§1 力的概念 三个性质力

力 物体的平衡

考纲要求

1.力是物体间的相互作用,是物体发生形变和物体运动状态变化的原因。

力是矢量。力的合成和分解。 Ⅱ

2.重力是物体在地球表面附近所受到的地球对它的引力。重心。 Ⅱ

3.形变和弹力,胡克定律。 Ⅱ

4.静摩擦,最大静摩擦力。 Ⅰ

5.滑动摩擦,滑动摩擦定律。 Ⅱ

6.共点力作用下物体的平衡。 Ⅱ

知识网络:

定义:力是物体对物体的作用,不能离开施力物体与受力物体而存在。 概念

效果:使物体发生形变

改变物体运动状态

要素:大小、方向、作用点(力的图示) 效果:拉力、动力、阻力、支持力、压力 力

分类

性质: 重力: 方向、作用点(关于重心的位置) 弹力: 产生条件、方向、大小(胡克定律) 摩擦力:(静摩擦与动摩擦)产生条件、方向、大

小 力的合成 力的分解 |F1-F 2|≤F 合≤F 1+F 2 运算——平行四边形定则

单元切块:

按照考纲的要求,本章内容可以分成三部分,即:力的概念、三个性

质力;力的合成和分解;共点力作用下物体的平衡。其中重点是对摩擦力和弹力的理解、熟练运用平行四边形定则进行力的合成和分解。难点是受力分析。

§1 力的概念 三个性质力

教学目标:

1.理解力的概念;

2.掌握重力、弹力、摩擦力的产生、大小和方向

3.掌握受力分析的基本方法和基本技能

教学重点:弹力、摩擦力,受力分析

教学难点:受力分析

教学方法:讲练结合,计算机辅助教学

教学过程:

一、力的概念:力是物体对物体的作用

(1)力不能离开物体而独立存在,有力就一定有“施力”和“受力”

两个物体。二者缺一不可。

(2)力的作用是相互时

(3)力的作用效果:①形变;②改变运动状态

(4)力的图示(课件演示)

力的分类

1.按性质分

重力(万有引力)、弹力、摩擦力、分子力、电场力、磁场力 ……(按

现代物理学理论,物体间的相互作用分四类:长程相互作用有引力相互作用、电磁相互作用;短程相互作用有强相互作用和弱相互作用。宏观物体间只存在前两种相互作用。)

2.按效果分

压力、支持力、拉力、动力、阻力、向心力、回复力 ……

3.按产生条件分

场力(非接触力)、接触力。

二、重力:由于地球的吸引而使物体受到的力。

(1)方向;总是竖直向下

(2)大小:G =mg

注意:重力是万有引力的一个分力,另一个分力提供物体随地球自转

所需的向心力,在两极处重力等于万有引力。由于重力远大于向心力,一般情况下近似认为重力等于万有引力。

(3)重心:重力的等效作用点。重心的位置与物体的形状及质量的

分布有关。重心不一定在物体上。质量分布均匀、形状规则的物体,重心在几何中心上.薄板类物体的重心可用悬挂法确定。

三、弹力

1.弹力的产生条件

弹力的产生条件是两个物体直接接触,并发生弹性形变。

2.弹力的方向

⑴压力、支持力的方向总是垂直于接触面。

⑵绳对物体的拉力总是沿着绳收缩的方向。

⑶杆对物体的弹力不一定沿杆的方向。如果轻直杆只有两个端点受力

而处于平衡状态,则轻杆两端对物体的弹力的方向一定沿杆的方向。

【例1】 如图所示,光滑但质量分布不均匀的小球的球心在O 点,

重心在P 点,静止在竖直墙和桌边之间。试画出小球所受弹力。

解析:由于弹力的方向总是垂直于接触面,在A

弹力F 1应该垂直于球面,所以沿半径方向指向球心O ;

在B 点弹力F 2垂直于墙面,因此也沿半径指向球心O 点评:注意弹力必须指向球心,又由于F 1、F 2、G 为共点力,重力的作用线必须经过O 点,因此P 和O 必在同一竖直线上,P 点可能在O 的正上方(不稳定平衡),也可能在O 的正下方(稳定平衡)。

【例2】 如图所示,重力不可忽略的均匀杆被细绳

拉住而静止,试画出杆所受的弹力。 解析:A 端所受绳的拉力

F 1沿绳收缩的方向,因此沿绳向斜上方;B

端所受的弹力F 2垂直于水平面竖直向上。

点评:由于此直杆的重力不可忽略,其两端受的力可能不沿杆的方向。

杆受的水平方向合力应该为零。由于杆的重力G 竖直向下,因此杆的下端一定还受到向右的摩擦力f 作用。 【例3】 图中AC 为竖直墙面,AB 为均匀横梁,其

重为G ,处于水平位置。BC 为支持横梁的轻杆,A 、 B 、

C 三处均用铰链连接。试画出横梁B 端所受弹力的方向。

解析:轻杆BC 只有两端受力,所以B 端所受压力

沿杆向斜下方,其反作用力轻杆对横梁的弹力F 沿轻杆

延长线方向斜向上方。 【例4】画出图中物体A 所受的力(P 为重心,接触面均光滑)

解析:判断弹力的有无,可以采用拆除法:“拆除”与研究对象(受力物体)相接触的物体(如题中的绳或接触面),如果研究对象的运动状态不发生改变,则不受弹力,否则将受到弹力的作用。各图受力如下图所示。

