回归分析和相关分析的区别

回归分析和相关分析的区别! (2010-01-15 01:21:07)转载▼

标签: 回归分析 相关分析 随机变量 自变量 因变量 杂谈

回归分析和相关分析是互相补充、密切联系的,相关分析需要回归分析来表明现象数量关系的具体形式,而回归分析则应该建立在相关分析的基础上。

主要区别有:一,在回归分析中,不仅要根据变量的地位,作用不同区分出自变量和因变量,把因变量置于被解释的特殊地位,而且以因变量为随机变量,同时总假定自变量是非随机的可控变量.在相关分析中,变量间的地位是完全平等的,不仅无自变量和因变量之分,而且相关变量全是随机变量. 二,相关分析只限于描述变量间相互依存关系的密切程度,至于相关变量间的定量联系关系则无法明确反映.而回归分析不仅可以定量揭示自变量对应变量的影响大小,还可以通过回归方程对变量值进行预测和控制.

相关分析和回归分析是极为常用的2种数理统计方法,在科学研究领域有着广泛的用途。然而,由于这2种数理统计方法在计算方面存在很多相似之处,且在一些数理统计教科书中没有系统阐明这2种数理统计方法的内在差别,从而使一些研究者不能严格区分相关分析与回归分析。

最常见的错误是:用回归分析的结果解释相关性问题。例如,作者将“回归直线(曲线)图”称为“相关性图”或“相关关系图”;将回归直线的R2(拟合度,或称“可决系数”)错误地称为“相关系数”或“相关系数的平方”;根据回归分析的结果宣称2个变量之间存在正的或负的相关关系。

相关分析与回归分析均为研究2个或多个变量间关联性的方法,但2种数理统计方法存在本质的差别,即它们用于不同的研究目的。相关分析的目的在于检验两个随机变量的共变趋势(即共同变化的程度),回归分析的目的则在于试图用自变量来预测因变量的值。

在相关分析中,两个变量必须同时都是随机变量,如果其中的一个变量不是随机变量,就不能进行相关分析,这是相关分析方法本身所决定的。对于回归分析,其中的因变量肯定为随机变量(这是回归分析方法本身所决定的),而自变量则可以是普通变量(有确定的取值)也可以是随机变量。

如果自变量是普通变量,即模型Ⅰ回归分析,采用的回归方法就是最为常用的最小二乘法。如果自变量是随机变量,即模型Ⅱ回归分析,所采用的回归方法与计算者的目的有关。在以预测为目的的情况下,仍采用“最小二乘法”(但精度下降—最小二乘法是专为模型Ⅰ 设计的,未考虑自变量的随机误差);在以估值为目的(如计算可决系数、回归系数等)的情况下,应使用相

对严谨的方法(如“主轴法”、“约化主轴法”或“Bartlett法” )。显然,对于回归分析,如果是模型Ⅱ回归分析,鉴于两个随机变量客观上存在“相关性”问题,只是由于回归分析方法本身不能提供针对自变量和因变量之间相关关系的准确的检验手段,因此,若以预测为目的,最好不提“相关性”问题;若以探索两者的“共变趋势”为目的,应该改用相关分析。如果是模型Ⅰ回归分析,就根本不可能回答变量的“相关性”问题,因为普通变量与随机变量之间不存在“相关性”这一概念(问题在于,大多数的回归分析都是模型Ⅰ回归分析!)。此时,即使作者想描述2个变量间的“共变趋势”而改用相关分析,也会因相关分析的前提不存在而使分析结果毫无意义。

需要特别指出的是,回归分析中的R2在数学上恰好是Pearson积矩相关系数r的平方。因此,这极易使作者们错误地理解R2的含义,认为R2就是 “相关系数”或“相关系数的平方”。问题在于,对于自变量是普通变量(即其取值有确定性的变量)、因变量为随机变量的模型Ⅰ回归分析,2个变量之间的“相关性”概念根本不存在,又何谈“相关系数”呢?更值得注意的是,一些早期的教科书作者不是用R2来描述回归效果(拟合程度,拟合度)的,而是用Pearson积矩相关系数来描述。这就更容易误导读者。

