可见光波长

可见光波长

2006-12-18 19:08

可见光波长(4*10-7m----7*10-7m)

物体的颜色

人们感知的物体颜色涉及到色彩学、光学、化学及生理学等不同学科。

1、 光的色学性质

1666 年,英国科学家牛顿第一个揭示了光的色学性质和颜色的秘密。他用实验说明太阳光是各种颜色的混合光,并发现光的颜色决定于光的波长。下表列出了在可见光范围内不同波长光的颜色。

不同波长光线的颜色

为对光的色学性质研究方便,将可见光谱围成一个圆环,并分成九个区域(见图),称之为颜色环。颜色环上数字表示对应色光的波长,单位为纳米( nm),颜色环上任何两个对顶位置扇形中的颜色,互称为补色。例如,蓝色( 435 ~ 480nm )的补色为黄色( 580 ~ 595nm )。通过研究发现色光还具有下列特性:( l )互补色按一定的比例混合得到白光。如蓝光和黄光混合得到的是白光。同理,青光和橙光混合得到的也是白光;( 2 )颜色环上任何一种颜色都可以用其相邻两侧的两种单色光,甚至可以从次近邻的两种单色光混合复制出来。如黄光和红光混合得到橙光。较为典型的是红光和绿光混合成为黄光;( 3 )如果在颜色环上选择三种独立的单色光。就可以按不同的比例混合成日常生活中可能出现的各种色调。这三种单色光称为三原色光。光学中的三原色为红、绿、蓝。这里应注意,颜料的三原色为红、黄、蓝。但是,三原色的选择完全是任意的;( 4 )

当太阳光照射某物体时,某波长的光被物体吸取了,则物体显示的颜色(反射光)为该色光的补色。如太阳光照射到物体上对,若物体吸取了波长

为 400 ~ 435ntn 的紫光,则物体呈现黄绿色。这里应该注意:有人说物体的颜色是物体吸收了其它色光,反射了这种颜色的光。这种说法是不对的。比如黄绿色的树叶,实际只吸收了波长为 400 ~ 435urn 的紫光,显示出的黄绿色是反射的其它色光的混合效果,而不只反射黄绿色光。

2、 人的色觉特点

不同波长的光照射到人眼视网膜上,将给大脑不同的感觉,这种感觉称为色觉。人们就是凭自己的色觉来辨别物体的颜色,一般人的眼睛可分辨 120 多种颜色,如果在不同颜色的相互补充、相互衬托之下,有经验的人可分辨 13000 多种颜色。人眼为什么能分辨这么多种颜色呢?现代科学研究认为:人眼中的锥状辨色细胞有三种,每一种细胞擅长接收一种颜色的光,但对可见光内所有波长的光也能发生程度不同的反应。这三种锥状辨色细胞分别对红、绿、蓝色光最敏感。因此,人们选择这三种颜色作为光的三原色。彩色电视机也是根据上述理论制成的彩色显示过程。

当眼睛接受了混合光之后,三种色觉细胞都按自己的规律兴奋起来;产生三种视觉信号。经视神经传到大脑,但是,大脑对每一个单独信号并不感兴趣,而是把它们总合在一起,形成一个综合的色觉,这就是人们感觉到的所接收混合光的颜色。根据人的色觉特点,当红、绿、蓝三种色光按千变万化的比例混合时,就会使人感觉到千差万别的颜色。

3、 光和物体的颜色

我们知道,在没有光线的暗室中,或在漆黑的夜里,谁也无法辨认出物体的颜色,只有在光照射下。物体的颜色才能为人眼所见。所以,物体的颜色是光和眼睛相互作用产生的,是大脑对投射在视网膜上不同波长光线进行辨认的结果。 我们日常所说物体的颜色,是指在日常环境里太阳光照射时物体所呈现的颜色。称之为物体的本色,在特殊环境里物体呈现的颜色,称之为衍生色。例如,在阳光照射下树叶呈绿色,这是其本色,而在红光照射下,这一 “绿色”的树叶呈现黑色,改用紫外线照射时,它又呈火红色,这后两种颜色是衍生色。一个物体的本色只有一个,而衍生色可有几个,故我们说物体的颜色时,若不作特殊说明即指物体的本色。