3.弹力的大小

对有明显形变的弹簧,弹力的大小可以由胡克定律计算。对没有明显形变的物体,如桌面、绳子等物体,弹力大小由物体的受力情况和运动情况共同决定。

⑴胡克定律可表示为(在弹性限度内):F=kx,还可以表示成ΔF=kΔx,即弹簧弹力的改变量和弹簧形变量的改变量成正比。

⑵ “硬”弹簧,是指弹簧的k 值较大。(同样的力F 作用下形变量Δx较小)

⑶几种典型物体模型的弹力特点如下表。

【例5】如图所示,两物体重力分别为G 1、G 2,两弹簧劲度系数分别为k 1、k 2,弹簧两端与物体和地面相连。用竖直向上的力缓慢向上拉G 2,最后平衡时拉力F=G1+2G 2,求该过程系统重力势能的增量。

解析:关键是搞清两个物体高度的增量Δh1和Δh2跟初、末状态两根弹簧的形变量Δx1、Δx2、Δx1/、Δx2/间的关系。

无拉力F 时 Δx1=(G 1+G 2)/k 1,Δx2= G2/k 2,(Δx1、Δx2为压缩量)

加拉力F 时 Δx1/=G 2/k 1,Δx2/= (G 1+G 2) /k 2,(Δx1/、Δx2/为伸长量)

而Δh1=Δx1+Δx1/,Δh2=(Δx1/+Δx2/)+(Δx1+Δx2)

系统重力势能的增量ΔEp = G1∙Δh1+G 2∙Δh2

G 1+G 2G 2⎫整理后可得:∆E P =(G 1+2G 2)⎛ +⎪ ⎪ ⎝k 1k 2⎭Δx 2 2 2 ΔG 1 Δ1 1

四、摩擦力

1.摩擦力产生条件

摩擦力的产生条件为:两物体直接接触、相互挤压、接触面粗糙、有相对运动或相对运动的趋势。这四个条件缺一不可。

两物体间有弹力是这两物体间有摩擦力的必要条件。(没有弹力不可能有摩擦力)

2.滑动摩擦力大小

⑴在接触力中,必须先分析弹力,再分析摩擦力。 ⑵只有滑动摩擦力才能用公式F=μFN ,其中的F N 表示正压力,不一定等于重力G 。

【例6】如图所示,用跟水平方向成α角的推力F 推重量

为G 的木块沿天花板向右运动,木块和天花板间的动摩擦因

数为μ,求木块所受的摩擦力大小。

3.静摩擦力大小

⑴必须明确,静摩擦力大小不能用滑动摩擦定律

F=μFN 计算,只有当静摩擦力达到最大值时,其最大值一

般可认为等于滑动摩擦力,既F m =μFN

⑵静摩擦力的大小要根据物体的受力情况和运动情

况共同确定,其可能的取值范围是

0<F f ≤F m

【例7】 如图所示,A 、B 为两个相同木块,A 、B 间最大静摩擦力F m =5N,水平面光滑。拉力F 至少多大,A 、B 才会相对滑动?

解析:A 、B 间刚好发生相对滑动时,A 、B 间的相对运动状态处于一个临界状态,既可以认为发生了相对滑动,摩

擦力是滑动摩擦力,其大小等于最大静摩擦力5N ,也可以

认为还没有发生相对滑动,因此A 、B 的加速度仍然相等。分别以A 和整体为对象,运用牛顿第二定律,可得拉力大小至少为F =10N

点评:研究物理问题经常会遇到临界状态。物体处于临界状态时,可以认为同时具有两个状态下的所有性质。

4.摩擦力方向

⑴摩擦力方向和物体间相对运动(或相对运动趋势)的方向相反。

⑵摩擦力的方向和物体的运动方向可能成任意角度。通常情况下摩擦力方向可能和物体运动方向相同(作为动力),可能和物体运动方向相反(作为阻力),可能和物体速度方向垂直(作为匀速圆周运动的向心力)。在特殊情况下,可能成任意角度。

【例8】

小车向右做初速为零的匀加速运动,物体恰好沿车后壁匀

解析:由竖直方向合力为零可得F N =F sin α-G ,因此有:f =μ(F sinα-G ) 1

速下滑。试分析下滑过程中物体所受摩擦力的方向和物体速度方向的关系。

解析:

方向竖直向上,而物体相对于地面的速度方向不断改变

(竖直分速度大小保持不变,水平分速度逐渐增大),所

以摩擦力方向和运动方向间的夹角可能取90°和

180°间

的任意值。 点评:由上面的分析可知:无明显形变的弹力和静摩擦力都是被动力。就是说:弹力、静摩擦力的大小和方向都无法由公式直接计算得出,而是由物体的受力情况和运动情况共同决定的。

五、物体的受力分析

1.明确研究对象

在进行受力分析时,研究对象可以是某一个物体,也可以是保持相对静止的若干个物体。在解决比较复杂的问题时,灵活地选取研究对象可以使问题简洁地得到解决。研究对象确定以后,只分析研究对象以外的物体施予研究对象的力(即研究对象所受的外力),而不分析研究对象施予外界的力。

2.按顺序找力

先场力(重力、电场力、磁场力),后接触力;接触力中必须先弹力,后摩擦力(只有在有弹力的接触面之间才可能有摩擦力)。

3.只画性质力,不画效果力

画受力图时,只能按力的性质分类画力,不能按作用效果(拉力、压力、向心力等)画力,否则将出现重复。

4.需要合成或分解时,必须画出相应的平行四边形(或三角形)

