应用统计学概念整理

应用统计学概念整理

第一章:导论

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.

只能归类于某一类别的非数字型数据称为分类数据 只能归于某一有序类别的非数字型数据称为顺序数据 按数字尺度测量的观测值称为数值型数据 包含所研究的全部个体的集合称为总体

从总体中抽取的一部分的元素的集合称为样本 用来描述总体特征的的概括性数字度量称为参数 用来描述样本特征的概括性数字度量称为统计量 说明事物类别的一个名称称为分类变量 说明事物有序类别的一个名称称为顺序变量 说明事物数字特征的一个名称称为数值型变量 只能取可数值的变量称为离散型变量

可以在一个或多个区间中取任何值的变量称为连续型变量

第二章:数据收集

1. 从总体中随机抽取一部分单位作为样本进行调查,并根据样本调查结果来推断总体特征

的数据收集方法,称为抽样调查。

2. 为特定目的而专门组织的全面调查称为普查 3. 按照国家有关法律规定,自上而下地统一布置,自下而上地逐级提供基本数据的调查方

式称为统计报表

第三章:数据的图表展示

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.

落在某一特定类别或组中的数据个数,称为频数 把各个类别及其落在其中的相应频数全部列出,并用表格形式表示出来,称为频数分布 一个样本或总体中各个部分的数据与全部数据之比,称为比例 将比例乘以100得到的数值,称为百分比或百分数,用%表示 样本或总体中各不同类别数值之间的比值,称为比率 分类数据的图示:条形图,pareto 图,对比条形图,饼图

将各有序类别或组的频数逐级累加起来得到的频数称为累计频数 将各有序类别或组的百分比逐级累加起来称为累计频率 顺序数据的图示:累计频数分布图,环形图

根据统计研究的需要,将原始数据按照某种标准划分成不同的组别称为数据分组 分组后的数据称为分组数据

把变量值作为一组称为单变量值分组 将全部变量值一次划分为若干个区间,并将这一区间的变量值作为一组,称为组距分组 在组距分组中,一个组的最小值称为下限,最大值称为上限 一个组的上限与下限的差称为组距 各组组距相等的组距分组称为等距分组 各组组距不相等的组距分组称为不等距分组 每一组的下限和上限之间的重点值称为组中值

19. 用矩形的宽度和高度即面积来表示频数分布的图形称为直方图 20. 由茎和叶两部分组成的,反应原始数据分布的图形称为茎叶图

21. 由一组数据的最大值、最小值、中位数和两个四分位数5个特征值绘制而成的,反应原

始数据分布的图形,称为箱线图

第四章:数据的概括性度量

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22.

一组数据向其中心值靠拢的倾向和程度称为集中趋势 测度集中趋势就是寻找数据水平的代表值或中心值 不同类型的数据用不同的集中趋势测度值

低层次数据的测度值适用于高层次的测量数据,但高层次数据的测度值并不适用于低层次的测量数据

层次由低到高:分类-顺序-数值型

一组数据中出现频数最多的变量值,称为众数

一组数据排序后处于中间位置上的变量值称为中位数 一组数据排序后处于中间位置上的变量值,称为中位数 一组数据排序后处于25%和75%位置上的值称为四分位数 一组数据相加后除以数据的个数而得到的结果,称为平均数 N 个变量值乘积的n 次平方根,称为几何平均数 数据分布的另一个重要特征

离中趋势反映各变量值远离其中心值的程度(离散程度) 从另一个侧面说明了集中趋势测度值的代表程度 不同类型的数据有不同的离散程度测度值

非众数组的频数占总频数的比率,称为异众比率

上四分位数与下四分位数之差,称为四分位差,也称为内距或四分间距 一组数据的最大值与最小值只差称为极差,用R 表示

各变量值与其平均数离差绝对值的平均数,称为平均差,叶也称为平均绝对离差 各变量值与其平均数离差平方的平均数称为方差 方差的平方根称为标准差

变量值与其平均数的离差除以标准差后的值,称为标准分数,也成为标准化值或z 分数

23. 对于任意分布形态的数据,根据切比雪夫不等式,至少有1-1/k2的数据落在平均数加

减k 个标准差之内。其中k 是大于1的任意值,但不一定是整数 24. 一组数据的标准差与其相应的平均数之比,称为离散系数 25. 数据分布的不对称性称为偏态

26. 对数据分布不对称性的度量值,称为偏态系数 27. 数据分布的平峰或尖峰程度,称为峰态

28. 对数据分布峰态的度量值称为峰态系数,记做K

29.

