陕西省课改中考试题及答案(word版中考真题)

陕西省基础教育课程改革实验区 2007 年 初 中 毕 业 学 业 考 试

数 学 试 卷

第Ⅰ卷(选择题 共30分)

一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的) 1.2的相反数为( ) A.2

B.2

C.

12

D.

12

2.下面四个图形中,经过折叠能围成如图只有三个面上印有图案的正方体纸盒的是( )

(第2题图)

A. B. D.

3.不等式组

x

20,3x≥0

的解集是( )

A.

2≤x≤3 B.x2,或x≥3 C.2x3 D.2x≤3

4.将我省某日11个市、区的最高气温统计如下: 最高气温 10℃ 14℃ 21℃ 22℃ 23℃ 24℃ 25℃ 26℃

1 1 3 1 1 2 1 1 市、区个数

该天这11个市、区最高气温的平均数和众数分别是( ) A.21℃,21℃ B.20℃,21℃ C.21℃,22℃ D.20℃,22℃

5.中国人民银行宣布,从2007年6月5日起,上调人民币存款利率,一年定期存款利率上调到3.06%.某人于2007年6月5日存入定期为1年的人民币5000元(到期后银行将扣除20%的利息锐).设到期后银行应向储户支付现金x元,则所列方程正确的是( ) A.x500050003.06%

B.x500020%5000(13.06%) C.x50003.06%20%5000(13.06%) D.x50003.06%20%50003.06% 6.如图,圆与圆之间不同的位置关系有( ) A.2种 B.3种 C.4种 D.5种

Page 1

(第6题图)5/14/2013

7.如图,一次函数图象经过点A,且与正比例函数yx的 图象交于点B,则该一次函数的表达式为( ) A.yx2 C.yx2

2

B.yx2 D.yx2

(第7题图)

8.抛物线yx4x7的顶点坐标是( ) A.(2,11)

B.(2,7)

C.(2,11)

D.(2,3)

C

(第9题图)

9.如图,在矩形ABCD中,E为CD的中点,连接AE并 延长交BC的延长线于点F,则图中全等的直角三角形共有( )

A.3对 B.4对

C.5对 D.6对

10.如图,在等边△ABC中,AC9,点O在AC上, 且AO3,点P是AB上一动点,连结OP,将线段OP 绕点O逆时针旋转60得到线段OD.要使点D恰好落在

BC上,则AP的长是( )

A.4

B.5

C.6

D.8

(第10题图)

第Ⅱ卷(非选择题 共90分)

二、填空题(共6小题,每小题3分,计18分) 11.计算:(3xy)

2

12

xy 3

12.在△ABC的三个顶点A(2,3,)B(,4,5)C(,3中2,可能在反比例函数

y

kx

(k0)的图象上的点是

13.如图,ABC50,AD垂直平分线段BC于点D,ABC的 平分线BE交AD于点E,连结EC,则AEC的度数是 .

Page 2

(第13题图)

5/14/2013

14.选作题(要求在(1)、(2)中任选一题作答) ...(1)用计算器计算:3sin38(结果保留三个有效数字).

(2)小明在楼顶点A处测得对面大楼楼顶点C处的 仰角为52,楼底点D

处的俯角为13.若两座楼AB与

CD相距60米,则楼CD的高度约为

(结果保留三个有效数字).

(第14题图)

(sin130.2250,cos130.9744,tan130.2309

,sin520.7880,cos520.6157

tan521.2799)

15.小说《达芬奇密码》中的一个故事里出现了一串神密排列的数,将这串令人费解的数按从小到大的顺序排列为:11,,2,3,5,8,…,则这列数的第8

个数是 . 16.如图,要使输出值y大于100,则输入的最小正整数x是.

三、解答题(共9小题,计72分.解答应写出过程) 17.(本题满分5分) 设A

(第16题图)

xx1

,B

3x1

2

1,当x为何值时,A与B的值相等?