回归分析和相关分析的区别! (2010-01-15 01:21:07)转载▼

标签: 回归分析 相关分析 随机变量 自变量 因变量 杂谈

回归分析和相关分析是互相补充、密切联系的,相关分析需要回归分析来表明现象数量关系的具体形式,而回归分析则应该建立在相关分析的基础上。

主要区别有:一,在回归分析中,不仅要根据变量的地位,作用不同区分出自变量和因变量,把因变量置于被解释的特殊地位,而且以因变量为随机变量,同时总假定自变量是非随机的可控变量.在相关分析中,变量间的地位是完全平等的,不仅无自变量和因变量之分,而且相关变量全是随机变量. 二,相关分析只限于描述变量间相互依存关系的密切程度,至于相关变量间的定量联系关系则无法明确反映.而回归分析不仅可以定量揭示自变量对应变量的影响大小,还可以通过回归方程对变量值进行预测和控制.

相关分析和回归分析是极为常用的2种数理统计方法,在科学研究领域有着广泛的用途。然而,由于这2种数理统计方法在计算方面存在很多相似之处,且在一些数理统计教科书中没有系统阐明这2种数理统计方法的内在差别,从而使一些研究者不能严格区分相关分析与回归分析。

最常见的错误是:用回归分析的结果解释相关性问题。例如,作者将“回归直线(曲线)图”称为“相关性图”或“相关关系图”;将回归直线的R2(拟合度,或称“可决系数”)错误地称为“相关系数”或“相关系数的平方”;根据回归分析的结果宣称2个变量之间存在正的或负的相关关系。

相关分析与回归分析均为研究2个或多个变量间关联性的方法,但2种数理统计方法存在本质的差别,即它们用于不同的研究目的。相关分析的目的在于检验两个随机变量的共变趋势(即共同变化的程度),回归分析的目的则在于试图用自变量来预测因变量的值。

在相关分析中,两个变量必须同时都是随机变量,如果其中的一个变量不是随机变量,就不能进行相关分析,这是相关分析方法本身所决定的。对于回归分析,其中的因变量肯定为随机变量(这是回归分析方法本身所决定的),而自变量则可以是普通变量(有确定的取值)也可以是随机变量。

如果自变量是普通变量,即模型Ⅰ回归分析,采用的回归方法就是最为常用的最小二乘法。如果自变量是随机变量,即模型Ⅱ回归分析,所采用的回归方法与计算者的目的有关。在以预测为目的的情况下,仍采用“最小二乘法”(但精度下降—最小二乘法是专为模型Ⅰ 设计的,未考虑自变量的随机误差);在以估值为目的(如计算可决系数、回归系数等)的情况下,应使用相

对严谨的方法(如“主轴法”、“约化主轴法”或“Bartlett法” )。显然,对于回归分析,如果是模型Ⅱ回归分析,鉴于两个随机变量客观上存在“相关性”问题,只是由于回归分析方法本身不能提供针对自变量和因变量之间相关关系的准确的检验手段,因此,若以预测为目的,最好不提“相关性”问题;若以探索两者的“共变趋势”为目的,应该改用相关分析。如果是模型Ⅰ回归分析,就根本不可能回答变量的“相关性”问题,因为普通变量与随机变量之间不存在“相关性”这一概念(问题在于,大多数的回归分析都是模型Ⅰ回归分析!)。此时,即使作者想描述2个变量间的“共变趋势”而改用相关分析,也会因相关分析的前提不存在而使分析结果毫无意义。

需要特别指出的是,回归分析中的R2在数学上恰好是Pearson积矩相关系数r的平方。因此,这极易使作者们错误地理解R2的含义,认为R2就是 “相关系数”或“相关系数的平方”。问题在于,对于自变量是普通变量(即其取值有确定性的变量)、因变量为随机变量的模型Ⅰ回归分析,2个变量之间的“相关性”概念根本不存在,又何谈“相关系数”呢?更值得注意的是,一些早期的教科书作者不是用R2来描述回归效果(拟合程度,拟合度)的,而是用Pearson积矩相关系数来描述。这就更容易误导读者。