第五章:概率与概率分布

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17.

对一个或多个试验对象进行一次观察或测量的过程,称为一次试验 试验的结果称为事件

不能被分解为其他事件组合的基本事件,称为简单事件

随机事件(random event):每次试验可能出现也可能不出现的事件 必然事件(certain event):每次试验一定出现的事件,用 表示

不可能事件(impossible event):每次试验一定不出现的事件,用 表示 一项试验所有可能结果的集合称为样本空间

事件A 的概率是对事件A 在试验中出现的可能性大小的一种度量,介于0和1之间的一个值

在试验中,两个事件有一个发生时另一个就不能发生,称这两个事件为互斥事件 非负性:对任意事件A ,有 0 P(A) 1

规范性:必然事件的概率为1;不可能事件的概率为0。即P ( ) = 1; P ( ) = 0 可加性:若A 与B 互斥,则P ( A∪B ) = P ( A ) + P ( B ),推广到多个两两互斥事件A1,A2,„,An ,有 P ( A1∪A2 ∪„∪An) = P ( A1 ) + P (A2 ) + „+ P (An ) A 发生或者B 发生的事件,称为A 与B 的并

在事件B 已经发生的条件下,求事件A 发生的概率,称这种概率为事件B 发生条件下事件A 发生的条件概率,记为

一个事件的发生与否并不影响另一个事件发生的概率,则称两个事件独立 某次试验结果的数值型描述,称为随机变量

只能取有限个或可数个值的随机变量,称为离散型随机变量

18. 可以去一个或多个区间中任何值的随机变量称为连续型随机变量 19. 离散型随机变量的概率分布:列出离散型随机变量X 的所有可能取值,列出随机变量取

这些值的概率,通常表格来表示 20. 离散型随机变量的数学期望:在离散型随机变量X 的一切可能取值的完备组中,各可能

取值xi 与其取相对应的概率pi 乘积之和,描述离散型随机变量取值的集中程度,计算公式为:

21. 离散型随机变量的方差:随机变量X 的每一个取值与期望值的离差平方和的数学期望,

记为D (X ) ,描述离散型随机变量取值的分散程度,计算公式为

二项分布:进行n 次重复试验,出现“成功”的次数的概率分布称为二项分布,设X 为n 次重复试验中事件A 出现的次数,X 取x 的概率为

22. 泊松分布:用于描述在一指定时间范围内或在一定的长度、面积、体积之内每一事件出

现次数的分布

— 给定的时间间隔、长度、面积、体积内“成功”的平均数 e = 2.71828

x —给定的时间间隔、长度、面积、体积内“成功”的次数 23. 用于描述在一指定时间范围内或在一定的长度、面积、体积之内每一事件出现次数的分

24.

用于描述在一指定时间范围内或在一定的长度、面积、体积之内每一事件出现次数的分布

第六章:抽样与抽样分布

1. 2. 3. 4. 5. 6. 7. 8. 9.

简单随机抽样:从总体N 个单位中随机地抽取n 个单位作为样本,使得每一个容量为n 样本都有相同的机会(概率) 被抽中

系统抽样:将总体中的所有单位(抽样单位) 按一定顺序排列,在规定的范围内随机地抽取一个单位作为初始单位,然后按事先规定好的规则确定其他样本单位 分层抽样:将总体单位按某种特征或某种规则划分为不同的层,然后从不同的层中独立、随机地抽取样本

整群抽样:将总体中若干个单位合并为组(群) ,抽样时直接抽取群,然后对中选群中的所有单位全部实施调查

多阶段抽样:先抽取群,但并不是调查群内的所有单位,而是再进行一步抽样,从选中的群中抽取出若干个单位进行调查

总体分布:总体中各元素的观测值所形成的相对频数分布,称为总体分布 从总体中抽取一个容量为n 的样本由这n 个观测值形成的相对频数分布,称为样本分布 某个样本统计量的抽样分布,从理论上来说就是在重复选取容量为n 的样本使,由该统计量的所有可能取值形成的相对频数分布 样本均值的抽样分布:在重复选取容量为n 的样本时,由样本均值的所有可能取值形成

的相对频数分布

10. 当总体服从正态分布N (μ, σ2) 时,来自该总体的所有容量为n 的样本的均值⎺x 也服从正

态分布,⎺x 的数学期望为μ,方差为σ2/n 。即⎺x ~N (μ, σ2/n )

11. 中心极限定理:从均值为μ,方差为σ2的一个任意总体中抽取容量为n 的样本,当n 充

分大时,样本均值的抽样分布近似服从均值为μ,方差为σ2/n 的正态分布

12.

