陕西省基础教育课程改革实验区 2007 年 初 中 毕 业 学 业 考 试
数 学 试 卷
第Ⅰ卷(选择题 共30分)
一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的) 1.2的相反数为( ) A.2
B.2
C.
12
D.
12
2.下面四个图形中,经过折叠能围成如图只有三个面上印有图案的正方体纸盒的是( )
(第2题图)
A. B. D.
3.不等式组
x
20,3x≥0
的解集是( )
A.
2≤x≤3 B.x2,或x≥3 C.2x3 D.2x≤3
4.将我省某日11个市、区的最高气温统计如下: 最高气温 10℃ 14℃ 21℃ 22℃ 23℃ 24℃ 25℃ 26℃
1 1 3 1 1 2 1 1 市、区个数
该天这11个市、区最高气温的平均数和众数分别是( ) A.21℃,21℃ B.20℃,21℃ C.21℃,22℃ D.20℃,22℃
5.中国人民银行宣布,从2007年6月5日起,上调人民币存款利率,一年定期存款利率上调到3.06%.某人于2007年6月5日存入定期为1年的人民币5000元(到期后银行将扣除20%的利息锐).设到期后银行应向储户支付现金x元,则所列方程正确的是( ) A.x500050003.06%
B.x500020%5000(13.06%) C.x50003.06%20%5000(13.06%) D.x50003.06%20%50003.06% 6.如图,圆与圆之间不同的位置关系有( ) A.2种 B.3种 C.4种 D.5种
Page 1
(第6题图)5/14/2013
7.如图,一次函数图象经过点A,且与正比例函数yx的 图象交于点B,则该一次函数的表达式为( ) A.yx2 C.yx2
2
B.yx2 D.yx2
(第7题图)
8.抛物线yx4x7的顶点坐标是( ) A.(2,11)
B.(2,7)
C.(2,11)
D.(2,3)
C
(第9题图)
9.如图,在矩形ABCD中,E为CD的中点,连接AE并 延长交BC的延长线于点F,则图中全等的直角三角形共有( )
A.3对 B.4对
C.5对 D.6对
10.如图,在等边△ABC中,AC9,点O在AC上, 且AO3,点P是AB上一动点,连结OP,将线段OP 绕点O逆时针旋转60得到线段OD.要使点D恰好落在
BC上,则AP的长是( )
A.4
B.5
C.6
D.8
(第10题图)
第Ⅱ卷(非选择题 共90分)
二、填空题(共6小题,每小题3分,计18分) 11.计算:(3xy)
2
12
xy 3
12.在△ABC的三个顶点A(2,3,)B(,4,5)C(,3中2,可能在反比例函数
y
kx
(k0)的图象上的点是
13.如图,ABC50,AD垂直平分线段BC于点D,ABC的 平分线BE交AD于点E,连结EC,则AEC的度数是 .
Page 2
(第13题图)
5/14/2013
14.选作题(要求在(1)、(2)中任选一题作答) ...(1)用计算器计算:3sin38(结果保留三个有效数字).
(2)小明在楼顶点A处测得对面大楼楼顶点C处的 仰角为52,楼底点D
处的俯角为13.若两座楼AB与
CD相距60米,则楼CD的高度约为
(结果保留三个有效数字).
(第14题图)
(sin130.2250,cos130.9744,tan130.2309
,sin520.7880,cos520.6157
tan521.2799)
15.小说《达芬奇密码》中的一个故事里出现了一串神密排列的数,将这串令人费解的数按从小到大的顺序排列为:11,,2,3,5,8,…,则这列数的第8
个数是 . 16.如图,要使输出值y大于100,则输入的最小正整数x是.
三、解答题(共9小题,计72分.解答应写出过程) 17.(本题满分5分) 设A
(第16题图)
xx1
,B
3x1
2
1,当x为何值时,A与B的值相等?
18.(本题满分6分)
如图,横、纵相邻格点间的距离均为1个单位.