物体的颜色决定于它对光线的吸收和反射,实质上决定于物质的结构,不同的物质结构对不同波长的光吸收能力不同。我们知道:光是由光子组成的。不同波长的光由不同能量的光子组成。波长 λ和能量 E 间的关系为 E=hc/λ,式中普朗克常数,c为光速。当光子射到物体上时,某波长的光子能量与物质内原子的振动能,或电子发生跃迁时所需能量相同时,就易被物质吸收,其它波长的光就不易被吸收。物质对光的选择吸收,就造成了各自的颜色。对同一种物质,改变其内部结构时,颜色也会改变。如碘化汞在正方晶系时呈红色,而加温到 127 ℃使晶形转变为斜方晶系时却成蓝色。这主要因物质结构的改变,对光的选择吸收也发生了改变。人们已根据这一点,制成了变色涂料等物质。另外,如溶剂、荧光等也会影物质的颜色,这里不再赘述。

可见光波长

2006-12-18 19:08

可见光波长(4*10-7m----7*10-7m)

物体的颜色

人们感知的物体颜色涉及到色彩学、光学、化学及生理学等不同学科。

1、 光的色学性质

1666 年,英国科学家牛顿第一个揭示了光的色学性质和颜色的秘密。他用实验说明太阳光是各种颜色的混合光,并发现光的颜色决定于光的波长。下表列出了在可见光范围内不同波长光的颜色。

不同波长光线的颜色

为对光的色学性质研究方便,将可见光谱围成一个圆环,并分成九个区域(见图),称之为颜色环。颜色环上数字表示对应色光的波长,单位为纳米( nm),颜色环上任何两个对顶位置扇形中的颜色,互称为补色。例如,蓝色( 435 ~ 480nm )的补色为黄色( 580 ~ 595nm )。通过研究发现色光还具有下列特性:( l )互补色按一定的比例混合得到白光。如蓝光和黄光混合得到的是白光。同理,青光和橙光混合得到的也是白光;( 2 )颜色环上任何一种颜色都可以用其相邻两侧的两种单色光,甚至可以从次近邻的两种单色光混合复制出来。如黄光和红光混合得到橙光。较为典型的是红光和绿光混合成为黄光;( 3 )如果在颜色环上选择三种独立的单色光。就可以按不同的比例混合成日常生活中可能出现的各种色调。这三种单色光称为三原色光。光学中的三原色为红、绿、蓝。这里应注意,颜料的三原色为红、黄、蓝。但是,三原色的选择完全是任意的;( 4 )

当太阳光照射某物体时,某波长的光被物体吸取了,则物体显示的颜色(反射光)为该色光的补色。如太阳光照射到物体上对,若物体吸取了波长

为 400 ~ 435ntn 的紫光,则物体呈现黄绿色。这里应该注意:有人说物体的颜色是物体吸收了其它色光,反射了这种颜色的光。这种说法是不对的。比如黄绿色的树叶,实际只吸收了波长为 400 ~ 435urn 的紫光,显示出的黄绿色是反射的其它色光的混合效果,而不只反射黄绿色光。

2、 人的色觉特点

不同波长的光照射到人眼视网膜上,将给大脑不同的感觉,这种感觉称为色觉。人们就是凭自己的色觉来辨别物体的颜色,一般人的眼睛可分辨 120 多种颜色,如果在不同颜色的相互补充、相互衬托之下,有经验的人可分辨 13000 多种颜色。人眼为什么能分辨这么多种颜色呢?现代科学研究认为:人眼中的锥状辨色细胞有三种,每一种细胞擅长接收一种颜色的光,但对可见光内所有波长的光也能发生程度不同的反应。这三种锥状辨色细胞分别对红、绿、蓝色光最敏感。因此,人们选择这三种颜色作为光的三原色。彩色电视机也是根据上述理论制成的彩色显示过程。

当眼睛接受了混合光之后,三种色觉细胞都按自己的规律兴奋起来;产生三种视觉信号。经视神经传到大脑,但是,大脑对每一个单独信号并不感兴趣,而是把它们总合在一起,形成一个综合的色觉,这就是人们感觉到的所接收混合光的颜色。根据人的色觉特点,当红、绿、蓝三种色光按千变万化的比例混合时,就会使人感觉到千差万别的颜色。

3、 光和物体的颜色

我们知道,在没有光线的暗室中,或在漆黑的夜里,谁也无法辨认出物体的颜色,只有在光照射下。物体的颜色才能为人眼所见。所以,物体的颜色是光和眼睛相互作用产生的,是大脑对投射在视网膜上不同波长光线进行辨认的结果。 我们日常所说物体的颜色,是指在日常环境里太阳光照射时物体所呈现的颜色。称之为物体的本色,在特殊环境里物体呈现的颜色,称之为衍生色。例如,在阳光照射下树叶呈绿色,这是其本色,而在红光照射下,这一 “绿色”的树叶呈现黑色,改用紫外线照射时,它又呈火红色,这后两种颜色是衍生色。一个物体的本色只有一个,而衍生色可有几个,故我们说物体的颜色时,若不作特殊说明即指物体的本色。