13. 样本统计量的抽样分布的标准差,称为统计量的标准误,也称为标准误差 14. 当计算标准误时涉及的总体参数未知时,用样本统计量代替计算的标准误,称为估计的

标准误

15. 在重复选取容量为n 的样本时,由样本比例的所有可能取值形成的相对频数分布,称为

样本比例的抽样分布

16. 在重复选取容量为n 的样本时,由样本方差的所有可能取值形成的相对频数分布,称为

样本方差的抽样分布

17. 在两个总体中,分别独立地抽取容量为n1和n2的样本,在重复选取容量为n1和n2

的样本时,由两个样本均值之差的所有可能取值形成的相对频数分布,称为两个样本均值的抽样分布

18. 在两个服从二项分布总体中,分别独立地抽取容量为n1和n2的样本,在重复选取容

量为n1和n2的样本时,由两个样本比例之差的所有可能取值形成的相对频数分布,称为两个样本比例的抽样分布

19. 在两个正态总体中,分别独立地抽取容量为n1和n2的样本,在重复选取容量为n1和

n2的样本时,由两个样本方差比的所有可能取值形成的相对频数分布,称为两个样本方差比的抽样分布

第七章:参数估计的一般问题

1.

2. 估计量:用于估计总体参数的随机变量

3.

4. 点估计:用样本的估计量的某个取值直接作为总体参数的估计值

5. 区间估计:在点估计的基础上,给出总体参数估计的一个区间范围,该区间由样本统

计量加减估计误差而得到

6. 置信水平:将构造置信区间的步骤重复很多次,置信区间包含总体参数真值的次数所

占的比例称为置信水平

7. 将构造置信区间的步骤重复很多次,置信区间包含总体参数真值的次数所占的比例称

为置信水平

8. 无偏性:估计量抽样分布的数学期望等于被估计的总体参数

9. 有效性:对同一总体参数的两个无偏点估计量,有更小标准差的估计量更有效 10. 一致性:随着样本容量的增大,估计量的值越来越接近被估计的总体参数

11. 当用原始数据构建置信区间时,置信区间的计算结果应保留的小数点位数要比原始数

据中使用的小数点多一位 12. 单个总体参数的区间估计

13.

两个总体参数的区间估计

第八章:假设检验

1. 对总体参数的具体数值所作的陈述称为假设或称为统计假设 2. 先对总体参数提出某种假设,然后利用样本信息判断假设是否成立的过程,称为假设检

3. 通常将研究者想收集证据给予支持的假设称为备择假设,或称为研究假设 4. 通常将研究者想收集证据给予反对的假设称为原假设,或称为研究零假设

5. 备择假设没有特定的方向性,并含有符号“不等于”的假设检验,称为双侧检验或双尾

检验

6. 备择假设具有特定的方向性,并含有符号“>”或“

”的假设检验,称为单侧检验或单

尾检验

7. 备择假设的方向为“”,称为右侧检验 8.

9. 第Ⅰ类错误(弃真错误) 原假设为正确时拒绝原假设,第Ⅰ类错误的概率记为 被称为显

著性水平

10. 2. 第Ⅱ类错误(取伪错误) ,原假设为错误时未拒绝原假设,第Ⅱ类错误的概率记为

(Beta) 11. 检验统计量:根据样本观测结果计算得到的,并据以对原假设和备择假设作出决策的某

个样本统计量

12.

13.

14. 15. 能够拒绝原假设的检验统计量的所有可能取值的集合称为拒绝域 16. 根据给定的显著性水平确定的拒绝域的边界值,称为临界值

17. P 值:如果原假设为真,所得到的样本结果会像实际观测结果那么极端或更极端的概率

18.

决策规则:若p 值

19. 一个总体参数的检验

z =

总体均值的检验 -μ0σn

两个总体参数的检验

两个总体均值检验方法总结

章末总结

应用统计学概念整理

第一章:导论

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.

