最新2015北师大版五年级下册数学知识点总结

2015北师大五年级下册数学知识点总结

分数的加法和减法 知识要点 一、分数的意义

1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。 二、分数与除法的关系,真分数和假分数

1、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母。 2、真分数和假分数:

① 分子比分母小的分数叫做真分数,真分数小于1。

② 分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。 ③ 由整数部分和分数部分组成的分数叫做带分数。 2、假分数与带分数的互化:

① 把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。

② 把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。 三、分数的基本性质

分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。 2、分数的大小比较:

① 同分母分数,分子大的分数就大,分子小的分数就小; ② 同分子分数,分母大的分数反而小,分母小的分数反而大。

③ 异分母分数,先化成同分母分数(分数单位相同),再进行比较。(依据分数的基本性质进行变化) 四、约分(最简分数)

1、最简分数:分子和分母只有公因数1的分数叫做最简分数。

2、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。 (并不是一定要把分数化成与它相等的最简分数才叫约分;但一般要约到最简分数为止)

注意:分数加减法中,计算结果能约分的,一般要约分成最简分数。 五、分数和小数的互化:

1、小数化分数:一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几„„,能约分的必须约成最简分数;

2、分数化小数:用分子除以分母,除不尽的按要求保留几位小数。(一般保留三位小数。) 3、分数和小数比较大小:一般把分数变成小数后比较更简便。 六、分数的加法和减法 1、真分数加减法

(1) 同分母分数加、减法 (分母不变,分子相加减) (2) 异分母分数加、减法 (通分后再加减) (3) 分数加减混合运算:同整数。 (4) 结果要是最简分数

2、带分数加减法: 带分数相加减,整数部分和分数部分分别相加减,再把所得的结果合并起来。

3、(1)同分母分数加、减法

①同分母分数加、减法:

同分母分数相加、减,分母不变,只把分子相加减。 ②计算的结果,能约分的要约成最简分数。 (2)异分母分数加、减法

①分母不同,也就是分数单位不同,不能直接相加、减。 ②异分母分数的加减法:

异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算。 (3)分数加减混合运算

①分数加减混合运算的运算顺序与整数加减混合运算的顺序相同。

在一个算式中,如果有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算。

②整数加法的交换律、结合律对分数加法同样适用。

长方体(一) 长方体的认识

知识点:1、认识长方体、正方体,了解各部分的名称。

表面平平的部分称为面;两面相交便形成了一条棱;而三条棱又交于一点,这个点叫作顶点。

左面的面叫左面,右面的面叫右面,上面的面叫上面,下面的面叫下面(或叫底面),前面的面叫前面,后面的面叫后面。

长方体有12条棱,这12条棱中有4条长、4条宽和4条高。正方体的12条棱的长度都相等。

4、长方体的棱长总和=(长+宽+高)×4或者是长×4+宽×4+高×4 正方体的棱长总和=棱长×12

展开与折叠

知识点:正方体展开共11种 1—4—1 型 6个

2—3—1 型 3个 (一个“探头”)

2—2—2 型 1个 楼梯形

型 1个 两个“探头”

注意:(1)田字型与凹字型的全错。 (2)正方体展开至少和最多都只剪开7条棱。

长方体的表面积 知识点:

1、表面积的意义:是指六个面的面积之和。 长方体和正方体表面积的计算方法:

S 长=(长×宽+长×高+宽×高)×2; S正=棱长×棱长×6。 露在外面的面 知识点:

1、在观察中,通过不同的观察策略进行观察。

如:一种是看每个纸箱露在外面的面,再加到一起;另一种是分别从正面、上面、侧面进行不同角度的观察,看每个角度都能看到多少个面,再加到一起。 2发现并找出堆放的正方体的个数与露在外面的面的面数的变化规律。

分数乘法

分数乘法(一)

知识点:1、理解分数乘整数的意义:数乘整数的意义同整数乘法的意义相同,就是求几个相同加数的和的简便运算。

2、分数乘整数的计算方法:分母不变,分子和整数相乘的积作分子。能约分的要约成最简分数。

3、计算时,应该先约分再计算。 分数乘法(二)