在解同一个问题时,分析了合力就不能再分析分力;分析了分力就不

能再分析合力,千万不可重复。

【例9】 如图所示,倾角为θ的斜面A 固定在水

平面上。木块B 、C 的质量分别为M 、m ,始终保持相

对静止,共同沿斜面下滑。B 的上表面保持水平,A 、

B 间的动摩擦因数为μ。⑴当B 、C 共同匀速下滑;⑵当B 、

C 共同加速下滑时,分别求B 、C 所受的各力。

2 G 2

解析:⑴先分析C 受的力。这时以C 为研究对象,重力G 1=mg ,B 对C 的弹

力竖直向上,大小N 1= mg,由于C 在水平方向没有加速度,所以B 、C 间无

摩擦力,即f 1=0。

再分析B 受的力,在分析 B 与A 间的弹力N 2和摩擦

力f 2时,以BC 整体为对象较好,A 对该整体的弹力和摩

擦力就是A 对B 的弹力N 2和摩擦力f 2,得到B 受4个力

作用:重力G 2=Mg ,C 对B 的压力竖直向下,大小N 1= mg,

A 对B 的弹力N 2=(M +m ) g cos θ,A 对B 的摩擦力

f 2=(M +m ) g sin θ

由于B 、C 共同加速下滑,加速度相同,所以先以B 、C 整体为对象求A 对B 的弹力N 2、摩擦力f 2,并求出a ;再以C 为对象求B 、C 间的弹力、摩擦力。

这里,f 2是滑动摩擦力N 2=(M +m ) g cos θ, f 2=μN2=μ(M +m ) g cos θ

沿斜面方向用牛顿第二定律:(M +m ) g sin θ-μ(M +m ) g cos θ=(M +m ) a

可得a =g (sinθ-μcos θ) 。B 、C 间的弹力N 1、摩擦力f 1则应以C 为对象求得。

由于C 所受合力沿斜面向下,而所受的3个力的方向都在水平或竖直方向。这种情况下,比较简便的方法是以水平、竖直

方向建立直角坐标系,分解加速度a 。

分别沿水平、竖直方向用牛顿第二定律:

f 1=ma cos θ,mg-N 1= masin θ,

可得:f 1=mg (sinθ-μcos θ) cosθ N 1= mg(cosθ+μsin θ)cos θ

点评:由本题可以知道:①灵活地选取研究对象可以使问题简化;②灵活选定坐标系的方向也可以使计算简化;③在物体的受力图的旁边标出物体的速度、加速度的方向,有助于确定摩擦力方向,也有助于用牛顿第二定律建立方程时保证使合力方向和加速度方向相同。

【例10】 小球质量为m ,电荷为+q ,以初速度v

向右沿水平绝缘杆滑动,匀强磁场方向如图所示,球与

杆间的动摩擦因数为μ。试描述小球在杆上的运动情况。

解析:先分析小球的受力情况,再由受力情况确

定其运动情况。

小球刚沿杆滑动时,所受场力为:重力mg 方向

向下,洛伦兹力F f =qvB方向向上;再分析接触力:由

于弹力F N 的大小、方向取决于v 和m g 的大小关系,qB f N f

f 所以须分三种情况讨论:

⑴ v >m g ,在摩擦力作用下,v 、F f 、F N 、f 都逐渐减小,当v 减小qB

到等于m g 时达到平衡而做匀速运动;⑵ v

逐渐减小,而F N 、f 逐渐增大,故v 将一直减小到

零;⑶ v =m g ,F f =G, F N 、f 均为零,小球保持匀qB 速运动。

【例11】 一航天探测器完成对月球的探测任务后,在离开月球的过程中,由静止开始沿着与月球表面成一倾斜角的直线飞行,先加速运动,再匀

速运动。探测器通过喷气而获得推动力。以下关于喷气方向的描述中正确的是 A .探测器加速运动时,沿直线向后喷气

B .探测器加速运动时,竖直向下喷气

C .探测器匀速运动时,竖直向下喷气

D .探测器匀速运动时,不需要喷气

解析:探测器沿直线加速运动时,所受合力F 合方向与运动方向相同,而重力方向竖直向下,由平行四边形定则知推力方向必须斜向上方,因此喷气方向斜向下方。匀速运动时,所受合力为零,因此推力方向必须竖直向上,喷气方向竖直向下。选C

第一阶段高考总复习

附:

知识要点梳理 阅读课本理解和完善下列知识要点

(一)、力的概念

1.力是。

2.力的物质性是指。 3.力的相互性是,施力物体必然是受力物体,力总是成对的。

4.力的矢量性是指,形象描述力用

5.力的作用效果是或。

6.力可以按其和分类。

举例说明:

(二)、重力

1.概念2.产生条件3.大小g 为重力加速度,它的数值在地球上的最大,最小;在同一地理位置,离地面越高,g 值下,在地球表面附近我们认为重力是恒力。

4.方向

5.作用点—重心:质量均匀分布、有规则形状的物体重心在物体的 ,物体的重心 物体上(填一定或不一定)。

质量分布不均或形状不规则的薄板形物体的重心可采用 粗略确定。

(三)、弹力

1.概念2.产生条件(1);

(2) 。

3.大小:(1)与形变有关,一般用平衡条件或动力学规律求出。

式中的k 被称为 ,它的单位是 ,它由 决定;式中的x 是弹簧的 。

4.方向:与形变方向相反。

(1)轻绳只能产生拉力,方向沿绳子且指向 的方向;

(2)坚硬物体的面与面,点与面接触时,弹力方向 接触面(若

是曲面则是指其切面),且指向被压或被支持的物体。

(3)球面与球面之间的弹力沿半径方向,且指向受力物体。

(四)、摩擦力

1.产生条件:(1)两物体接触面 ;②两物体间存

在 ;