18.(本题满分6分)

如图,横、纵相邻格点间的距离均为1个单位.

(1)在格点中画出图形ABCD先向右平移6个单位,再向上平移2个单位后的图形; (2)请写出平移前后两图形应对点之间的距离.

5/14/2013

(第18题图)

19.(本题满分7分)

如图,在梯形ABCD中,AB∥DC,DA⊥AB,B45,

延长CD到点E,使DEDA,连接AE. (1)求证:AE∥BC;

(2)若AB3,CD1,求四边形ABCE的面积.

20.(本题满分8分)

(第19题图)

2006年,全国30个省区市在我省有投资项目,投资金额如下表:

省区市 广东 福建 北京 浙江 其它

124 67 66 47 119 金额(亿元)

根据表格中的信息解答下列问题:

(1)求2006年外省区市在陕投资总额; (2)补全图①中的条形统计图;

(3)2006年,外省区投资中有81亿元用于西安高新技术产业开发区,54亿元用于西安经济技术开发区,剩余资金用于我省其它地区.请在图②中画出外省区市在我省投资金额使用情况的扇形统计图(扇形统计图中的圆心角精确到1,百分比精确到1%).

2006年外省区市在陕投资金额统计图 2006年外省区市

在陕投资金额使用情况统计图

东建京江它

图②

图①

21.(本题满分8分) (第20题图)

为了迎接暑期旅游,某旅行社推出了一种价格优惠方案:从现在开始,各条旅游线路的价格每人y(元)是原来价格每人x(元)的一次函数.现知道其中两条旅游线路原来旅游价格分别为每人2100元和2800元,而现在旅游的价格分别为每人1800元和2300元. (1)求y与x的函数关系式(不要求写出x的取值范围); (2)王老师想参加该旅行社原价格为5600元的一条线路的 暑期旅游,请帮王老师算出这条线路的价格. 22.(本题满分8分) 在下列直角坐标系中, (1)请写出在ABCD内(不包括边界)横、纵坐标均为 .整数的点,且和为零的点的坐标; (2)在ABCD内(不包括边界)任取一个横、纵坐标均为 .整数的点,求该点的横、纵坐标之和为零的概率.

Page 4

(第225/14/2013 题图)

23.(本题满分8分)

如图,AB是半圆O的直径,过点O作弦AD的垂线交切线AC于点C,OC与半圆O交

C 于点E,连结BE,DE.

(1)求证:BEDC;

(2)若OA5,AD8,求AC的长.

E D

B O

24.(本题满分10分) 如图,在直角梯形OBCD中,OB8,BC1,CD10.

(1)求C,D两点的坐标;

(2)若线段OB上存在点

P,使PD

⊥PC,求过D,P,

三点的抛物线的表达式.

25.(本题满分12分)

(第24题图) 如图,O的半径均为R.

(1)请在图①中画出弦AB,CD,使图①为轴对称图形而不是中心对称图形;请在图②中..画出弦

AB,CD,使图②仍为中心对称图形;

(2)如图③,在O中,ABCDm(0m2R),且AB与CD交于点E,夹角为锐角.求四边形ACBD面积(用含m,的式子表示); (3)若线段AB,CD是O的两条弦,且ABCD

,你认为在以点A,B,C,D

为顶点的四边形中,是否存在面积最大的四边形?请利用图④说明理由.

(第25题图①) (第25题图②) (第25题图③) (第25题图④)

Page 5

5/14/2013

陕西省基础教育课程改革实验区2007年初中毕业学业考试

数 学 答案及评分标准

一、选择题

1.A 2.B 3.D 4.A 5.C 6.C 7.B 8.A 9.B 10.C 二、填空题

11.xy 12.B 13.115°(填115不扣分) 14.(1)0.433 (2)90.6 15.21 16.21 三、解答题

17.解:当AB时,

3

3

xx1

3x1

2

1.

xx1

3(x1)(x1)

···································································································· 1分 1.·

方程两边同时乘以(x1)(x1),得

······························································································· 2分 x(x1)3(x1)(x1). ·

x2x3x21.