只能归类于某一类别的非数字型数据称为分类数据 只能归于某一有序类别的非数字型数据称为顺序数据 按数字尺度测量的观测值称为数值型数据 包含所研究的全部个体的集合称为总体

从总体中抽取的一部分的元素的集合称为样本 用来描述总体特征的的概括性数字度量称为参数 用来描述样本特征的概括性数字度量称为统计量 说明事物类别的一个名称称为分类变量 说明事物有序类别的一个名称称为顺序变量 说明事物数字特征的一个名称称为数值型变量 只能取可数值的变量称为离散型变量

可以在一个或多个区间中取任何值的变量称为连续型变量

第二章:数据收集

1. 从总体中随机抽取一部分单位作为样本进行调查,并根据样本调查结果来推断总体特征

的数据收集方法,称为抽样调查。

2. 为特定目的而专门组织的全面调查称为普查 3. 按照国家有关法律规定,自上而下地统一布置,自下而上地逐级提供基本数据的调查方

式称为统计报表

第三章:数据的图表展示

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.

落在某一特定类别或组中的数据个数,称为频数 把各个类别及其落在其中的相应频数全部列出,并用表格形式表示出来,称为频数分布 一个样本或总体中各个部分的数据与全部数据之比,称为比例 将比例乘以100得到的数值,称为百分比或百分数,用%表示 样本或总体中各不同类别数值之间的比值,称为比率 分类数据的图示:条形图,pareto 图,对比条形图,饼图

将各有序类别或组的频数逐级累加起来得到的频数称为累计频数 将各有序类别或组的百分比逐级累加起来称为累计频率 顺序数据的图示:累计频数分布图,环形图

根据统计研究的需要,将原始数据按照某种标准划分成不同的组别称为数据分组 分组后的数据称为分组数据

把变量值作为一组称为单变量值分组 将全部变量值一次划分为若干个区间,并将这一区间的变量值作为一组,称为组距分组 在组距分组中,一个组的最小值称为下限,最大值称为上限 一个组的上限与下限的差称为组距 各组组距相等的组距分组称为等距分组 各组组距不相等的组距分组称为不等距分组 每一组的下限和上限之间的重点值称为组中值

19. 用矩形的宽度和高度即面积来表示频数分布的图形称为直方图 20. 由茎和叶两部分组成的,反应原始数据分布的图形称为茎叶图

21. 由一组数据的最大值、最小值、中位数和两个四分位数5个特征值绘制而成的,反应原

始数据分布的图形,称为箱线图

第四章:数据的概括性度量

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22.

一组数据向其中心值靠拢的倾向和程度称为集中趋势 测度集中趋势就是寻找数据水平的代表值或中心值 不同类型的数据用不同的集中趋势测度值

低层次数据的测度值适用于高层次的测量数据,但高层次数据的测度值并不适用于低层次的测量数据

层次由低到高:分类-顺序-数值型

一组数据中出现频数最多的变量值,称为众数

一组数据排序后处于中间位置上的变量值称为中位数 一组数据排序后处于中间位置上的变量值,称为中位数 一组数据排序后处于25%和75%位置上的值称为四分位数 一组数据相加后除以数据的个数而得到的结果,称为平均数 N 个变量值乘积的n 次平方根,称为几何平均数 数据分布的另一个重要特征

离中趋势反映各变量值远离其中心值的程度(离散程度) 从另一个侧面说明了集中趋势测度值的代表程度 不同类型的数据有不同的离散程度测度值

非众数组的频数占总频数的比率,称为异众比率

上四分位数与下四分位数之差,称为四分位差,也称为内距或四分间距 一组数据的最大值与最小值只差称为极差,用R 表示

各变量值与其平均数离差绝对值的平均数,称为平均差,叶也称为平均绝对离差 各变量值与其平均数离差平方的平均数称为方差 方差的平方根称为标准差

变量值与其平均数的离差除以标准差后的值,称为标准分数,也成为标准化值或z 分数

23. 对于任意分布形态的数据,根据切比雪夫不等式,至少有1-1/k2的数据落在平均数加

减k 个标准差之内。其中k 是大于1的任意值,但不一定是整数 24. 一组数据的标准差与其相应的平均数之比,称为离散系数 25. 数据分布的不对称性称为偏态

26. 对数据分布不对称性的度量值,称为偏态系数 27. 数据分布的平峰或尖峰程度,称为峰态

28. 对数据分布峰态的度量值称为峰态系数,记做K

29.