知识点 :1、整数乘分数的意义:求一个数的几分之几是多少。 2、理解打折的含义。例如:九折,是指现价是原价的十分之九。 补充知识点:打几几折就是指现价是原价的百分之几,例如八五折,是指现价是原价的百分之八十五。 分数乘法(三)

知识点:1、分数乘分数的计算方法:分子相乘做分子,分母相乘做分母,能约分的可以先约分。(计算结果要求是最简分数。)

2、比较分数相乘的积与每一个乘数的大小:真分数相乘积小于任何一个乘数;真分数与假分数相乘积大于真分数小于假分数。

长方体(二) 体积与容积

知识点:1、体积与容积的概念:

体积:物体所占空间的大小叫作物体的体积。(从外部测量) 容积:容器所能容纳入体的体积叫做物体的容积。(从内部测量) 注意:①同一个容器,体积大于容积;当容器壁很薄时,容积近等于体积。如果容器壁忽略不计时,容积等于体积。

②几个物体拼在一起时,它们的体积不发生改变(它们占空间的大小没有发生变化) 体积单位

知识点:1、认识体积、容积单位

常用的体积单位:立方米(米)、立方分米(分米)、立方厘米(厘米)

33

分米厘米常用的容积单位:升、毫升、1升=1、1毫升=1

3

3

3

2、感受1立方米、1立方分米、1立方厘米以及1升、1毫升的实际意义: ①手指头、苹果、火柴盒体积较小,可用厘米作单位

3分米②西瓜、粉笔盒体积稍大,可以用作单位

3

③矿泉水瓶、墨水瓶可以用毫升作单位

④热水瓶等较大盛液体容器、冰箱可用生升作单位 ⑤我们饮用的自来水用“立方米”作单位。

长方体的体积

知识点:1、长方体、正方体体积的计算方法 ①长方体的体积=长×宽×高,

如果长用a 表示,宽用b 表示,高用h 表示,体积用V 表示, 体积可表示为V=abh

②正方体的体积=棱长*棱长*棱长,

如果棱长用a 表示,体积可表示为V=a =a×a ×a 长方体(正方体)的体积=底面积×高 V=Sh

2、能利用长方体(正方体)的体积及其他两个条件求出问题。如:长方体的高=体积÷长÷宽 长=体积÷高÷宽 宽=体积÷高÷长

注意:计算体积时,单位一定要统一;表面积与体积表示的意义不一样,单位不

3

同,无法比较大小 体积单位的换算

知识点:1、体积、容积单位之间的进率:相邻体积、容积单位间进率为1000 1米=1000分米 1分米=1000厘米

33

分米厘米1升=1 1毫升=1 1升=1000毫升

3

3

3

3

体积、容积单位之间的换算方法:体积、容积单位之间的换算,由高级单位化成低级单位乘进率,由低级单位化成高级单位除以进率 《分数除法》 倒数

知识点:1、理解倒数的意义: 如果两个数的乘积是1,那么我们称其中一个数是另一个数的倒数。倒数是对两个数来说的,并不是孤立存在的。 2、求倒数的方法:把这个数的分子和分母调换位置。

3、1的倒数仍是1;0没有倒数。0没有倒数,是因为在分数中,0不能做分母。 分数除法(一)

知识点:1、分数除以整数的意义及计算方法。分数除以整数,就是求这个数的几分之几是多少。分数除以整数(0除外)等于乘这个数的倒数。 分数除法(二)

知识点:1、一个数除以分数的意义和基本算理:一个数除以分数的意义与整数除法的意义相同;一个数除以分数等于乘这个数的倒数。

2、一个数除以分数的计算方法: 除以一个数(0除外)等于乘这个数的倒数。

3、比较商与被除数的大小。

除数小于1,商大于被除数;除数等于1。商等于被除数; 除数大于1,商小于被除数。 分数除法(三)

知识点:1、列方程“求一个数的几分之几是多少”的方法:

(1)、解方程法:设未知数,这里的单位“1”未知,所以设单位“1”为x ,再根据分数乘法的意义列出等量关系式解这个方程。

(2)、算术方法:用部分量除以它所占整体的几分之几(对应量÷对应分率=标准量)