·································································································································· 3分 x2. ·

检验:当x2时,(x1)(x1)30.

··································································································· 4分 ∴x2是分式方程的根. ·

因此,当x2时,AB. ································································································· 5分 18.解:(1)画图正确得4分.

(第18题答案图)

Page 6

5/14/2013

(2

)个单位. ············································································································· 6分 19.解:(1)证明:∵AB∥DC,DAAB,B45°,

································································································ 1分 ∴C135°,DADE.·

又∵DEDA,

······················································································································ 2分 ∴E45°. ·

·········································································································· 3分 ∴CE180°. ·

······················································································································ 4分 ∴AE∥BC. ·

(2)解:∵AE∥BC,CE∥AB,

························································································· 5分 ∴四边形ABCE是平行四边形. ·

∴CEAB3.

···························································································· 6分 ∴DADECECD2. ·

∴SABCECE·AD326. ························································································ 7分

20.解:(1)2006年外省区市在陕投资总额为:

. ··········································································· 2分 124676647119423(亿元)

(2)如图①所示. ················································································································· 5分 2006年外省区市在陕投资金额计图 2006年外省区市

在陕投资金额使用情况统计图

13%

西安高新技术 19%

省区 市

东建京江它

(第20题答案图①) (第20题答案图②)

(3)如图②所示. ················································································································· 8分 21.解:(1)设y与x的函数关系式为ykxb, ·························································· 1分

由题意,得

2100kb1800,

2800kb2300,

··························································································· 3分

5

k,

解之,得··············································································································· 5分 7 ·

b300.

∴y与x的函数关系式为y

57

·········································································· 6分 x300. ·

Page 7 5/14/2013

(2)当x5600时,y

57

···················································· 7分 56003004300元. ·

········································································· 8分 ∴王老师旅游这条线路的价格是4300元. ·

22.解:(1)(11)····················································································· 3分 ,,,,,(00)(11). ·(2)∵在ABCD内横、纵坐标均为整数的点有15个,

其中横、纵坐标和为零的点有3个, ···················································································· 6分

∴P

315

15

. ····················································································································· 8分

23.解:(1)证明:∵AC是O的切线,AB是O直径,

∴ABAC. 则1290°. ················································································································ 1分 又∵OCAD,

············································································································· 2分 ∴1C90°. ······················································································································· 3分 ∴C2. ·

而BED2,

················································································································ 4分 ∴BEDC. ·

(2)解:连接BD. C ∵AB是O直径, ∴ADB90°.

E

D

O

(第23题答案图)

B

∴BD

6. ··········································································· 5分

········································································································ 6分 ∴△OAC∽△BDA. ·

∴OA:BDAC:DA. 即5:6AC:8. ·················································································································· 7分

20

. ························································································································ 8分 ∴AC3

24.解:(1)过点C作CEOD于点E,则四边形OBCE为矩形.

∴CEOB8,OEBC1.

∴DE6.

∴ODDEOE7.

Page 8

(第24题答案图)

5/14/2013

···································································· 4分 1)D(0,7). ∴C,D两点的坐标分别为C(8,,(2)∵PCPD,

∴1290°. 又1390°, ∴23.

∴Rt△POD∽Rt△CBP.∴PO:CBOD:BP.

即PO:17:(8PO).

∴PO28PO70.

∴PO1,或PO7.

······················································································ 6分 0). ·0),或(7,∴点P的坐标为(1,①当点P的坐标为(1,0)时,

设经过D,P,C三点的抛物线表达式为yaxbxc,

2

25a,28

c7,

221

,则abc0, ∴b 2864a8bc1.

c7.



∴所求抛物线的表达式为:y

②当点P为(7,0)时,

2528

x2

22128

·························································· 9分 x7.