(1)在格点中画出图形ABCD先向右平移6个单位,再向上平移2个单位后的图形; (2)请写出平移前后两图形应对点之间的距离.
5/14/2013
(第18题图)
19.(本题满分7分)
如图,在梯形ABCD中,AB∥DC,DA⊥AB,B45,
延长CD到点E,使DEDA,连接AE. (1)求证:AE∥BC;
(2)若AB3,CD1,求四边形ABCE的面积.
20.(本题满分8分)
(第19题图)
2006年,全国30个省区市在我省有投资项目,投资金额如下表:
省区市 广东 福建 北京 浙江 其它
124 67 66 47 119 金额(亿元)
根据表格中的信息解答下列问题:
(1)求2006年外省区市在陕投资总额; (2)补全图①中的条形统计图;
(3)2006年,外省区投资中有81亿元用于西安高新技术产业开发区,54亿元用于西安经济技术开发区,剩余资金用于我省其它地区.请在图②中画出外省区市在我省投资金额使用情况的扇形统计图(扇形统计图中的圆心角精确到1,百分比精确到1%).
2006年外省区市在陕投资金额统计图 2006年外省区市
在陕投资金额使用情况统计图
东建京江它
图②
图①
21.(本题满分8分) (第20题图)
为了迎接暑期旅游,某旅行社推出了一种价格优惠方案:从现在开始,各条旅游线路的价格每人y(元)是原来价格每人x(元)的一次函数.现知道其中两条旅游线路原来旅游价格分别为每人2100元和2800元,而现在旅游的价格分别为每人1800元和2300元. (1)求y与x的函数关系式(不要求写出x的取值范围); (2)王老师想参加该旅行社原价格为5600元的一条线路的 暑期旅游,请帮王老师算出这条线路的价格. 22.(本题满分8分) 在下列直角坐标系中, (1)请写出在ABCD内(不包括边界)横、纵坐标均为 .整数的点,且和为零的点的坐标; (2)在ABCD内(不包括边界)任取一个横、纵坐标均为 .整数的点,求该点的横、纵坐标之和为零的概率.
Page 4
(第225/14/2013 题图)
23.(本题满分8分)
如图,AB是半圆O的直径,过点O作弦AD的垂线交切线AC于点C,OC与半圆O交
C 于点E,连结BE,DE.
(1)求证:BEDC;
(2)若OA5,AD8,求AC的长.
E D
B O
24.(本题满分10分) 如图,在直角梯形OBCD中,OB8,BC1,CD10.
(1)求C,D两点的坐标;
(2)若线段OB上存在点
P,使PD
⊥PC,求过D,P,
三点的抛物线的表达式.
25.(本题满分12分)
(第24题图) 如图,O的半径均为R.
(1)请在图①中画出弦AB,CD,使图①为轴对称图形而不是中心对称图形;请在图②中..画出弦
AB,CD,使图②仍为中心对称图形;
(2)如图③,在O中,ABCDm(0m2R),且AB与CD交于点E,夹角为锐角.求四边形ACBD面积(用含m,的式子表示); (3)若线段AB,CD是O的两条弦,且ABCD
,你认为在以点A,B,C,D
为顶点的四边形中,是否存在面积最大的四边形?请利用图④说明理由.
(第25题图①) (第25题图②) (第25题图③) (第25题图④)
Page 5
5/14/2013
陕西省基础教育课程改革实验区2007年初中毕业学业考试
数 学 答案及评分标准
一、选择题
1.A 2.B 3.D 4.A 5.C 6.C 7.B 8.A 9.B 10.C 二、填空题
11.xy 12.B 13.115°(填115不扣分) 14.(1)0.433 (2)90.6 15.21 16.21 三、解答题
17.解:当AB时,
3
3
xx1
3x1
2
1.
xx1
3(x1)(x1)
···································································································· 1分 1.·
方程两边同时乘以(x1)(x1),得
······························································································· 2分 x(x1)3(x1)(x1). ·
x2x3x21.