第五章:概率与概率分布

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17.

对一个或多个试验对象进行一次观察或测量的过程,称为一次试验 试验的结果称为事件

不能被分解为其他事件组合的基本事件,称为简单事件

随机事件(random event):每次试验可能出现也可能不出现的事件 必然事件(certain event):每次试验一定出现的事件,用 表示

不可能事件(impossible event):每次试验一定不出现的事件,用 表示 一项试验所有可能结果的集合称为样本空间

事件A 的概率是对事件A 在试验中出现的可能性大小的一种度量,介于0和1之间的一个值

在试验中,两个事件有一个发生时另一个就不能发生,称这两个事件为互斥事件 非负性:对任意事件A ,有 0 P(A) 1

规范性:必然事件的概率为1;不可能事件的概率为0。即P ( ) = 1; P ( ) = 0 可加性:若A 与B 互斥,则P ( A∪B ) = P ( A ) + P ( B ),推广到多个两两互斥事件A1,A2,„,An ,有 P ( A1∪A2 ∪„∪An) = P ( A1 ) + P (A2 ) + „+ P (An ) A 发生或者B 发生的事件,称为A 与B 的并

在事件B 已经发生的条件下,求事件A 发生的概率,称这种概率为事件B 发生条件下事件A 发生的条件概率,记为

一个事件的发生与否并不影响另一个事件发生的概率,则称两个事件独立 某次试验结果的数值型描述,称为随机变量

只能取有限个或可数个值的随机变量,称为离散型随机变量

18. 可以去一个或多个区间中任何值的随机变量称为连续型随机变量 19. 离散型随机变量的概率分布:列出离散型随机变量X 的所有可能取值,列出随机变量取

这些值的概率,通常表格来表示 20. 离散型随机变量的数学期望:在离散型随机变量X 的一切可能取值的完备组中,各可能

取值xi 与其取相对应的概率pi 乘积之和,描述离散型随机变量取值的集中程度,计算公式为:

21. 离散型随机变量的方差:随机变量X 的每一个取值与期望值的离差平方和的数学期望,

记为D (X ) ,描述离散型随机变量取值的分散程度,计算公式为

二项分布:进行n 次重复试验,出现“成功”的次数的概率分布称为二项分布,设X 为n 次重复试验中事件A 出现的次数,X 取x 的概率为

22. 泊松分布:用于描述在一指定时间范围内或在一定的长度、面积、体积之内每一事件出

现次数的分布

— 给定的时间间隔、长度、面积、体积内“成功”的平均数 e = 2.71828

x —给定的时间间隔、长度、面积、体积内“成功”的次数 23. 用于描述在一指定时间范围内或在一定的长度、面积、体积之内每一事件出现次数的分

24.

用于描述在一指定时间范围内或在一定的长度、面积、体积之内每一事件出现次数的分布

第六章:抽样与抽样分布

1. 2. 3. 4. 5. 6. 7. 8. 9.

简单随机抽样:从总体N 个单位中随机地抽取n 个单位作为样本,使得每一个容量为n 样本都有相同的机会(概率) 被抽中

系统抽样:将总体中的所有单位(抽样单位) 按一定顺序排列,在规定的范围内随机地抽取一个单位作为初始单位,然后按事先规定好的规则确定其他样本单位 分层抽样:将总体单位按某种特征或某种规则划分为不同的层,然后从不同的层中独立、随机地抽取样本

整群抽样:将总体中若干个单位合并为组(群) ,抽样时直接抽取群,然后对中选群中的所有单位全部实施调查

多阶段抽样:先抽取群,但并不是调查群内的所有单位,而是再进行一步抽样,从选中的群中抽取出若干个单位进行调查

总体分布:总体中各元素的观测值所形成的相对频数分布,称为总体分布 从总体中抽取一个容量为n 的样本由这n 个观测值形成的相对频数分布,称为样本分布 某个样本统计量的抽样分布,从理论上来说就是在重复选取容量为n 的样本使,由该统计量的所有可能取值形成的相对频数分布 样本均值的抽样分布:在重复选取容量为n 的样本时,由样本均值的所有可能取值形成

的相对频数分布

10. 当总体服从正态分布N (μ, σ2) 时,来自该总体的所有容量为n 的样本的均值⎺x 也服从正

态分布,⎺x 的数学期望为μ,方差为σ2/n 。即⎺x ~N (μ, σ2/n )

11. 中心极限定理:从均值为μ,方差为σ2的一个任意总体中抽取容量为n 的样本,当n 充

分大时,样本均值的抽样分布近似服从均值为μ,方差为σ2/n 的正态分布

12.