2、判断单位“1”:

①一般来说,某个数的几分之几,“某个数”就是单位“1”

②数比谁多几分之几或少几分之几,“比”字后面的数量就是单位“1” ③谁是谁的几分之几,“是”字后面的数量就是单位“1”

3、理解打折的含义:“打折”指的是现价是原价的十分之几或百分之几十,把原价看成单位“1” 如:打8折就是指现价是原价的十分之八 打八五折就是指现价是原价的百分之八十五 位置重要知识点整理

1、数对:一般由两个数组成。

作用:数对可以表示物体的位置,也可以确定物体的位置。 2、行和列的意义:竖排叫做列,横排叫做行。

3、数对表示位置的方法:先表示列,再表示行。用括号把代表列和行的数字或字母括起来,再用逗号隔开。例如:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。

注:(1)在平面直角坐标系中X 轴上的坐标表示列,y 轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。

(2)数对(X ,5)的行号不变,表示一条横线,(5,Y )的列号不变,表示一条竖线。(有一个数不确定,不能确定一个点)

行号 ( 列 ,

竖排叫列 横排叫行 (从左往右看)(从下往上看)

4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。 如:(2,4)和(2,7)都在第2列上。

5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。如:(3,6)和(1,6)都在第6行上。 6、图形平移变化规律:

(1)图形向左平移,行数不变,列数减去平移的格数。 图形向右平移,行数不变,列数加上平移的格数。 (2) 图形向上平移,列数不变,行数加上平移的格数。 图形向下平移,列数不变,行数减去平移的格数。 方程知识点归纳总结

1、 小数乘整数的意义——求几个相同加数的和的简便运算。 如1:3χ表示χ的3倍是多少或3个χ的和的简便运算。 如2:1.5χ表示χ的1.5倍是多少或1.5个χ的和的简便运算。

2、 在乘法里:一个因数扩大几倍,另一个因数缩小相同的倍数,积不变。(这叫做积不变性质)

3、 在除法里:被除数和除数同时扩大(或缩小)相同的倍数,商的大小不变。(这叫做商不变性质)

4. 乘法分配律: a×(b ± c) = a×b ± a×c

5、在含有字母的式子里,字母中间的乘号可以简记“·”,也可以省略不写。(注意:加号、减号、除号以及数与数之间的乘号不能省略。字母与数字相乘简写时,数字写在字母前面。)

6、a×a可以写作a·a或a² ,a²读作a 的平方或a 的二次方。 2a表示a+a 7、方程:含有未知数的等式称为方程。(所有的方程都是等式,但等式不一定都是等式。)

使方程左右两边相等的未知数的值,叫做方程的解。 求方程的解的过程叫做解方程。

(方程的解是一个数;解方程是一个计算过程。) 8、解方程原理:天平平衡。

等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。 9、加、减、乘、除运算数量关系式:

加法:和=加数+加数 一个加数=和-两一个加数

减法:差=被减数-减数 被减数=差+减数 减数=被减数-差 乘法:积=因数×因数 一个因数=积÷另一个因数

除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商

10、解方程的方法:

方法一:利用天平平衡原理(即等式的性质)解方程; 方法二:利用加、减、乘、除运算数量关系解方程。 11、常用数量关系式:

路程=(速度)×(时间) 速度=(路程)÷(时间) 时间=(路程)÷(速度) 总价=(单价)×(数量) 单价=(总价)÷(数量) 数量=(总价)÷(单价) 总产量=(单产量)×(数量) 单产量=(总产量)÷(数量) 数量=(总产量)÷(单价 )

大数-小数=相差数 大数-相差数=小数 小数+相差数=大数 一倍量×倍数=几倍量 几倍量÷倍数=一倍量 几倍量÷一倍量=倍数

工作总量=(工作效率)×(工作时间) 工作效率=(工作总量)÷(工作时间) 工作时间=(工作总量)÷(工作效率)

12、列方程解应用题的一般步骤:

1、弄清题意,找出未知数,并用x 表示。(解 设) 2、找出应用题中数量之间的相等关系,列方程。(找关系) 3、解方程。(列)

4、检验,写出答案。(验)

2015北师大五年级下册数学知识点总结

分数的加法和减法 知识要点 一、分数的意义

1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。 二、分数与除法的关系,真分数和假分数

1、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母。 2、真分数和假分数:

① 分子比分母小的分数叫做真分数,真分数小于1。

② 分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。 ③ 由整数部分和分数部分组成的分数叫做带分数。 2、假分数与带分数的互化:

① 把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。

② 把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。 三、分数的基本性质

分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。 2、分数的大小比较:

① 同分母分数,分子大的分数就大,分子小的分数就小; ② 同分子分数,分母大的分数反而小,分母小的分数反而大。

③ 异分母分数,先化成同分母分数(分数单位相同),再进行比较。(依据分数的基本性质进行变化) 四、约分(最简分数)

1、最简分数:分子和分母只有公因数1的分数叫做最简分数。

2、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。 (并不是一定要把分数化成与它相等的最简分数才叫约分;但一般要约到最简分数为止)

注意:分数加减法中,计算结果能约分的,一般要约分成最简分数。 五、分数和小数的互化:

1、小数化分数:一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几„„,能约分的必须约成最简分数;

2、分数化小数:用分子除以分母,除不尽的按要求保留几位小数。(一般保留三位小数。) 3、分数和小数比较大小:一般把分数变成小数后比较更简便。 六、分数的加法和减法 1、真分数加减法

(1) 同分母分数加、减法 (分母不变,分子相加减) (2) 异分母分数加、减法 (通分后再加减) (3) 分数加减混合运算:同整数。 (4) 结果要是最简分数

2、带分数加减法: 带分数相加减,整数部分和分数部分分别相加减,再把所得的结果合并起来。

3、(1)同分母分数加、减法

①同分母分数加、减法:

同分母分数相加、减,分母不变,只把分子相加减。 ②计算的结果,能约分的要约成最简分数。 (2)异分母分数加、减法

①分母不同,也就是分数单位不同,不能直接相加、减。 ②异分母分数的加减法:

异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算。 (3)分数加减混合运算

①分数加减混合运算的运算顺序与整数加减混合运算的顺序相同。

在一个算式中,如果有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算。

②整数加法的交换律、结合律对分数加法同样适用。

长方体(一) 长方体的认识

知识点:1、认识长方体、正方体,了解各部分的名称。

表面平平的部分称为面;两面相交便形成了一条棱;而三条棱又交于一点,这个点叫作顶点。

左面的面叫左面,右面的面叫右面,上面的面叫上面,下面的面叫下面(或叫底面),前面的面叫前面,后面的面叫后面。

长方体有12条棱,这12条棱中有4条长、4条宽和4条高。正方体的12条棱的长度都相等。

4、长方体的棱长总和=(长+宽+高)×4或者是长×4+宽×4+高×4 正方体的棱长总和=棱长×12

展开与折叠

知识点:正方体展开共11种 1—4—1 型 6个

2—3—1 型 3个 (一个“探头”)

2—2—2 型 1个 楼梯形

型 1个 两个“探头”

注意:(1)田字型与凹字型的全错。 (2)正方体展开至少和最多都只剪开7条棱。

长方体的表面积 知识点:

1、表面积的意义:是指六个面的面积之和。 长方体和正方体表面积的计算方法:

S 长=(长×宽+长×高+宽×高)×2; S正=棱长×棱长×6。 露在外面的面 知识点:

1、在观察中,通过不同的观察策略进行观察。

如:一种是看每个纸箱露在外面的面,再加到一起;另一种是分别从正面、上面、侧面进行不同角度的观察,看每个角度都能看到多少个面,再加到一起。 2发现并找出堆放的正方体的个数与露在外面的面的面数的变化规律。

分数乘法

分数乘法(一)

知识点:1、理解分数乘整数的意义:数乘整数的意义同整数乘法的意义相同,就是求几个相同加数的和的简便运算。

2、分数乘整数的计算方法:分母不变,分子和整数相乘的积作分子。能约分的要约成最简分数。

3、计算时,应该先约分再计算。 分数乘法(二)