·································································································································· 3分 x2. ·
检验:当x2时,(x1)(x1)30.
··································································································· 4分 ∴x2是分式方程的根. ·
因此,当x2时,AB. ································································································· 5分 18.解:(1)画图正确得4分.
(第18题答案图)
Page 6
5/14/2013
(2
)个单位. ············································································································· 6分 19.解:(1)证明:∵AB∥DC,DAAB,B45°,
································································································ 1分 ∴C135°,DADE.·
又∵DEDA,
······················································································································ 2分 ∴E45°. ·
·········································································································· 3分 ∴CE180°. ·
······················································································································ 4分 ∴AE∥BC. ·
(2)解:∵AE∥BC,CE∥AB,
························································································· 5分 ∴四边形ABCE是平行四边形. ·
∴CEAB3.
···························································································· 6分 ∴DADECECD2. ·
∴SABCECE·AD326. ························································································ 7分
20.解:(1)2006年外省区市在陕投资总额为:
. ··········································································· 2分 124676647119423(亿元)
(2)如图①所示. ················································································································· 5分 2006年外省区市在陕投资金额计图 2006年外省区市
在陕投资金额使用情况统计图
13%
西安高新技术 19%
省区 市
东建京江它
(第20题答案图①) (第20题答案图②)
(3)如图②所示. ················································································································· 8分 21.解:(1)设y与x的函数关系式为ykxb, ·························································· 1分
由题意,得
2100kb1800,
2800kb2300,
··························································································· 3分
5
k,
解之,得··············································································································· 5分 7 ·
b300.
∴y与x的函数关系式为y
57
·········································································· 6分 x300. ·
Page 7 5/14/2013
(2)当x5600时,y
57
···················································· 7分 56003004300元. ·
········································································· 8分 ∴王老师旅游这条线路的价格是4300元. ·
22.解:(1)(11)····················································································· 3分 ,,,,,(00)(11). ·(2)∵在ABCD内横、纵坐标均为整数的点有15个,
其中横、纵坐标和为零的点有3个, ···················································································· 6分
∴P
315
15
. ····················································································································· 8分
23.解:(1)证明:∵AC是O的切线,AB是O直径,
∴ABAC. 则1290°. ················································································································ 1分 又∵OCAD,
············································································································· 2分 ∴1C90°. ······················································································································· 3分 ∴C2. ·
而BED2,
················································································································ 4分 ∴BEDC. ·
(2)解:连接BD. C ∵AB是O直径, ∴ADB90°.
E
D
O
(第23题答案图)
B
∴BD
6. ··········································································· 5分
········································································································ 6分 ∴△OAC∽△BDA. ·
∴OA:BDAC:DA. 即5:6AC:8. ·················································································································· 7分
20
. ························································································································ 8分 ∴AC3
24.解:(1)过点C作CEOD于点E,则四边形OBCE为矩形.
∴CEOB8,OEBC1.
∴DE6.
∴ODDEOE7.
Page 8
(第24题答案图)
5/14/2013
···································································· 4分 1)D(0,7). ∴C,D两点的坐标分别为C(8,,(2)∵PCPD,
∴1290°. 又1390°, ∴23.
∴Rt△POD∽Rt△CBP.∴PO:CBOD:BP.
即PO:17:(8PO).
∴PO28PO70.
∴PO1,或PO7.
······················································································ 6分 0). ·0),或(7,∴点P的坐标为(1,①当点P的坐标为(1,0)时,
设经过D,P,C三点的抛物线表达式为yaxbxc,
2
25a,28
c7,
221
,则abc0, ∴b 2864a8bc1.
c7.
∴所求抛物线的表达式为:y
②当点P为(7,0)时,
2528
x2
22128
·························································· 9分 x7.
设经过D,P,C三点的抛物线表达式为yaxbxc,
2
1
a,4c7,
11
则49a7bc0, ∴b,
464a8bc1.
c7.