设经过D,P,C三点的抛物线表达式为yaxbxc,

2

1

a,4c7,

11

则49a7bc0, ∴b,

464a8bc1.

c7.



∴所求抛物线的表达式为:y

14

x2

114

··························································· 10分 x7. ·

(说明:求出一条抛物线表达式给3分,求出两条抛物线表达式给4分)

25.解:(1)答案不唯一,如图①、②(只要满足题意,画对一个图形给2分,画对两个给3分)

Page

5/14/2013

················································································································································· 3分 (2)过点A,B分别作CD的垂线,垂足分别为M,N.

∵S△ACD

12

CD·AM

12

CD·AE·sin,

S△BCD

12

CD·BN

12

············································································ 5分 CD·BE·sin. ·

∴S四边形ACBDS△ACDS△BCD

1212

1212

CD·AE·sin

12

CD·BE·sin



CD·(AEBE·)sin CD·AB·sin

··········································· 7分 m2sin.

(第25题答案图③)

(3)存在.分两种情况说明如下: ···················································································· 8分 ①当AB与CD相交时,

由(2

)及ABCD

知S四边形ACBD

12

······················ 9分 AB·CD·sinR2sin. ·

②当AB与CD不相交时,如图④

∵ABCD,OCODOAOBR,

∴AOBCOD90°,

而S四边形ABCDSRt△AOBSRt△OCDS△AODS△BOC

RS△AODS△BOC

2

(第25题答案图④)

. ····································································································· 10分

延长BO交O于点E,连接EC,则132390°.

∴12.

∴△AOD≌△COE.

∴S△AODS△OCE.

Page 10

5/14/2013

www.5151edu.com

∴S△AODS△BOCS△OCES△BOCS△BCE.

过点C作CHBE,垂足为H, 则S△BCE12BE·CHR·CH.

··········································································· 11分 ∴当CHR时,S△BCE取最大值R2. ·

综合①、②可知,当1290°,即四边形ABCD

的正方形时, S四边形ABCDR2R22R2为最大值. ············································································· 12分

www.5151edu.com

Page 11 5/14/2013

陕西省基础教育课程改革实验区 2007 年 初 中 毕 业 学 业 考 试

数 学 试 卷

第Ⅰ卷(选择题 共30分)

一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的) 1.2的相反数为( ) A.2

B.2

C.

12

D.

12

2.下面四个图形中,经过折叠能围成如图只有三个面上印有图案的正方体纸盒的是( )

(第2题图)

A. B. D.

3.不等式组

x

20,3x≥0

的解集是( )

A.

2≤x≤3 B.x2,或x≥3 C.2x3 D.2x≤3

4.将我省某日11个市、区的最高气温统计如下: 最高气温 10℃ 14℃ 21℃ 22℃ 23℃ 24℃ 25℃ 26℃

1 1 3 1 1 2 1 1 市、区个数

该天这11个市、区最高气温的平均数和众数分别是( ) A.21℃,21℃ B.20℃,21℃ C.21℃,22℃ D.20℃,22℃

5.中国人民银行宣布,从2007年6月5日起,上调人民币存款利率,一年定期存款利率上调到3.06%.某人于2007年6月5日存入定期为1年的人民币5000元(到期后银行将扣除20%的利息锐).设到期后银行应向储户支付现金x元,则所列方程正确的是( ) A.x500050003.06%

B.x500020%5000(13.06%) C.x50003.06%20%5000(13.06%) D.x50003.06%20%50003.06% 6.如图,圆与圆之间不同的位置关系有( ) A.2种 B.3种 C.4种 D.5种

Page 1

(第6题图)5/14/2013

7.如图,一次函数图象经过点A,且与正比例函数yx的 图象交于点B,则该一次函数的表达式为( ) A.yx2 C.yx2

2

B.yx2 D.yx2

(第7题图)

8.抛物线yx4x7的顶点坐标是( ) A.(2,11)