13. 样本统计量的抽样分布的标准差,称为统计量的标准误,也称为标准误差 14. 当计算标准误时涉及的总体参数未知时,用样本统计量代替计算的标准误,称为估计的

标准误

15. 在重复选取容量为n 的样本时,由样本比例的所有可能取值形成的相对频数分布,称为

样本比例的抽样分布

16. 在重复选取容量为n 的样本时,由样本方差的所有可能取值形成的相对频数分布,称为

样本方差的抽样分布

17. 在两个总体中,分别独立地抽取容量为n1和n2的样本,在重复选取容量为n1和n2

的样本时,由两个样本均值之差的所有可能取值形成的相对频数分布,称为两个样本均值的抽样分布

18. 在两个服从二项分布总体中,分别独立地抽取容量为n1和n2的样本,在重复选取容

量为n1和n2的样本时,由两个样本比例之差的所有可能取值形成的相对频数分布,称为两个样本比例的抽样分布

19. 在两个正态总体中,分别独立地抽取容量为n1和n2的样本,在重复选取容量为n1和

n2的样本时,由两个样本方差比的所有可能取值形成的相对频数分布,称为两个样本方差比的抽样分布

第七章:参数估计的一般问题

1.

2. 估计量:用于估计总体参数的随机变量

3.

4. 点估计:用样本的估计量的某个取值直接作为总体参数的估计值

5. 区间估计:在点估计的基础上,给出总体参数估计的一个区间范围,该区间由样本统

计量加减估计误差而得到

6. 置信水平:将构造置信区间的步骤重复很多次,置信区间包含总体参数真值的次数所

占的比例称为置信水平

7. 将构造置信区间的步骤重复很多次,置信区间包含总体参数真值的次数所占的比例称

为置信水平

8. 无偏性:估计量抽样分布的数学期望等于被估计的总体参数

9. 有效性:对同一总体参数的两个无偏点估计量,有更小标准差的估计量更有效 10. 一致性:随着样本容量的增大,估计量的值越来越接近被估计的总体参数

11. 当用原始数据构建置信区间时,置信区间的计算结果应保留的小数点位数要比原始数

据中使用的小数点多一位 12. 单个总体参数的区间估计

13.

两个总体参数的区间估计

第八章:假设检验

1. 对总体参数的具体数值所作的陈述称为假设或称为统计假设 2. 先对总体参数提出某种假设,然后利用样本信息判断假设是否成立的过程,称为假设检

3. 通常将研究者想收集证据给予支持的假设称为备择假设,或称为研究假设 4. 通常将研究者想收集证据给予反对的假设称为原假设,或称为研究零假设

5. 备择假设没有特定的方向性,并含有符号“不等于”的假设检验,称为双侧检验或双尾

检验

6. 备择假设具有特定的方向性,并含有符号“>”或“

”的假设检验,称为单侧检验或单

尾检验

7. 备择假设的方向为“”,称为右侧检验 8.

9. 第Ⅰ类错误(弃真错误) 原假设为正确时拒绝原假设,第Ⅰ类错误的概率记为 被称为显

著性水平

10. 2. 第Ⅱ类错误(取伪错误) ,原假设为错误时未拒绝原假设,第Ⅱ类错误的概率记为

(Beta) 11. 检验统计量:根据样本观测结果计算得到的,并据以对原假设和备择假设作出决策的某

个样本统计量

12.

13.

14. 15. 能够拒绝原假设的检验统计量的所有可能取值的集合称为拒绝域 16. 根据给定的显著性水平确定的拒绝域的边界值,称为临界值

17. P 值:如果原假设为真,所得到的样本结果会像实际观测结果那么极端或更极端的概率

18.