∴所求抛物线的表达式为:y
14
x2
114
··························································· 10分 x7. ·
(说明:求出一条抛物线表达式给3分,求出两条抛物线表达式给4分)
25.解:(1)答案不唯一,如图①、②(只要满足题意,画对一个图形给2分,画对两个给3分)
Page
5/14/2013
················································································································································· 3分 (2)过点A,B分别作CD的垂线,垂足分别为M,N.
∵S△ACD
12
CD·AM
12
CD·AE·sin,
S△BCD
12
CD·BN
12
············································································ 5分 CD·BE·sin. ·
∴S四边形ACBDS△ACDS△BCD
1212
1212
CD·AE·sin
12
CD·BE·sin
CD·(AEBE·)sin CD·AB·sin
··········································· 7分 m2sin.
(第25题答案图③)
(3)存在.分两种情况说明如下: ···················································································· 8分 ①当AB与CD相交时,
由(2
)及ABCD
知S四边形ACBD
12
······················ 9分 AB·CD·sinR2sin. ·
②当AB与CD不相交时,如图④
∵ABCD,OCODOAOBR,
∴AOBCOD90°,
而S四边形ABCDSRt△AOBSRt△OCDS△AODS△BOC
RS△AODS△BOC
2
(第25题答案图④)
. ····································································································· 10分
延长BO交O于点E,连接EC,则132390°.
∴12.
∴△AOD≌△COE.
∴S△AODS△OCE.
Page 10
5/14/2013
www.5151edu.com
∴S△AODS△BOCS△OCES△BOCS△BCE.
过点C作CHBE,垂足为H, 则S△BCE12BE·CHR·CH.
··········································································· 11分 ∴当CHR时,S△BCE取最大值R2. ·
综合①、②可知,当1290°,即四边形ABCD
的正方形时, S四边形ABCDR2R22R2为最大值. ············································································· 12分
www.5151edu.com
Page 11 5/14/2013
陕西省基础教育课程改革实验区 2007 年 初 中 毕 业 学 业 考 试
数 学 试 卷
第Ⅰ卷(选择题 共30分)
一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的) 1.2的相反数为( ) A.2
B.2
C.
12
D.
12
2.下面四个图形中,经过折叠能围成如图只有三个面上印有图案的正方体纸盒的是( )
(第2题图)
A. B. D.
3.不等式组
x
20,3x≥0
的解集是( )
A.
2≤x≤3 B.x2,或x≥3 C.2x3 D.2x≤3
4.将我省某日11个市、区的最高气温统计如下: 最高气温 10℃ 14℃ 21℃ 22℃ 23℃ 24℃ 25℃ 26℃
1 1 3 1 1 2 1 1 市、区个数
该天这11个市、区最高气温的平均数和众数分别是( ) A.21℃,21℃ B.20℃,21℃ C.21℃,22℃ D.20℃,22℃
5.中国人民银行宣布,从2007年6月5日起,上调人民币存款利率,一年定期存款利率上调到3.06%.某人于2007年6月5日存入定期为1年的人民币5000元(到期后银行将扣除20%的利息锐).设到期后银行应向储户支付现金x元,则所列方程正确的是( ) A.x500050003.06%
B.x500020%5000(13.06%) C.x50003.06%20%5000(13.06%) D.x50003.06%20%50003.06% 6.如图,圆与圆之间不同的位置关系有( ) A.2种 B.3种 C.4种 D.5种
Page 1
(第6题图)5/14/2013
7.如图,一次函数图象经过点A,且与正比例函数yx的 图象交于点B,则该一次函数的表达式为( ) A.yx2 C.yx2
2
B.yx2 D.yx2
(第7题图)
8.抛物线yx4x7的顶点坐标是( ) A.(2,11)
B.(2,7)
C.(2,11)
D.(2,3)
C
(第9题图)
9.如图,在矩形ABCD中,E为CD的中点,连接AE并 延长交BC的延长线于点F,则图中全等的直角三角形共有( )
A.3对 B.4对
C.5对 D.6对
10.如图,在等边△ABC中,AC9,点O在AC上, 且AO3,点P是AB上一动点,连结OP,将线段OP 绕点O逆时针旋转60得到线段OD.要使点D恰好落在
BC上,则AP的长是( )
A.4
B.5
C.6
D.8
(第10题图)
第Ⅱ卷(非选择题 共90分)
二、填空题(共6小题,每小题3分,计18分) 11.计算:(3xy)
2
12
xy 3
12.在△ABC的三个顶点A(2,3,)B(,4,5)C(,3中2,可能在反比例函数
y
kx
(k0)的图象上的点是
13.如图,ABC50,AD垂直平分线段BC于点D,ABC的 平分线BE交AD于点E,连结EC,则AEC的度数是 .