B.(2,7)

C.(2,11)

D.(2,3)

C

(第9题图)

9.如图,在矩形ABCD中,E为CD的中点,连接AE并 延长交BC的延长线于点F,则图中全等的直角三角形共有( )

A.3对 B.4对

C.5对 D.6对

10.如图,在等边△ABC中,AC9,点O在AC上, 且AO3,点P是AB上一动点,连结OP,将线段OP 绕点O逆时针旋转60得到线段OD.要使点D恰好落在

BC上,则AP的长是( )

A.4

B.5

C.6

D.8

(第10题图)

第Ⅱ卷(非选择题 共90分)

二、填空题(共6小题,每小题3分,计18分) 11.计算:(3xy)

2

12

xy 3

12.在△ABC的三个顶点A(2,3,)B(,4,5)C(,3中2,可能在反比例函数

y

kx

(k0)的图象上的点是

13.如图,ABC50,AD垂直平分线段BC于点D,ABC的 平分线BE交AD于点E,连结EC,则AEC的度数是 .

Page 2

(第13题图)

5/14/2013

14.选作题(要求在(1)、(2)中任选一题作答) ...(1)用计算器计算:3sin38(结果保留三个有效数字).

(2)小明在楼顶点A处测得对面大楼楼顶点C处的 仰角为52,楼底点D

处的俯角为13.若两座楼AB与

CD相距60米,则楼CD的高度约为

(结果保留三个有效数字).

(第14题图)

(sin130.2250,cos130.9744,tan130.2309

,sin520.7880,cos520.6157

tan521.2799)

15.小说《达芬奇密码》中的一个故事里出现了一串神密排列的数,将这串令人费解的数按从小到大的顺序排列为:11,,2,3,5,8,…,则这列数的第8

个数是 . 16.如图,要使输出值y大于100,则输入的最小正整数x是.

三、解答题(共9小题,计72分.解答应写出过程) 17.(本题满分5分) 设A

(第16题图)

xx1

,B

3x1

2

1,当x为何值时,A与B的值相等?

18.(本题满分6分)

如图,横、纵相邻格点间的距离均为1个单位.

(1)在格点中画出图形ABCD先向右平移6个单位,再向上平移2个单位后的图形; (2)请写出平移前后两图形应对点之间的距离.

5/14/2013

(第18题图)

19.(本题满分7分)

如图,在梯形ABCD中,AB∥DC,DA⊥AB,B45,

延长CD到点E,使DEDA,连接AE. (1)求证:AE∥BC;

(2)若AB3,CD1,求四边形ABCE的面积.

20.(本题满分8分)

(第19题图)

2006年,全国30个省区市在我省有投资项目,投资金额如下表:

省区市 广东 福建 北京 浙江 其它

124 67 66 47 119 金额(亿元)

根据表格中的信息解答下列问题:

(1)求2006年外省区市在陕投资总额; (2)补全图①中的条形统计图;

(3)2006年,外省区投资中有81亿元用于西安高新技术产业开发区,54亿元用于西安经济技术开发区,剩余资金用于我省其它地区.请在图②中画出外省区市在我省投资金额使用情况的扇形统计图(扇形统计图中的圆心角精确到1,百分比精确到1%).

2006年外省区市在陕投资金额统计图 2006年外省区市

在陕投资金额使用情况统计图

东建京江它

图②

图①

21.(本题满分8分) (第20题图)

为了迎接暑期旅游,某旅行社推出了一种价格优惠方案:从现在开始,各条旅游线路的价格每人y(元)是原来价格每人x(元)的一次函数.现知道其中两条旅游线路原来旅游价格分别为每人2100元和2800元,而现在旅游的价格分别为每人1800元和2300元. (1)求y与x的函数关系式(不要求写出x的取值范围); (2)王老师想参加该旅行社原价格为5600元的一条线路的 暑期旅游,请帮王老师算出这条线路的价格. 22.(本题满分8分) 在下列直角坐标系中, (1)请写出在ABCD内(不包括边界)横、纵坐标均为 .整数的点,且和为零的点的坐标; (2)在ABCD内(不包括边界)任取一个横、纵坐标均为 .整数的点,求该点的横、纵坐标之和为零的概率.