(2)接触物体间有相对运动( 摩擦力)或相对运动趋势

( 摩擦力)。

2.方向:(1)滑动摩擦力的方向沿接触面和 相反,与物

体运动方向 相同。

(2)静摩擦力方向沿接触面与物体的 相反。可以

根据平衡条件或牛顿运动定律判断。

3.大小:

(1)滑动摩擦力的大小: 式中的 ,不一

定等于物体的重力;式中的μ被称为动摩擦因数,它的数值由 决定。

(2)静摩擦力的大小除最大静摩擦力以外的静摩擦力

大小与正压力 比;静摩擦力的大小应根据平衡条件或牛顿运动定律来进行计算。

针对训练

1.下列关于力的说法, 正确的是( )

A .两个物体一接触就会产生弹力

B .物体的重心不一定在物体上

C .滑动摩擦力的方向和物体运动方向相反

第一阶段高考总复习

D .悬挂在天花板上的轻质弹簧在挂上重2N 的物体后伸长2cm 静止, 那么这根弹簧伸长1cm 后静止时, 它的两端各受到1N 的拉力

2.如图所示,在粗糙的水平面上叠放着物体A 和B ,A 和B 间的接触面也是粗糙的,如果用水平拉力F 拉A ,但A 、B 仍保持静止,则下面的说法中正确的是( )。

A .物体A 与地面间的静摩擦力的大小等于

B .物体A 与地面的静摩擦力的大小等于零

C .物体A 与B 间的静摩擦力的大小等于F

D .物体A 与B 间的静摩擦力的大小等于零

3.关于两物体之间的弹力和摩擦力,下列说法中正确的是( )

A .有摩擦力一定有弹力

B .摩擦力的大小与弹力成正比

C .有弹力一定有摩擦力

D .弹力是动力,摩擦力是阻力

4.如上图所示,用水平力F 将物体压在竖直墙壁上,保持静止状态,物体所受的摩擦力的大小(

) F

A .随F 的增大而增大 B .随F 的减少而减少

C .等于重力的大小 D .可能大于重力

5.用手握着一个玻璃杯,处于静止状态。如果将手握得更紧,手对玻璃杯的静摩擦力将 ,如果手的握力

向杯中倒入一些水(杯仍处于静止状态),

的静摩擦力将 。

6.一木块放在水平桌面上,在水平方向共受到两个拉力作用,拉力的大小如图所示,物体处于静止状态,(1)若只撤去10N 的拉力,则物体能否保持静止状态? ;(2)若只撤去2N 的力,物体能否保持静止状态? 。

7.如图所示,在μ=0.2的粗糙水平面上,

为10kg 的物体以一定的速度向右运动,同

水平向左的力F 作用于物体上,其大小为不变,而手对杯有一质量时还有一10N ,则物体受到的摩擦力大小为______,方向为_______.(g 取10N/kg)

8.如图所示,重20N 的物体,在动摩擦因数为0.1的水平面上向左运动,同时受到大小为10N 水平向右的力F 作用,物体所受摩擦力的大小为 ,方向为 。

第 13 页 共 14 页

参考答案

1.BD

2.AD

3.A

4.C

5.不变;变大

6.最大静摩擦力f m ≥8N ,若只撤去10N 的拉力,则物体能保持静止;若只撤去2N 的力,物体可能保持静止也可能产生滑动。

7.20N ,水平向左

8.2N ,水平向右

第 14 页 共 14 页

力 物体的平衡

考纲要求

1.力是物体间的相互作用,是物体发生形变和物体运动状态变化的原因。

力是矢量。力的合成和分解。 Ⅱ

2.重力是物体在地球表面附近所受到的地球对它的引力。重心。 Ⅱ

3.形变和弹力,胡克定律。 Ⅱ

4.静摩擦,最大静摩擦力。 Ⅰ

5.滑动摩擦,滑动摩擦定律。 Ⅱ

6.共点力作用下物体的平衡。 Ⅱ

知识网络:

定义:力是物体对物体的作用,不能离开施力物体与受力物体而存在。 概念

效果:使物体发生形变

改变物体运动状态

要素:大小、方向、作用点(力的图示) 效果:拉力、动力、阻力、支持力、压力 力

分类

性质: 重力: 方向、作用点(关于重心的位置) 弹力: 产生条件、方向、大小(胡克定律) 摩擦力:(静摩擦与动摩擦)产生条件、方向、大

小 力的合成 力的分解 |F1-F 2|≤F 合≤F 1+F 2 运算——平行四边形定则

单元切块:

按照考纲的要求,本章内容可以分成三部分,即:力的概念、三个性

质力;力的合成和分解;共点力作用下物体的平衡。其中重点是对摩擦力和弹力的理解、熟练运用平行四边形定则进行力的合成和分解。难点是受力分析。

§1 力的概念 三个性质力

教学目标:

1.理解力的概念;

2.掌握重力、弹力、摩擦力的产生、大小和方向

3.掌握受力分析的基本方法和基本技能

教学重点:弹力、摩擦力,受力分析

教学难点:受力分析

教学方法:讲练结合,计算机辅助教学

教学过程:

一、力的概念:力是物体对物体的作用

(1)力不能离开物体而独立存在,有力就一定有“施力”和“受力”

两个物体。二者缺一不可。

(2)力的作用是相互时

(3)力的作用效果:①形变;②改变运动状态

(4)力的图示(课件演示)