Page 2
(第13题图)
5/14/2013
14.选作题(要求在(1)、(2)中任选一题作答) ...(1)用计算器计算:3sin38(结果保留三个有效数字).
(2)小明在楼顶点A处测得对面大楼楼顶点C处的 仰角为52,楼底点D
处的俯角为13.若两座楼AB与
CD相距60米,则楼CD的高度约为
(结果保留三个有效数字).
(第14题图)
(sin130.2250,cos130.9744,tan130.2309
,sin520.7880,cos520.6157
tan521.2799)
15.小说《达芬奇密码》中的一个故事里出现了一串神密排列的数,将这串令人费解的数按从小到大的顺序排列为:11,,2,3,5,8,…,则这列数的第8
个数是 . 16.如图,要使输出值y大于100,则输入的最小正整数x是.
三、解答题(共9小题,计72分.解答应写出过程) 17.(本题满分5分) 设A
(第16题图)
xx1
,B
3x1
2
1,当x为何值时,A与B的值相等?
18.(本题满分6分)
如图,横、纵相邻格点间的距离均为1个单位.
(1)在格点中画出图形ABCD先向右平移6个单位,再向上平移2个单位后的图形; (2)请写出平移前后两图形应对点之间的距离.
5/14/2013
(第18题图)
19.(本题满分7分)
如图,在梯形ABCD中,AB∥DC,DA⊥AB,B45,
延长CD到点E,使DEDA,连接AE. (1)求证:AE∥BC;
(2)若AB3,CD1,求四边形ABCE的面积.
20.(本题满分8分)
(第19题图)
2006年,全国30个省区市在我省有投资项目,投资金额如下表:
省区市 广东 福建 北京 浙江 其它
124 67 66 47 119 金额(亿元)
根据表格中的信息解答下列问题:
(1)求2006年外省区市在陕投资总额; (2)补全图①中的条形统计图;
(3)2006年,外省区投资中有81亿元用于西安高新技术产业开发区,54亿元用于西安经济技术开发区,剩余资金用于我省其它地区.请在图②中画出外省区市在我省投资金额使用情况的扇形统计图(扇形统计图中的圆心角精确到1,百分比精确到1%).
2006年外省区市在陕投资金额统计图 2006年外省区市
在陕投资金额使用情况统计图
东建京江它
图②
图①
21.(本题满分8分) (第20题图)
为了迎接暑期旅游,某旅行社推出了一种价格优惠方案:从现在开始,各条旅游线路的价格每人y(元)是原来价格每人x(元)的一次函数.现知道其中两条旅游线路原来旅游价格分别为每人2100元和2800元,而现在旅游的价格分别为每人1800元和2300元. (1)求y与x的函数关系式(不要求写出x的取值范围); (2)王老师想参加该旅行社原价格为5600元的一条线路的 暑期旅游,请帮王老师算出这条线路的价格. 22.(本题满分8分) 在下列直角坐标系中, (1)请写出在ABCD内(不包括边界)横、纵坐标均为 .整数的点,且和为零的点的坐标; (2)在ABCD内(不包括边界)任取一个横、纵坐标均为 .整数的点,求该点的横、纵坐标之和为零的概率.