Page 4

(第225/14/2013 题图)

23.(本题满分8分)

如图,AB是半圆O的直径,过点O作弦AD的垂线交切线AC于点C,OC与半圆O交

C 于点E,连结BE,DE.

(1)求证:BEDC;

(2)若OA5,AD8,求AC的长.

E D

B O

24.(本题满分10分) 如图,在直角梯形OBCD中,OB8,BC1,CD10.

(1)求C,D两点的坐标;

(2)若线段OB上存在点

P,使PD

⊥PC,求过D,P,

三点的抛物线的表达式.

25.(本题满分12分)

(第24题图) 如图,O的半径均为R.

(1)请在图①中画出弦AB,CD,使图①为轴对称图形而不是中心对称图形;请在图②中..画出弦

AB,CD,使图②仍为中心对称图形;

(2)如图③,在O中,ABCDm(0m2R),且AB与CD交于点E,夹角为锐角.求四边形ACBD面积(用含m,的式子表示); (3)若线段AB,CD是O的两条弦,且ABCD

,你认为在以点A,B,C,D

为顶点的四边形中,是否存在面积最大的四边形?请利用图④说明理由.

(第25题图①) (第25题图②) (第25题图③) (第25题图④)

Page 5

5/14/2013

陕西省基础教育课程改革实验区2007年初中毕业学业考试

数 学 答案及评分标准

一、选择题

1.A 2.B 3.D 4.A 5.C 6.C 7.B 8.A 9.B 10.C 二、填空题

11.xy 12.B 13.115°(填115不扣分) 14.(1)0.433 (2)90.6 15.21 16.21 三、解答题

17.解:当AB时,

3

3

xx1

3x1

2

1.

xx1

3(x1)(x1)

···································································································· 1分 1.·

方程两边同时乘以(x1)(x1),得

······························································································· 2分 x(x1)3(x1)(x1). ·

x2x3x21.

·································································································································· 3分 x2. ·

检验:当x2时,(x1)(x1)30.

··································································································· 4分 ∴x2是分式方程的根. ·

因此,当x2时,AB. ································································································· 5分 18.解:(1)画图正确得4分.

(第18题答案图)

Page 6

5/14/2013

(2

)个单位. ············································································································· 6分 19.解:(1)证明:∵AB∥DC,DAAB,B45°,

································································································ 1分 ∴C135°,DADE.·

又∵DEDA,

······················································································································ 2分 ∴E45°. ·

·········································································································· 3分 ∴CE180°. ·

······················································································································ 4分 ∴AE∥BC. ·

(2)解:∵AE∥BC,CE∥AB,

························································································· 5分 ∴四边形ABCE是平行四边形. ·

∴CEAB3.

···························································································· 6分 ∴DADECECD2. ·

∴SABCECE·AD326. ························································································ 7分

20.解:(1)2006年外省区市在陕投资总额为:

. ··········································································· 2分 124676647119423(亿元)

(2)如图①所示. ················································································································· 5分 2006年外省区市在陕投资金额计图 2006年外省区市

在陕投资金额使用情况统计图

13%

西安高新技术 19%

省区 市

东建京江它

(第20题答案图①) (第20题答案图②)

(3)如图②所示. ················································································································· 8分 21.解:(1)设y与x的函数关系式为ykxb, ·························································· 1分

由题意,得

2100kb1800,

2800kb2300,

··························································································· 3分

5

k,

解之,得··············································································································· 5分 7 ·

b300.