知识点 :1、整数乘分数的意义:求一个数的几分之几是多少。 2、理解打折的含义。例如:九折,是指现价是原价的十分之九。 补充知识点:打几几折就是指现价是原价的百分之几,例如八五折,是指现价是原价的百分之八十五。 分数乘法(三)

知识点:1、分数乘分数的计算方法:分子相乘做分子,分母相乘做分母,能约分的可以先约分。(计算结果要求是最简分数。)

2、比较分数相乘的积与每一个乘数的大小:真分数相乘积小于任何一个乘数;真分数与假分数相乘积大于真分数小于假分数。

长方体(二) 体积与容积

知识点:1、体积与容积的概念:

体积:物体所占空间的大小叫作物体的体积。(从外部测量) 容积:容器所能容纳入体的体积叫做物体的容积。(从内部测量) 注意:①同一个容器,体积大于容积;当容器壁很薄时,容积近等于体积。如果容器壁忽略不计时,容积等于体积。

②几个物体拼在一起时,它们的体积不发生改变(它们占空间的大小没有发生变化) 体积单位

知识点:1、认识体积、容积单位

常用的体积单位:立方米(米)、立方分米(分米)、立方厘米(厘米)

33

分米厘米常用的容积单位:升、毫升、1升=1、1毫升=1

3

3

3

2、感受1立方米、1立方分米、1立方厘米以及1升、1毫升的实际意义: ①手指头、苹果、火柴盒体积较小,可用厘米作单位

3分米②西瓜、粉笔盒体积稍大,可以用作单位

3

③矿泉水瓶、墨水瓶可以用毫升作单位

④热水瓶等较大盛液体容器、冰箱可用生升作单位 ⑤我们饮用的自来水用“立方米”作单位。

长方体的体积

知识点:1、长方体、正方体体积的计算方法 ①长方体的体积=长×宽×高,

如果长用a 表示,宽用b 表示,高用h 表示,体积用V 表示, 体积可表示为V=abh

②正方体的体积=棱长*棱长*棱长,

如果棱长用a 表示,体积可表示为V=a =a×a ×a 长方体(正方体)的体积=底面积×高 V=Sh

2、能利用长方体(正方体)的体积及其他两个条件求出问题。如:长方体的高=体积÷长÷宽 长=体积÷高÷宽 宽=体积÷高÷长

注意:计算体积时,单位一定要统一;表面积与体积表示的意义不一样,单位不

3

同,无法比较大小 体积单位的换算

知识点:1、体积、容积单位之间的进率:相邻体积、容积单位间进率为1000 1米=1000分米 1分米=1000厘米

33

分米厘米1升=1 1毫升=1 1升=1000毫升

3

3

3

3

体积、容积单位之间的换算方法:体积、容积单位之间的换算,由高级单位化成低级单位乘进率,由低级单位化成高级单位除以进率 《分数除法》 倒数

知识点:1、理解倒数的意义: 如果两个数的乘积是1,那么我们称其中一个数是另一个数的倒数。倒数是对两个数来说的,并不是孤立存在的。 2、求倒数的方法:把这个数的分子和分母调换位置。

3、1的倒数仍是1;0没有倒数。0没有倒数,是因为在分数中,0不能做分母。 分数除法(一)

知识点:1、分数除以整数的意义及计算方法。分数除以整数,就是求这个数的几分之几是多少。分数除以整数(0除外)等于乘这个数的倒数。 分数除法(二)

知识点:1、一个数除以分数的意义和基本算理:一个数除以分数的意义与整数除法的意义相同;一个数除以分数等于乘这个数的倒数。

2、一个数除以分数的计算方法: 除以一个数(0除外)等于乘这个数的倒数。

3、比较商与被除数的大小。

除数小于1,商大于被除数;除数等于1。商等于被除数; 除数大于1,商小于被除数。 分数除法(三)

知识点:1、列方程“求一个数的几分之几是多少”的方法:

(1)、解方程法:设未知数,这里的单位“1”未知,所以设单位“1”为x ,再根据分数乘法的意义列出等量关系式解这个方程。

(2)、算术方法:用部分量除以它所占整体的几分之几(对应量÷对应分率=标准量)

2、判断单位“1”:

①一般来说,某个数的几分之几,“某个数”就是单位“1”

②数比谁多几分之几或少几分之几,“比”字后面的数量就是单位“1” ③谁是谁的几分之几,“是”字后面的数量就是单位“1”

3、理解打折的含义:“打折”指的是现价是原价的十分之几或百分之几十,把原价看成单位“1” 如:打8折就是指现价是原价的十分之八 打八五折就是指现价是原价的百分之八十五 位置重要知识点整理

1、数对:一般由两个数组成。

作用:数对可以表示物体的位置,也可以确定物体的位置。 2、行和列的意义:竖排叫做列,横排叫做行。

3、数对表示位置的方法:先表示列,再表示行。用括号把代表列和行的数字或字母括起来,再用逗号隔开。例如:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。

注:(1)在平面直角坐标系中X 轴上的坐标表示列,y 轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。

(2)数对(X ,5)的行号不变,表示一条横线,(5,Y )的列号不变,表示一条竖线。(有一个数不确定,不能确定一个点)

行号 ( 列 ,

竖排叫列 横排叫行 (从左往右看)(从下往上看)

4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。 如:(2,4)和(2,7)都在第2列上。

5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。如:(3,6)和(1,6)都在第6行上。 6、图形平移变化规律:

(1)图形向左平移,行数不变,列数减去平移的格数。 图形向右平移,行数不变,列数加上平移的格数。 (2) 图形向上平移,列数不变,行数加上平移的格数。 图形向下平移,列数不变,行数减去平移的格数。 方程知识点归纳总结

1、 小数乘整数的意义——求几个相同加数的和的简便运算。 如1:3χ表示χ的3倍是多少或3个χ的和的简便运算。 如2:1.5χ表示χ的1.5倍是多少或1.5个χ的和的简便运算。

2、 在乘法里:一个因数扩大几倍,另一个因数缩小相同的倍数,积不变。(这叫做积不变性质)

3、 在除法里:被除数和除数同时扩大(或缩小)相同的倍数,商的大小不变。(这叫做商不变性质)

4. 乘法分配律: a×(b ± c) = a×b ± a×c

5、在含有字母的式子里,字母中间的乘号可以简记“·”,也可以省略不写。(注意:加号、减号、除号以及数与数之间的乘号不能省略。字母与数字相乘简写时,数字写在字母前面。)

6、a×a可以写作a·a或a² ,a²读作a 的平方或a 的二次方。 2a表示a+a 7、方程:含有未知数的等式称为方程。(所有的方程都是等式,但等式不一定都是等式。)

使方程左右两边相等的未知数的值,叫做方程的解。 求方程的解的过程叫做解方程。

(方程的解是一个数;解方程是一个计算过程。) 8、解方程原理:天平平衡。

等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。 9、加、减、乘、除运算数量关系式:

加法:和=加数+加数 一个加数=和-两一个加数

减法:差=被减数-减数 被减数=差+减数 减数=被减数-差 乘法:积=因数×因数 一个因数=积÷另一个因数

除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商

10、解方程的方法:

方法一:利用天平平衡原理(即等式的性质)解方程; 方法二:利用加、减、乘、除运算数量关系解方程。 11、常用数量关系式:

路程=(速度)×(时间) 速度=(路程)÷(时间) 时间=(路程)÷(速度) 总价=(单价)×(数量) 单价=(总价)÷(数量) 数量=(总价)÷(单价) 总产量=(单产量)×(数量) 单产量=(总产量)÷(数量) 数量=(总产量)÷(单价 )

大数-小数=相差数 大数-相差数=小数 小数+相差数=大数 一倍量×倍数=几倍量 几倍量÷倍数=一倍量 几倍量÷一倍量=倍数

工作总量=(工作效率)×(工作时间) 工作效率=(工作总量)÷(工作时间) 工作时间=(工作总量)÷(工作效率)