力的分类

1.按性质分

重力(万有引力)、弹力、摩擦力、分子力、电场力、磁场力 ……(按

现代物理学理论,物体间的相互作用分四类:长程相互作用有引力相互作用、电磁相互作用;短程相互作用有强相互作用和弱相互作用。宏观物体间只存在前两种相互作用。)

2.按效果分

压力、支持力、拉力、动力、阻力、向心力、回复力 ……

3.按产生条件分

场力(非接触力)、接触力。

二、重力:由于地球的吸引而使物体受到的力。

(1)方向;总是竖直向下

(2)大小:G =mg

注意:重力是万有引力的一个分力,另一个分力提供物体随地球自转

所需的向心力,在两极处重力等于万有引力。由于重力远大于向心力,一般情况下近似认为重力等于万有引力。

(3)重心:重力的等效作用点。重心的位置与物体的形状及质量的

分布有关。重心不一定在物体上。质量分布均匀、形状规则的物体,重心在几何中心上.薄板类物体的重心可用悬挂法确定。

三、弹力

1.弹力的产生条件

弹力的产生条件是两个物体直接接触,并发生弹性形变。

2.弹力的方向

⑴压力、支持力的方向总是垂直于接触面。

⑵绳对物体的拉力总是沿着绳收缩的方向。

⑶杆对物体的弹力不一定沿杆的方向。如果轻直杆只有两个端点受力

而处于平衡状态,则轻杆两端对物体的弹力的方向一定沿杆的方向。

【例1】 如图所示,光滑但质量分布不均匀的小球的球心在O 点,

重心在P 点,静止在竖直墙和桌边之间。试画出小球所受弹力。

解析:由于弹力的方向总是垂直于接触面,在A

弹力F 1应该垂直于球面,所以沿半径方向指向球心O ;

在B 点弹力F 2垂直于墙面,因此也沿半径指向球心O 点评:注意弹力必须指向球心,又由于F 1、F 2、G 为共点力,重力的作用线必须经过O 点,因此P 和O 必在同一竖直线上,P 点可能在O 的正上方(不稳定平衡),也可能在O 的正下方(稳定平衡)。

【例2】 如图所示,重力不可忽略的均匀杆被细绳

拉住而静止,试画出杆所受的弹力。 解析:A 端所受绳的拉力

F 1沿绳收缩的方向,因此沿绳向斜上方;B

端所受的弹力F 2垂直于水平面竖直向上。

点评:由于此直杆的重力不可忽略,其两端受的力可能不沿杆的方向。

杆受的水平方向合力应该为零。由于杆的重力G 竖直向下,因此杆的下端一定还受到向右的摩擦力f 作用。 【例3】 图中AC 为竖直墙面,AB 为均匀横梁,其

重为G ,处于水平位置。BC 为支持横梁的轻杆,A 、 B 、

C 三处均用铰链连接。试画出横梁B 端所受弹力的方向。

解析:轻杆BC 只有两端受力,所以B 端所受压力

沿杆向斜下方,其反作用力轻杆对横梁的弹力F 沿轻杆

延长线方向斜向上方。 【例4】画出图中物体A 所受的力(P 为重心,接触面均光滑)

解析:判断弹力的有无,可以采用拆除法:“拆除”与研究对象(受力物体)相接触的物体(如题中的绳或接触面),如果研究对象的运动状态不发生改变,则不受弹力,否则将受到弹力的作用。各图受力如下图所示。

3.弹力的大小

对有明显形变的弹簧,弹力的大小可以由胡克定律计算。对没有明显形变的物体,如桌面、绳子等物体,弹力大小由物体的受力情况和运动情况共同决定。

⑴胡克定律可表示为(在弹性限度内):F=kx,还可以表示成ΔF=kΔx,即弹簧弹力的改变量和弹簧形变量的改变量成正比。

⑵ “硬”弹簧,是指弹簧的k 值较大。(同样的力F 作用下形变量Δx较小)

⑶几种典型物体模型的弹力特点如下表。

【例5】如图所示,两物体重力分别为G 1、G 2,两弹簧劲度系数分别为k 1、k 2,弹簧两端与物体和地面相连。用竖直向上的力缓慢向上拉G 2,最后平衡时拉力F=G1+2G 2,求该过程系统重力势能的增量。

解析:关键是搞清两个物体高度的增量Δh1和Δh2跟初、末状态两根弹簧的形变量Δx1、Δx2、Δx1/、Δx2/间的关系。

无拉力F 时 Δx1=(G 1+G 2)/k 1,Δx2= G2/k 2,(Δx1、Δx2为压缩量)

加拉力F 时 Δx1/=G 2/k 1,Δx2/= (G 1+G 2) /k 2,(Δx1/、Δx2/为伸长量)

而Δh1=Δx1+Δx1/,Δh2=(Δx1/+Δx2/)+(Δx1+Δx2)

系统重力势能的增量ΔEp = G1∙Δh1+G 2∙Δh2

G 1+G 2G 2⎫整理后可得:∆E P =(G 1+2G 2)⎛ +⎪ ⎪ ⎝k 1k 2⎭Δx 2 2 2 ΔG 1 Δ1 1

四、摩擦力

1.摩擦力产生条件

摩擦力的产生条件为:两物体直接接触、相互挤压、接触面粗糙、有相对运动或相对运动的趋势。这四个条件缺一不可。

两物体间有弹力是这两物体间有摩擦力的必要条件。(没有弹力不可能有摩擦力)

2.滑动摩擦力大小

⑴在接触力中,必须先分析弹力,再分析摩擦力。 ⑵只有滑动摩擦力才能用公式F=μFN ,其中的F N 表示正压力,不一定等于重力G 。

【例6】如图所示,用跟水平方向成α角的推力F 推重量

为G 的木块沿天花板向右运动,木块和天花板间的动摩擦因

数为μ,求木块所受的摩擦力大小。

3.静摩擦力大小

⑴必须明确,静摩擦力大小不能用滑动摩擦定律

F=μFN 计算,只有当静摩擦力达到最大值时,其最大值一

般可认为等于滑动摩擦力,既F m =μFN

⑵静摩擦力的大小要根据物体的受力情况和运动情

况共同确定,其可能的取值范围是

0<F f ≤F m

【例7】 如图所示,A 、B 为两个相同木块,A 、B 间最大静摩擦力F m =5N,水平面光滑。拉力F 至少多大,A 、B 才会相对滑动?