Page 4
(第225/14/2013 题图)
23.(本题满分8分)
如图,AB是半圆O的直径,过点O作弦AD的垂线交切线AC于点C,OC与半圆O交
C 于点E,连结BE,DE.
(1)求证:BEDC;
(2)若OA5,AD8,求AC的长.
E D
B O
24.(本题满分10分) 如图,在直角梯形OBCD中,OB8,BC1,CD10.
(1)求C,D两点的坐标;
(2)若线段OB上存在点
P,使PD
⊥PC,求过D,P,
三点的抛物线的表达式.
25.(本题满分12分)
(第24题图) 如图,O的半径均为R.
(1)请在图①中画出弦AB,CD,使图①为轴对称图形而不是中心对称图形;请在图②中..画出弦
AB,CD,使图②仍为中心对称图形;
(2)如图③,在O中,ABCDm(0m2R),且AB与CD交于点E,夹角为锐角.求四边形ACBD面积(用含m,的式子表示); (3)若线段AB,CD是O的两条弦,且ABCD
,你认为在以点A,B,C,D
为顶点的四边形中,是否存在面积最大的四边形?请利用图④说明理由.
(第25题图①) (第25题图②) (第25题图③) (第25题图④)
Page 5
5/14/2013
陕西省基础教育课程改革实验区2007年初中毕业学业考试
数 学 答案及评分标准
一、选择题
1.A 2.B 3.D 4.A 5.C 6.C 7.B 8.A 9.B 10.C 二、填空题
11.xy 12.B 13.115°(填115不扣分) 14.(1)0.433 (2)90.6 15.21 16.21 三、解答题
17.解:当AB时,
3
3
xx1
3x1
2
1.
xx1
3(x1)(x1)
···································································································· 1分 1.·
方程两边同时乘以(x1)(x1),得
······························································································· 2分 x(x1)3(x1)(x1). ·
x2x3x21.
·································································································································· 3分 x2. ·
检验:当x2时,(x1)(x1)30.
··································································································· 4分 ∴x2是分式方程的根. ·
因此,当x2时,AB. ································································································· 5分 18.解:(1)画图正确得4分.
(第18题答案图)
Page 6
5/14/2013
(2
)个单位. ············································································································· 6分 19.解:(1)证明:∵AB∥DC,DAAB,B45°,
································································································ 1分 ∴C135°,DADE.·
又∵DEDA,
······················································································································ 2分 ∴E45°. ·
·········································································································· 3分 ∴CE180°. ·
······················································································································ 4分 ∴AE∥BC. ·
(2)解:∵AE∥BC,CE∥AB,
························································································· 5分 ∴四边形ABCE是平行四边形. ·
∴CEAB3.
···························································································· 6分 ∴DADECECD2. ·
∴SABCECE·AD326. ························································································ 7分
20.解:(1)2006年外省区市在陕投资总额为:
. ··········································································· 2分 124676647119423(亿元)
(2)如图①所示. ················································································································· 5分 2006年外省区市在陕投资金额计图 2006年外省区市
在陕投资金额使用情况统计图
13%
西安高新技术 19%
省区 市
东建京江它
(第20题答案图①) (第20题答案图②)
(3)如图②所示. ················································································································· 8分 21.解:(1)设y与x的函数关系式为ykxb, ·························································· 1分
由题意,得
2100kb1800,
2800kb2300,
··························································································· 3分
5
k,
解之,得··············································································································· 5分 7 ·
b300.