相关内容

  • 相关分析与回归分析应用辨析
  • 哈尔滨职业技术学院学报 2010年第4期 Journal of Harbin Vocational & Technical College ・123・ 相关分析与回归分析应用辨析 张林泉 (广东女子职业技术学院,广东 广州 511450) 摘要:本文探讨了相关分析与回归分析两者之间的区别与联 ...

  • 计量经济学思考题答案
  • 计量经济学思考题答案 第一章 绪论 1.1怎样理解产生于西方国家的计量经济学能够在中国的经济理论研究和现代化建设中发挥重要作用? 答:计量经济学的产生源于对经济问题的定量研究,这是社会经济发展到一定阶段的客观需要.计量经济学的发展是与现代科学技术成就结合在一起的,它反映了社会化大生产对各种经济因素和 ...

  • 统计学知识点(完整)
  • 基本统计方法 第一章概论 1. 总体(Population):根据研究目的确定的同质对象的全体(集合):样本(Sample):从总体中随机抽取的部分具有代表性的研究对象. 2. 参数(Parameter):反映总体特征的统计指标,如总体均数.标准差等,用希腊字母表示,是固定的常数:统计量(Stati ...

  • 计量经济学庞浩第二版河北金融学院考试重点
  • 1.5一个完整的计量经济模型应包括哪些基本要素?你能举一个例子吗? 答:一个完整的计量经济模型应包括三个基本要素:经济变量.参数和随机误差项. 例如研究消费函数的计量经济模型:Y?α?βX?u 其中,Y为居民消费支出,X为居民家庭收入,二者是经济变量:α和β为参数:u是随机误差项. 1.10你能分别 ...

  • 山东大学卫生统计学历年试题
  • <卫生统计学>考试题(A 卷) 一.填空 (每空1分,共15分) 1.统计工作的基本步骤分 1. 正态分布曲线的特征有哪些? 2.试述标准差与变异系数的异同点. 3.统计学中常见的变量类型有哪些? 为 . . 举例说明. .. 2.常用的定量资料集中趋势的描述指标 有 . . . 3.正 ...

  • 生物统计学答案
  • 第一章 绪论 一.名词解释 1.总体:根据研究目的确定的研究对象的全体称为总体. 2.个体:总体中的一个研究单位称为个体. 3.样本:总体的一部分称为样本. 4.样本含量:样本中所包含的个体数目称为样本含量(容量)或大小. 5.随机样本:从总体中随机抽取的样本称为随机样本,而随机抽取是指总体中的每一 ...

  • 4统计学基础
  • <统计学>课程教学大纲 (2002年制定 2006年修订) 课程编号: 英 文 名:Statistics 课程类别:专业基础课 前 置 课:政治经济学.线性代数.微积分.概率论 后 置 课:专业课 学 分:2学分 课 时:54课时 主讲教师: 周迪 选定教材:管于华等,统计学,北京:高等 ...

  • 统计学第二次作业答案
  • <统计学>第二次作业 注:本次作业主要针对4.6.8章相关知识点. 一.单选题(共11个) 1. 直接反映总体规模大小的指标是( C ). A.平均指标 B.相对指标 C.总量指标 D.变异指标 2.计算结构相对指标时,总体各部分数值与总体数值对比求得的比重之和( C ). A.小于10 ...

  • 统计学重点内容
  • 第一章 总论 1. 统计学派,统计学家及其主要贡献. (配第,康令,格朗特) 2. 统计研究的对象. 3. 总体,总体单位的相关内容. 4. 标志.指标的相关内容及其区别. 5. 变量的分类. 第二章 统计资料的搜集和整理 1. 调查的相关内容.(调查方式,调查时间,假设检验) 课后作业:P120T ...