解析:A 、B 间刚好发生相对滑动时,A 、B 间的相对运动状态处于一个临界状态,既可以认为发生了相对滑动,摩

擦力是滑动摩擦力,其大小等于最大静摩擦力5N ,也可以

认为还没有发生相对滑动,因此A 、B 的加速度仍然相等。分别以A 和整体为对象,运用牛顿第二定律,可得拉力大小至少为F =10N

点评:研究物理问题经常会遇到临界状态。物体处于临界状态时,可以认为同时具有两个状态下的所有性质。

4.摩擦力方向

⑴摩擦力方向和物体间相对运动(或相对运动趋势)的方向相反。

⑵摩擦力的方向和物体的运动方向可能成任意角度。通常情况下摩擦力方向可能和物体运动方向相同(作为动力),可能和物体运动方向相反(作为阻力),可能和物体速度方向垂直(作为匀速圆周运动的向心力)。在特殊情况下,可能成任意角度。

【例8】

小车向右做初速为零的匀加速运动,物体恰好沿车后壁匀

解析:由竖直方向合力为零可得F N =F sin α-G ,因此有:f =μ(F sinα-G ) 1

速下滑。试分析下滑过程中物体所受摩擦力的方向和物体速度方向的关系。

解析:

方向竖直向上,而物体相对于地面的速度方向不断改变

(竖直分速度大小保持不变,水平分速度逐渐增大),所

以摩擦力方向和运动方向间的夹角可能取90°和

180°间

的任意值。 点评:由上面的分析可知:无明显形变的弹力和静摩擦力都是被动力。就是说:弹力、静摩擦力的大小和方向都无法由公式直接计算得出,而是由物体的受力情况和运动情况共同决定的。

五、物体的受力分析

1.明确研究对象

在进行受力分析时,研究对象可以是某一个物体,也可以是保持相对静止的若干个物体。在解决比较复杂的问题时,灵活地选取研究对象可以使问题简洁地得到解决。研究对象确定以后,只分析研究对象以外的物体施予研究对象的力(即研究对象所受的外力),而不分析研究对象施予外界的力。

2.按顺序找力

先场力(重力、电场力、磁场力),后接触力;接触力中必须先弹力,后摩擦力(只有在有弹力的接触面之间才可能有摩擦力)。

3.只画性质力,不画效果力

画受力图时,只能按力的性质分类画力,不能按作用效果(拉力、压力、向心力等)画力,否则将出现重复。

4.需要合成或分解时,必须画出相应的平行四边形(或三角形)

在解同一个问题时,分析了合力就不能再分析分力;分析了分力就不

能再分析合力,千万不可重复。

【例9】 如图所示,倾角为θ的斜面A 固定在水

平面上。木块B 、C 的质量分别为M 、m ,始终保持相

对静止,共同沿斜面下滑。B 的上表面保持水平,A 、

B 间的动摩擦因数为μ。⑴当B 、C 共同匀速下滑;⑵当B 、

C 共同加速下滑时,分别求B 、C 所受的各力。

2 G 2

解析:⑴先分析C 受的力。这时以C 为研究对象,重力G 1=mg ,B 对C 的弹

力竖直向上,大小N 1= mg,由于C 在水平方向没有加速度,所以B 、C 间无

摩擦力,即f 1=0。

再分析B 受的力,在分析 B 与A 间的弹力N 2和摩擦

力f 2时,以BC 整体为对象较好,A 对该整体的弹力和摩

擦力就是A 对B 的弹力N 2和摩擦力f 2,得到B 受4个力

作用:重力G 2=Mg ,C 对B 的压力竖直向下,大小N 1= mg,

A 对B 的弹力N 2=(M +m ) g cos θ,A 对B 的摩擦力

f 2=(M +m ) g sin θ

由于B 、C 共同加速下滑,加速度相同,所以先以B 、C 整体为对象求A 对B 的弹力N 2、摩擦力f 2,并求出a ;再以C 为对象求B 、C 间的弹力、摩擦力。

这里,f 2是滑动摩擦力N 2=(M +m ) g cos θ, f 2=μN2=μ(M +m ) g cos θ

沿斜面方向用牛顿第二定律:(M +m ) g sin θ-μ(M +m ) g cos θ=(M +m ) a

可得a =g (sinθ-μcos θ) 。B 、C 间的弹力N 1、摩擦力f 1则应以C 为对象求得。

由于C 所受合力沿斜面向下,而所受的3个力的方向都在水平或竖直方向。这种情况下,比较简便的方法是以水平、竖直

方向建立直角坐标系,分解加速度a 。

分别沿水平、竖直方向用牛顿第二定律:

f 1=ma cos θ,mg-N 1= masin θ,

可得:f 1=mg (sinθ-μcos θ) cosθ N 1= mg(cosθ+μsin θ)cos θ

点评:由本题可以知道:①灵活地选取研究对象可以使问题简化;②灵活选定坐标系的方向也可以使计算简化;③在物体的受力图的旁边标出物体的速度、加速度的方向,有助于确定摩擦力方向,也有助于用牛顿第二定律建立方程时保证使合力方向和加速度方向相同。