∴y与x的函数关系式为y

57

·········································································· 6分 x300. ·

Page 7 5/14/2013

(2)当x5600时,y

57

···················································· 7分 56003004300元. ·

········································································· 8分 ∴王老师旅游这条线路的价格是4300元. ·

22.解:(1)(11)····················································································· 3分 ,,,,,(00)(11). ·(2)∵在ABCD内横、纵坐标均为整数的点有15个,

其中横、纵坐标和为零的点有3个, ···················································································· 6分

∴P

315

15

. ····················································································································· 8分

23.解:(1)证明:∵AC是O的切线,AB是O直径,

∴ABAC. 则1290°. ················································································································ 1分 又∵OCAD,

············································································································· 2分 ∴1C90°. ······················································································································· 3分 ∴C2. ·

而BED2,

················································································································ 4分 ∴BEDC. ·

(2)解:连接BD. C ∵AB是O直径, ∴ADB90°.

E

D

O

(第23题答案图)

B

∴BD

6. ··········································································· 5分

········································································································ 6分 ∴△OAC∽△BDA. ·

∴OA:BDAC:DA. 即5:6AC:8. ·················································································································· 7分

20

. ························································································································ 8分 ∴AC3

24.解:(1)过点C作CEOD于点E,则四边形OBCE为矩形.

∴CEOB8,OEBC1.

∴DE6.

∴ODDEOE7.

Page 8

(第24题答案图)

5/14/2013

···································································· 4分 1)D(0,7). ∴C,D两点的坐标分别为C(8,,(2)∵PCPD,

∴1290°. 又1390°, ∴23.

∴Rt△POD∽Rt△CBP.∴PO:CBOD:BP.

即PO:17:(8PO).

∴PO28PO70.

∴PO1,或PO7.

······················································································ 6分 0). ·0),或(7,∴点P的坐标为(1,①当点P的坐标为(1,0)时,

设经过D,P,C三点的抛物线表达式为yaxbxc,

2

25a,28

c7,

221

,则abc0, ∴b 2864a8bc1.

c7.



∴所求抛物线的表达式为:y

②当点P为(7,0)时,

2528

x2

22128

·························································· 9分 x7.

设经过D,P,C三点的抛物线表达式为yaxbxc,

2

1

a,4c7,

11

则49a7bc0, ∴b,

464a8bc1.

c7.



∴所求抛物线的表达式为:y

14

x2

114

··························································· 10分 x7. ·

(说明:求出一条抛物线表达式给3分,求出两条抛物线表达式给4分)

25.解:(1)答案不唯一,如图①、②(只要满足题意,画对一个图形给2分,画对两个给3分)

Page

5/14/2013

················································································································································· 3分 (2)过点A,B分别作CD的垂线,垂足分别为M,N.

∵S△ACD

12

CD·AM

12

CD·AE·sin,

S△BCD

12

CD·BN

12

············································································ 5分 CD·BE·sin. ·

∴S四边形ACBDS△ACDS△BCD

1212

1212

CD·AE·sin

12

CD·BE·sin



CD·(AEBE·)sin CD·AB·sin

··········································· 7分 m2sin.

(第25题答案图③)

(3)存在.分两种情况说明如下: ···················································································· 8分 ①当AB与CD相交时,

由(2

)及ABCD

知S四边形ACBD

12

······················ 9分 AB·CD·sinR2sin. ·

②当AB与CD不相交时,如图④

∵ABCD,OCODOAOBR,

∴AOBCOD90°,

而S四边形ABCDSRt△AOBSRt△OCDS△AODS△BOC

RS△AODS△BOC

2

(第25题答案图④)

. ····································································································· 10分

延长BO交O于点E,连接EC,则132390°.

∴12.

∴△AOD≌△COE.

∴S△AODS△OCE.

Page 10

5/14/2013

www.5151edu.com

∴S△AODS△BOCS△OCES△BOCS△BCE.

过点C作CHBE,垂足为H, 则S△BCE12BE·CHR·CH.