12、列方程解应用题的一般步骤:

1、弄清题意,找出未知数,并用x 表示。(解 设) 2、找出应用题中数量之间的相等关系,列方程。(找关系) 3、解方程。(列)

4、检验,写出答案。(验)


相关内容

  • 2015北师大二年级下册数学教案[拨一拨]
  • (认识数位顺序.万以内数的读写) 课型 : 新授课 教学内容 : 北师大版二年级数学下册书本第24至25页. 教学目标: 1. 知识目标: 借助直观模型认识数位顺序表,感受数的构成和计数单位之间的关系. 通过在计数器上拨数等操作活动,学习读写万以内的数. 2. 能力目标: 通过用多种形式表示数的活动 ...

  • 2015北师大版四年级数学下册--解方程(一)
  • 解方程(一)教学设计 金土完小 牟全洲 教学目标: 1.结合具体情境,类比等式变形的过程抽象出等式的性质,了解等式性质是解方程的依据 2.会用等式性质解形如x+5=12的简单方程. 3.培养观察.分析概括的能力. 教学重点: 能用等式的性质解简单的方程. 教学难点: 了解等式的性质. 教具准备: 课 ...

  • 最新小学数学,语文英语电子课本汇编
  • 昨天唤不回,明天不确实,你把握的就是今天. (请按各专辑上的停止键`口'关停不听专辑) 光景不待人,须叟发成丝. --李白 盛年不重来,一日难再晨,及时当勉励,岁月不待人. --陶渊明 小学数学电子课本 明日复明日,明日何其多,我生待明日,万事成蹉跎.世人若被明日累,春去秋来老将至.朝看水东流,暮看 ...

  • 2016最新北师大版四年级下册数学[街心广场]教学设计
  • 北师大版四年级数学下册第三单元<街心广场>教学设计 金土完小 牟全洲 教学内容:北师大版小学四年级下册第三单元街心广场(积的小数位数与乘数的小数位数的关系) 教材简析:这部分内容是在学生掌握了小数乘法的意义以及小数点位置移动引起小数大小变化的规律的基础上展开教学的,为接下来探究小数乘法的 ...

  • 小学语文电子课本
  • 首页 小升初 课程信息 重点中学 奥数题库 超常儿童 一年级 二年级 三年级 四年级 五年级 六年级 小学数学网 互动:小升初论坛 竞赛考级 作文投稿 e度访谈 杯赛:华杯赛 迎春杯 学而思杯 走美杯 希望杯 重点中学:人大附中 北京四中 实验中学 更多 新闻资讯 名校资讯 占坑 简历 专家 面试 ...

  • 2014年最新北师大版小学一年级数学下册期末考试试卷网页版
  • 2014年最新北师大版一年级数学下册期末试卷 姓名:__________   成绩:__________ 一.填一填 3. 比大小. 68○86            47○37                 30+25○25+30 100○88         40+9○49           ...

  • 2016最新北师大版一年级下册数学[小小养殖场]教案2
  • <小小养殖场>教案 教学内容: 北师大版一年级数学下册第三单元<小小养殖场>. 教学目标: 1.结合生活实际,理解"多一些""多得多""少一些""少得多"和"差不多"的含义. ...

  • 小学高年级教研组工作计划范本
  • 小学高年级教研组工作计划范本 一. 指导思想 以党的十七大精神为指导,以全面实施素质教育为总目标,全面实施课程改革,以提高教师专业素质为关键,狠抓教学规范建设,抓常规养习惯,坚持以人为本的观念,以求真.务实.创新的工作作风,积极开展教学改革研究,认真学习<新课程标准>,进一步创新小班化教 ...

  • 2014最新北师大版初中数学教材目录
  • 2014年新版北师大初中数学教材目录 七年级上册 第一章 丰富的图形世界 第1节.生活中的立体图形 2.展开与折叠 3.截一个几何体 4.从三个不同方向看物体的形状 第二章 有理数及其运算 1.有理数 2.数轴 3.绝对值 4.有理数的加法 5.有理数的减法 6.有理数的加减混合运算 7.有理数的乘 ...