决策规则:若p 值

19. 一个总体参数的检验

z =

总体均值的检验 -μ0σn

两个总体参数的检验

两个总体均值检验方法总结

章末总结


相关内容

  • 第十章 数据的收集.整理与表示(教材分析)
  • 第十章   数据的收集.整理与表示(教材分析) 北京市义务教育课程改革实验教材(2005版)第14册 一.本单元主要内容: 第一部分: 1.总体.个体.样本与样本容量的知识,以及对被调查对象采取的两种调查方法,即全面调查与抽样调查. 2.数据的收集与整理的步骤. 3.数据表示的三个方法(条形统计图. ...

  • 小学六年级数学下册期末复习计划
  • 一、指导思想 本学期时间紧,任务重。我们的指导思想是:靠科学的态度和方法,调动学生的复习积极性,突出尖子生,重视学困生,提高中等生。 二、学生状况分析 小学生经过近六年的学习,已经接触和积累了相当数量的数学知识,形成了相关的数学技能,也能对生活中有关数学问题进行思考与分析,智力上已达到一个“综合发展 ...

  • 小学六年级下学期数学教学计划
  • 这册教材包括下面一些内容:比例、圆柱和圆锥、简单的统计(二)以及小学六年来所学数学内容的总复习。其中还安排了“球”和“扇形统计图”作为选学内容。本册教材的这些内容是在前几册的基础上按照完成小学数学的全部教学任务安排的,着重使学生认识一些常见的立体图形,掌握它们的体积等计算方法,进一步发展空间观念;进 ...

  • 统计学原理教学大纲
  • <统计学原理>课程教学大纲 一.统计总论 教学目的和要求: 本章的目的在于从总体上对统计学提供基本的认识,通过本章的学习,要求一般了解 社会经济统计学的学科性质.研究对象和国家统计的职能.统计研究的基本方法,重点掌 握统计学中的几个基本概念. 教学内容: (一)统计的涵义 (二)统计学的 ...

  • 六年级数学第十二册教学计划
  • 六年级数学第十二册教学计划 一、班级基本情况: 各班根据具体情况制定。 二、目的要求 使学生理解比例的意义和基本性质,会解比例,会看比例尺,理解正比例和反比例的意义。能够判断两种量是否成正比例或反比例,会用比例知识解答比较容易的应用题。 使学生认识圆柱、圆锥的特征,初步认识和会计算圆柱的表面积以及圆 ...

  • 统计学原理电子教案
  • 统计学原理电子教案 一.统计总论 教学目的和要求: 本章的目的在于从总体上对统计学提供基本的认识,通过本章的学习,要求 一般了解社会经济统计学的学科性质.研究对象和国家统计的职能.统计研究的 基本方法,重点掌握统计学中的几个基本概念. 教学内容: (一)统计的涵义 (二)统计学的研究对象 (三)统计 ...

  • 小学数学教学设计基本流程
  • 小学数学教学设计基本流程 建构主义认为:学习是在一定的情境下,通过人际间协作活动而实现的意义建构过程:学生获取知识的过程是在其他人(包括教师和学习伙伴)的帮助下,利用必要的学习资料,通过意义建构而获得. 教学设计要考虑有利于学生建构意义的情境的创设问题,学习环境中的情境必须有利于学生对所学内容的意义 ...

  • 沪教版教材大纲
  • 小学 一年级(一) 一.10以内的数 说一说 分一分 数一数 几个与第几个 比一比 数射线 二.10以内数的加减法 分与合 加法 讲讲算算(一) 减法 讲讲算算(二) 加与减 看数射线做加.减法 10的游戏 连加.连减 加减混合 三.20以内的数及其加减法 11-20的数 十几就是十和几 20以内数 ...

  • 六年级数学复习备考计划
  • 六年级数学复习备考计划(沙志航) 一.制定计划的指导思想: 为了组织有计划的.有效率的复习,为了达成本年度的目标任务,我制定了后一阶段的复习备考计划. 二.小学数学毕业总复习的任务: 从小学毕业总复习在整个小学数学教学过程中所处的地位来看,它的任务概括为以下几点: 1.知识点的梳理,学生对数学知识的 ...

  • 卡莫小学六年级数学复习备考方案
  • 2012学年六年级下学期数学复习备考方案 卡莫小学 夏 林 一.小学数学毕业总复习的指导思想: 落实小考备考会议精神和要求,认真组织有计划的.有效率的复习,使每一个班的学生能圆满完成小学阶段的数学学习任务,顺序升入高一级学校,充分做好迎接区毕业班教学质量调研和小学毕业升考试的准备. 二. 小学数学毕 ...