··········································································· 11分 ∴当CHR时,S△BCE取最大值R2. ·

综合①、②可知,当1290°,即四边形ABCD

的正方形时, S四边形ABCDR2R22R2为最大值. ············································································· 12分

www.5151edu.com

Page 11 5/14/2013


相关内容

  • 玻璃之王说明文阅读答案
  • 篇一:玻璃之王说明文阅读答案 篇二:玻璃之王说明文阅读答案 29.①玻璃之王(或金属玻璃,后同)的诞生②玻璃之王形成的原理③玻璃之王的获得④玻璃之王的应用(4分)30.逻辑顺序(1分)31.举例子.列数字.作比较:(3分)具体准确突出地说明了单一的金属液体凝固形成非晶态所需的冷却速度要远远高于其它物 ...

  • 2013年陕西思品德中考真题
  • 2013年陕西思品德中考真题 [2013年陕西思品德中考真题]1.2012年11月8日至14日,中国共产党第十八次全国代表大会在北京举行,大会通过了关于(__)的决议.(B ) A .中国共产党章程 B .中国共产党章程(修正案) C .政府工作报告 D .中华人民共和国宪法修正案 [2013年陕西 ...

  • 与交朋友父母
  • 试题分类汇编(120套)专题八•爱在屋檐下,我与父母交朋友 作者:佚名 发布时间:2010-11-14 16:45:05 浏览次数:288 2010年中考思想品德试题分类汇编(120套)专题八·爱在屋檐下,我与父母交朋友 选择题 [2010年浙江省嘉兴市中考试题]6."小时候,妈妈为我洗脚 ...

  • 中考真题_分式方程__应用题专题(含答案)
  • 中考真题分式方程 应用题专题(含答案) 1.(福建宁德课改,10分)我国"八纵八横"铁路骨干网的第八纵通道--温(州)福(州) 铁路全长298千米.将于2009年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长 ...

  • 全品中考网
  • 12.心有他人天地宽 诚信做人到永远(关键词:宽容相关.换位思考.友善待人.人生而平等.平等待人,还有尊重他人.社会.自然的要求:另外就是诚信的相关题型) 选择题 [2010年宁波市中考思品真题]10. "你吃的放心,我赚的安心.你吃的长寿,我赚的长久".这是一家生意红火的饭店所 ...

  • 2016年陕西省中考化学真题及答案
  • 2016年陕西省中考化学真题及答案 9. 化学在工农业生产.科技发展和社会生活中发挥着重要作用,下列说法不正确...的是( ) A. 用铝合金制飞机外壳是因其硬度大.密度小.耐腐蚀 B. 无土栽培的营养液中常含有K 2SO 4是一种复合肥 C. 发射火箭采用的液氢.液氧都是无污染的纯净物 D. 生活 ...

  • 八年级英语上册中考考点链接新目标
  • 八年级英语上册中考考点链接 新目标 [课本要点]How often -? --多久一次?(P1) [中考聚焦]- ________ is "Lucky 52" shown on CCTV-2? -Every week(2006 湖北黄岗). A. How long B. How ...

  • [真题]2017年广州市中考数学试卷及答案解析(word版)
  • 广东省广州市2017年中考数学真题试题 第一部分 选择题(共30分) 一.选择题:本大题共10个小题, 每小题3分, 共30分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 如图1,数轴上两点A , B 表示的数互为相反数,则点B 表示的( ) A . -6 B.6 C. 0 D.无 ...

  • 十三.权利义务伴我行(人民.公民.权利.义务.权利保-
  • 十三.权利义务伴我行 (人民.公民.权利.义务.权利保障) 选择题 [2012新疆维吾尔自治区乌鲁木齐市思品中考真题]5.任何一个国家的公民都必须要有国家意识.公民意识.每一个中国公民应该具有的最基本的政治信念和原则底线是(B) A.做到"三个尊重" B.坚持"四个认同 ...