OAC=∠BAC。 由此可知,0A与AB重合,即AB为⊙O的直径。 (2)连接BC,且作CE⊥AB于点E。立即可得△ABC为Rt△,且∠ACB=Rt∠。 由射影定理有A ...

  • 三角形射影定理
  • 几何证明 射影就是正投影,从一点到过顶点垂线垂线的垂足,叫做这点在这条直线上的正投影.一条线段的两个端点在一条直线上的正投影之间的线段,叫做这条线段在这直线上的正投影,即射影定理. 直角三角形射影定理 直角三角形射影定理):直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项.每一条直角边是这条 ...

  • 圆中有关定理
  • 切线长定理.弦切角定理.切割线定理.相交弦定理 以及与圆有关的比例线段 1.切线长概念 切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,"切线长"是切线上一条线段的长,具有数量的特征,而"切线"是一条直线,它不可以度量长度. 2.切线长定理 如 ...

  • 九年级数学弦切角及和圆有关的比例线段
  • 初三数学弦切角及和圆有关的比例线段知识精讲 一. 本周教学内容: 弦切角及和圆有关的比例线段 二. 重点.难点: 1. 弦切角的概念: 顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角. 注意:弦切角必须具备三个条件:(1)顶点在圆上(切点),(2)一边和圆相切,(3)一边和圆相交(弦),三者 ...

  • 圆的重要定理
  • 切线长定理.弦切角定理.切割线定理.相交弦定理 以及与圆有关的比例线段 [课前测试] 1. PT切⊙O于T ,CT 为直径,D 为OC 上一点,直线PD 交⊙O于B 和A ,B 在线段PD 上,若CD =2,AD =3,BD =4,则PB 等于( ) A. 20 B. 10 C. 5 D. [知识点 ...

  • 初中数学定理证明
  • 数学定理 三角形三条边的关系 定理:三角形两边的和大于第三边 推论:三角形两边的差小于第三边 三角形内角和 三角形内角和定理 三角形三个内角的和等于180° 推论1 直角三角形的两个锐角互余 推论2 三角形的一个外角等于和它不相邻的两个内角和 推论3 三角形的一个外角大雨任何一个和它不相邻的内角 角 ...

  • 切割线定理
  • 切割线定理 切割线定理是指从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.也是圆幂定理之一. 我在<证明--切割线定理>一文中使用勾股定理求证,比较烦琐. 现在我不依靠切割线定理证了弦切角定理(过程在这里),就可以利用弦切角定理证明切割线定理. 如图所示. ...

  • 初三数学圆教案
  • 初三数学 圆教案 一.本章知识框架 二.本章重点 1.圆的定义: (1)线段OA 绕着它的一个端点O 旋转一周,另一个端点A 所形成的封闭曲线,叫做圆. (2)圆是到定点的距离等于定长的点的集合. 2.判定一个点P 是否在⊙O 上. 设⊙O 的半径为R ,OP =d ,则有 d>r点P 在⊙O ...