∴y与x的函数关系式为y
57
·········································································· 6分 x300. ·
Page 7 5/14/2013
(2)当x5600时,y
57
···················································· 7分 56003004300元. ·
········································································· 8分 ∴王老师旅游这条线路的价格是4300元. ·
22.解:(1)(11)····················································································· 3分 ,,,,,(00)(11). ·(2)∵在ABCD内横、纵坐标均为整数的点有15个,
其中横、纵坐标和为零的点有3个, ···················································································· 6分
∴P
315
15
. ····················································································································· 8分
23.解:(1)证明:∵AC是O的切线,AB是O直径,
∴ABAC. 则1290°. ················································································································ 1分 又∵OCAD,
············································································································· 2分 ∴1C90°. ······················································································································· 3分 ∴C2. ·
而BED2,
················································································································ 4分 ∴BEDC. ·
(2)解:连接BD. C ∵AB是O直径, ∴ADB90°.
E
D
O
(第23题答案图)
B
∴BD
6. ··········································································· 5分
········································································································ 6分 ∴△OAC∽△BDA. ·
∴OA:BDAC:DA. 即5:6AC:8. ·················································································································· 7分
20
. ························································································································ 8分 ∴AC3
24.解:(1)过点C作CEOD于点E,则四边形OBCE为矩形.
∴CEOB8,OEBC1.
∴DE6.
∴ODDEOE7.
Page 8
(第24题答案图)
5/14/2013
···································································· 4分 1)D(0,7). ∴C,D两点的坐标分别为C(8,,(2)∵PCPD,
∴1290°. 又1390°, ∴23.
∴Rt△POD∽Rt△CBP.∴PO:CBOD:BP.
即PO:17:(8PO).
∴PO28PO70.
∴PO1,或PO7.
······················································································ 6分 0). ·0),或(7,∴点P的坐标为(1,①当点P的坐标为(1,0)时,
设经过D,P,C三点的抛物线表达式为yaxbxc,
2
25a,28
c7,
221
,则abc0, ∴b 2864a8bc1.
c7.
∴所求抛物线的表达式为:y
②当点P为(7,0)时,
2528
x2
22128
·························································· 9分 x7.
设经过D,P,C三点的抛物线表达式为yaxbxc,
2
1
a,4c7,
11
则49a7bc0, ∴b,
464a8bc1.
c7.
∴所求抛物线的表达式为:y
14
x2
114
··························································· 10分 x7. ·
(说明:求出一条抛物线表达式给3分,求出两条抛物线表达式给4分)
25.解:(1)答案不唯一,如图①、②(只要满足题意,画对一个图形给2分,画对两个给3分)
Page
5/14/2013
················································································································································· 3分 (2)过点A,B分别作CD的垂线,垂足分别为M,N.
∵S△ACD
12
CD·AM
12
CD·AE·sin,
S△BCD
12
CD·BN
12
············································································ 5分 CD·BE·sin. ·
∴S四边形ACBDS△ACDS△BCD
1212
1212
CD·AE·sin
12
CD·BE·sin
CD·(AEBE·)sin CD·AB·sin
··········································· 7分 m2sin.
(第25题答案图③)
(3)存在.分两种情况说明如下: ···················································································· 8分 ①当AB与CD相交时,
由(2
)及ABCD
知S四边形ACBD
12
······················ 9分 AB·CD·sinR2sin. ·
②当AB与CD不相交时,如图④
∵ABCD,OCODOAOBR,
∴AOBCOD90°,
而S四边形ABCDSRt△AOBSRt△OCDS△AODS△BOC
RS△AODS△BOC
2
(第25题答案图④)
. ····································································································· 10分
延长BO交O于点E,连接EC,则132390°.
∴12.
∴△AOD≌△COE.
∴S△AODS△OCE.
Page 10
5/14/2013
www.5151edu.com
∴S△AODS△BOCS△OCES△BOCS△BCE.
过点C作CHBE,垂足为H, 则S△BCE12BE·CHR·CH.
··········································································· 11分 ∴当CHR时,S△BCE取最大值R2. ·
综合①、②可知,当1290°,即四边形ABCD
的正方形时, S四边形ABCDR2R22R2为最大值. ············································································· 12分
www.5151edu.com
Page 11 5/14/2013