物体的颜色决定于它对光线的吸收和反射,实质上决定于物质的结构,不同的物质结构对不同波长的光吸收能力不同。我们知道:光是由光子组成的。不同波长的光由不同能量的光子组成。波长 λ和能量 E 间的关系为 E=hc/λ,式中普朗克常数,c为光速。当光子射到物体上时,某波长的光子能量与物质内原子的振动能,或电子发生跃迁时所需能量相同时,就易被物质吸收,其它波长的光就不易被吸收。物质对光的选择吸收,就造成了各自的颜色。对同一种物质,改变其内部结构时,颜色也会改变。如碘化汞在正方晶系时呈红色,而加温到 127 ℃使晶形转变为斜方晶系时却成蓝色。这主要因物质结构的改变,对光的选择吸收也发生了改变。人们已根据这一点,制成了变色涂料等物质。另外,如溶剂、荧光等也会影物质的颜色,这里不再赘述。


相关内容

  • 光波长和频率
  • 波长[物理学名词]开放分类:Michael Snow 执导电影 "波长"是个多义词,全部含义如下:纠错编辑多义词 波长[物理学名词]波长波长是一个物理学的名词,指在某一固定的频率里,沿着波的传播方向.在波的图形中,离 平衡位置的"位移"与"时间&qu ...

  • 分光光度计波长误差的产生和控制方法
  • 第33卷第6期2007年11月 中国测试技术 CHINAMEASUREMENTTECHNOLOGY Vol.33No.6Nov.2007 分光光度计波长误差的产生和控制方法 袁 摘 礼 (中国测试技术研究院,四川成都610061) 要:通过对影响分光光度计测量准确性的因素进行分析,认为波长准确度是其 ...

  • 可见光的范围
  • 可见光 的范围 开放分类: 物理.光学 可见光指能引起视觉的电磁波.可见光的波长范围在0.77-0.39微米之间.波长不同的电磁波,引起人眼的颜色感觉不同.0.77-0.622微米,感觉为红色:0.622-0.597微米,橙色:0.597-0.577微米,黄色:0.577-0.492微米,绿色:0. ...

  • 紫外-可见分光光度法00
  • 第九章 紫外-可见分光光度法 紫外-可见分光光度法(ultravioletvisible spectrophotometry)是根据物质分子对波长为200~800nm这一范围的电磁波的吸收特性所建立起来的一种定性.定量和结构分析方法.按所吸收光的波长区域不同,分为紫外分光光度法(60-400nm)和 ...

  • 第03章紫外-可见吸收光谱法
  • 第三章 紫外-可见吸收光谱法 一.教学内容 1.紫外-可见吸收光谱的产生(分子的能级及光谱.有机物及无机物电子能级跃迁的类型和特点) 2.吸收定律及其发射偏差的原因 3.仪器类型.各部件的结构.性能以及仪器的校正 4.分析条件的选择 5.应用(定性及结构分析.定量分析的各种方法.物理化学常数的测定及 ...

  • 原子吸收光谱观测分析
  • 实验31(B )原子吸收光谱观测分析 日期:2009.05.20 理工学院材料物理 桌号:1 实验人:刘家兴 07305833 合作人:黄瑞祺 07305834 一.实验目的: 1. 了解紫外--可见吸收光谱的基本规律 2. 初步学会测量物质的吸收光谱 二.实验仪器: 光学多通道分析器(WGD-6型 ...

  • 14.5电磁波谱
  • 14.5 电 磁 波 谱 编写人:邢玲玲 审核人:张占敏 编写时间:2017.2 [教学目标] 一.知识与技能 1.通过实例认识电磁波谱. 2.了解电磁波谱中各波段的波的重要特征,及它们在科技.经济.社会发展中的重要应用. 二.过程与方法 3.知道电磁波是一种物质,具有能量. 三.情感态度与价值观 ...

  • LED波长及光源特性介绍
  • LED 波长及光源特性分析! (2010-07-18 12:11:29) 转载▼ 标签: 分类: LED 行业 波长 nm led 黄光 红外区 杂谈 LED照明是当今节能照明的亮点,那么相信大家在了解LED 时,经常会从厂商了解到"波长"这个名词,那么想知道就与力拓陈建一起了解 ...

  • 瑞利散射和米氏散射现象的实验演示
  • 第30卷 第7期 2010年7月 物 理 实 验 PHYSICSEXPERIMENTATION Vol.30 No.7 Jul.,2010 瑞利散射和米氏散射现象的实验演示 王 峥,徐 平,王文文,J.Tabuteau a a,b b a (北京航空航天大学a.中法工程师学院;b.物理科学与核能工程 ...