【例10】 小球质量为m ,电荷为+q ,以初速度v

向右沿水平绝缘杆滑动,匀强磁场方向如图所示,球与

杆间的动摩擦因数为μ。试描述小球在杆上的运动情况。

解析:先分析小球的受力情况,再由受力情况确

定其运动情况。

小球刚沿杆滑动时,所受场力为:重力mg 方向

向下,洛伦兹力F f =qvB方向向上;再分析接触力:由

于弹力F N 的大小、方向取决于v 和m g 的大小关系,qB f N f

f 所以须分三种情况讨论:

⑴ v >m g ,在摩擦力作用下,v 、F f 、F N 、f 都逐渐减小,当v 减小qB

到等于m g 时达到平衡而做匀速运动;⑵ v

逐渐减小,而F N 、f 逐渐增大,故v 将一直减小到

零;⑶ v =m g ,F f =G, F N 、f 均为零,小球保持匀qB 速运动。

【例11】 一航天探测器完成对月球的探测任务后,在离开月球的过程中,由静止开始沿着与月球表面成一倾斜角的直线飞行,先加速运动,再匀

速运动。探测器通过喷气而获得推动力。以下关于喷气方向的描述中正确的是 A .探测器加速运动时,沿直线向后喷气

B .探测器加速运动时,竖直向下喷气

C .探测器匀速运动时,竖直向下喷气

D .探测器匀速运动时,不需要喷气

解析:探测器沿直线加速运动时,所受合力F 合方向与运动方向相同,而重力方向竖直向下,由平行四边形定则知推力方向必须斜向上方,因此喷气方向斜向下方。匀速运动时,所受合力为零,因此推力方向必须竖直向上,喷气方向竖直向下。选C

第一阶段高考总复习

附:

知识要点梳理 阅读课本理解和完善下列知识要点

(一)、力的概念

1.力是。

2.力的物质性是指。 3.力的相互性是,施力物体必然是受力物体,力总是成对的。

4.力的矢量性是指,形象描述力用

5.力的作用效果是或。

6.力可以按其和分类。

举例说明:

(二)、重力

1.概念2.产生条件3.大小g 为重力加速度,它的数值在地球上的最大,最小;在同一地理位置,离地面越高,g 值下,在地球表面附近我们认为重力是恒力。

4.方向

5.作用点—重心:质量均匀分布、有规则形状的物体重心在物体的 ,物体的重心 物体上(填一定或不一定)。

质量分布不均或形状不规则的薄板形物体的重心可采用 粗略确定。

(三)、弹力

1.概念2.产生条件(1);

(2) 。

3.大小:(1)与形变有关,一般用平衡条件或动力学规律求出。

式中的k 被称为 ,它的单位是 ,它由 决定;式中的x 是弹簧的 。

4.方向:与形变方向相反。

(1)轻绳只能产生拉力,方向沿绳子且指向 的方向;

(2)坚硬物体的面与面,点与面接触时,弹力方向 接触面(若

是曲面则是指其切面),且指向被压或被支持的物体。

(3)球面与球面之间的弹力沿半径方向,且指向受力物体。

(四)、摩擦力

1.产生条件:(1)两物体接触面 ;②两物体间存

在 ;

(2)接触物体间有相对运动( 摩擦力)或相对运动趋势

( 摩擦力)。

2.方向:(1)滑动摩擦力的方向沿接触面和 相反,与物

体运动方向 相同。

(2)静摩擦力方向沿接触面与物体的 相反。可以

根据平衡条件或牛顿运动定律判断。

3.大小:

(1)滑动摩擦力的大小: 式中的 ,不一

定等于物体的重力;式中的μ被称为动摩擦因数,它的数值由 决定。

(2)静摩擦力的大小除最大静摩擦力以外的静摩擦力

大小与正压力 比;静摩擦力的大小应根据平衡条件或牛顿运动定律来进行计算。

针对训练

1.下列关于力的说法, 正确的是( )

A .两个物体一接触就会产生弹力

B .物体的重心不一定在物体上

C .滑动摩擦力的方向和物体运动方向相反

第一阶段高考总复习

D .悬挂在天花板上的轻质弹簧在挂上重2N 的物体后伸长2cm 静止, 那么这根弹簧伸长1cm 后静止时, 它的两端各受到1N 的拉力

2.如图所示,在粗糙的水平面上叠放着物体A 和B ,A 和B 间的接触面也是粗糙的,如果用水平拉力F 拉A ,但A 、B 仍保持静止,则下面的说法中正确的是( )。

A .物体A 与地面间的静摩擦力的大小等于

B .物体A 与地面的静摩擦力的大小等于零

C .物体A 与B 间的静摩擦力的大小等于F

D .物体A 与B 间的静摩擦力的大小等于零

3.关于两物体之间的弹力和摩擦力,下列说法中正确的是( )

A .有摩擦力一定有弹力

B .摩擦力的大小与弹力成正比

C .有弹力一定有摩擦力

D .弹力是动力,摩擦力是阻力

4.如上图所示,用水平力F 将物体压在竖直墙壁上,保持静止状态,物体所受的摩擦力的大小(

) F

A .随F 的增大而增大 B .随F 的减少而减少

C .等于重力的大小 D .可能大于重力

5.用手握着一个玻璃杯,处于静止状态。如果将手握得更紧,手对玻璃杯的静摩擦力将 ,如果手的握力

向杯中倒入一些水(杯仍处于静止状态),

的静摩擦力将 。

6.一木块放在水平桌面上,在水平方向共受到两个拉力作用,拉力的大小如图所示,物体处于静止状态,(1)若只撤去10N 的拉力,则物体能否保持静止状态? ;(2)若只撤去2N 的力,物体能否保持静止状态? 。

7.如图所示,在μ=0.2的粗糙水平面上,

为10kg 的物体以一定的速度向右运动,同

水平向左的力F 作用于物体上,其大小为不变,而手对杯有一质量时还有一10N ,则物体受到的摩擦力大小为______,方向为_______.(g 取10N/kg)

8.如图所示,重20N 的物体,在动摩擦因数为0.1的水平面上向左运动,同时受到大小为10N 水平向右的力F 作用,物体所受摩擦力的大小为 ,方向为 。

第 13 页 共 14 页

参考答案

1.BD

2.AD

3.A

4.C

5.不变;变大

6.最大静摩擦力f m ≥8N ,若只撤去10N 的拉力,则物体能保持静止;若只撤去2N 的力,物体可能保持静止也可能产生滑动。

7.20N ,水平向左

8.2N ,水平向右

第 14 页 共 14 页


相关内容

  • 教材研讨材料
  • 各位老师大家好:很高兴和大家一起交流学习,我一直在担任高三 年级的教学,今年是第一次教高一教材,授课方式由复习课转为新授课,教材又是新的,在教学方法上也是在尝试.摸索.所以想借这次活动和大家一起交流.一起探讨,对我来说也是一次很好的学习机会. 首先我先介绍一下我们在整体教学上的一点想法.开学初,我们 ...

  • 28.1圆的基本概念和性质教学反思
  • 28.1圆的概念和性质教学反思 刘荣格 本节课主要探究圆的定义和圆的有关概念,本节课的内容是对已学过的旋转及轴对称等知识的巩固,也为本章即将要探究的圆的性质.圆与圆的位置关系打下基础. 根据课程标准的要求,结合本课时内容的地位和作用.以及初三学生的认知结构,确定以下教学目标: 1.知识与技能目标: ...

  • 对维特根斯坦"家族相似"概念的澄清
  • 作者:李红 哲学研究 2004年06期 本文的标题系因<哲学研究>2003年第11期董志强先生<对维特根斯坦"家族相似" 理论的批判>一文而起.笔者认为,维特根斯坦的"家族相似"概念具有重要的哲学史 意义和思想魅力,同时也容易引起明显的 ...

  • 分数的加减法(二)
  • 第一单元关注污染 --分数的加减法(二) 尊敬的各位领导.老师,大家好!今天我研读的教材是青岛版小学数学五年级上册第一单元--关注污染--分数的加减法(二).下面我将从教学目标.教材编排.教学建议三个方面谈一下我对本单元教材的认识. 一.教学目标 <分数加减法(二)>这一内容,无论是人教 ...

  • 复变函数知识点梳理
  • 第一章:复数与复变函数 这一章主要是解释复数和复变函数的相关概念,大部分内容与实变函数近似,不难理解. 一. 复数及其表示法 介绍复数和几种新的表示方法,其实就是把表示形式变来变去,方便和其他的数学知识联系起来. 二. 复数的运算 高中知识,加减乘除,乘方开方等.主要是用新的表示方法来解释了运算的几 ...

  • 高中数学优秀教研案例
  • 2- 课题:用二分法求方程的近似解 3- 函数的单调性(21) 4- <函数的概念>教学案例设计(26) 5- <几何概型及均匀随机数第一节>教学设计(32) 6- 对数函数及其性质(第1课时)(37) 7- 直线.圆的位置关系(42) 2.1.2 系统抽样 尤溪一中 姜志茂 ...

  • 知识结构图
  • 八年级数学青岛版上册知识框图 全等三角形 全等三角形 全等三角形的概念 全等三角形的性质:对应边相等,对应角相等 怎样判定三角形全等:SAS ASA AAS SSS 尺规作图 图形的轴对称 图形的轴对称 轴对称的概念 两个图形关于直线成轴对称 成轴对称的图形的性质:对应边相等,对应角相等 轴对称的基 ...

  • 小学数学分数的基本性质教学设计
  • <分数的基本性质>教学设计 朝阳小学 周华 教材分析: <分数的基本性质>是义务教育课程标准实验教材人教版五年级下册第四单元的一个重要内容.该教学内容是以分数的意义.分数与除法的关系.整数除法中商不变的规律这些知识为基础的.分数的基本性质是建立在分数大小相等这一概念基础之上的 ...

  • 华东理工大学物理化学考试大纲
  • 工科专业<物理化学>教学大纲 课程编号:D1013156 英文译名:Physical Chemistry 课程性质:核心课程 适用专业.年级:化工.材料.生工.环境等专业,2年级下学期.3年级上学期 开课系及教研室:化学系物理化学教研室 学分数:6-8学分 总学时数:90-128学时 理 ...

  • 平行四边形单元教材分析
  • 第十九章平行四边形教材分析 (一)本章知识解读. 一.四边形是人们日常生活中应用较广的一种几何图形,尤其是平行四边形.矩形.菱形.正方形.梯形等特殊四边形的用处更多.四边形既是几何中的基本图形,也是"图形与几何"领域的主要研究对象之一.本章是在前面学段学过的四边形知识,本学段学过 ...