高压共轨电控燃油喷射系统主要由电控单元、高压油泵、蓄压器(共轨管)、电控喷油器以及各种传感器等组成。低压燃油泵将燃油输入高压油泵,高压油泵将燃油加压送入高压油轨(蓄压器),高压油轨中的压力由电控单元根据油轨压力传感器测量的油轨压力以及需要进行调节,高压油轨内的燃油经过高压油管,根据机器的运行状态,由电控单元从预设的 map 图中确定合适的喷油定时、喷油持续期由电液控制的电子喷油器将燃油喷入气缸。
1、高压油泵
高压油泵的供油量的设计准则是必须保证在任何情况下的柴油机的喷油量与控制油量之和的需求以及起动和加速时的油量变化的需求。由于共轨系统中喷油压力的产生于燃油喷射过程无关,且喷油正时也不由高压油泵的凸轮来保证,因此高压油泵的压油凸轮可以按照峰值扭矩最低、接触应力最小和最耐磨的设计原则来设计凸轮。
bosch 公司采用由柴油机驱动的三缸径向柱塞泵来产生高达 135Mpa 的压力。该高压油泵在每个压油单元中采用了多个压油凸轮,使其峰值扭矩降低为传统高压油泵的 1/9 ,负荷也比较均匀,降低了运行噪声。该系统中高压共轨腔中的压力的控制是通过对共轨腔中燃油的放泄来实现的,为了减小功率损耗,在喷油量较小的情况下,将关闭三缸径向柱塞泵中的一个压油单元使供油量减少。
日本电装公司的ECD-U2高压油泵采用了一个三作用凸轮的直列泵来产生高压。
该高压油泵对油量的控制采用了控制低压燃油有效进油量的方法,该方法使高压油泵不产生额外的功率消耗,但需要确定控制脉冲的宽度和控制脉冲与高压油泵凸轮的相位关系,控制系统比较复杂。其基本原理:
a、柱塞下行,控制阀开启,低压燃油经控制阀流入柱塞腔;
b、柱塞上行,但控制阀中尚未通电,处于开启状态,低压燃油经控制阀流回低压腔;
c、在达到供油量定时时,控制阀通电,使之关闭,回流油路被切断,柱塞腔中的燃油被压缩,燃油经出油阀进入高压油轨。利用控制阀关闭时间的不同,控制进入高压油轨的油量的多少,从而达到控制高压油轨压力的目的;
d、凸轮经过最大升程后,柱塞进入下降行程,柱塞腔内的压力降低,出油阀关闭,停止供油,这时控制阀停止供电,处于开启状态,低压燃油进入柱塞腔进入下一个循环。
2、高压油轨(共轨管)
共轨管将供油泵提供的高压燃油分配到各喷油器中,起蓄压器的作用, ECD-U2 系统的共轨管如图 4 所示。它的容积应削减高压油泵的供油压力波动和每个喷油器由喷油过程引起的压力震荡,使高压油轨中的压力波动控制在 5Mpa 之下。但其容积又不能太大,以保证共轨有足够的压力响应速度以快速跟踪柴油机工况的变化。 ECD-U2 系统的高压泵的最大循环供油量为 600毫升,共轨管容积为 94000毫升。
高压共轨管上还安装了压力传感器、液流缓冲器(限流器)和压力限制器。压力传感器向 ECU 提供高压油轨的压力信号;液流缓冲器(限流器)保证在喷油器出现燃油漏泄故障时切断向喷油器的供油,并可减小共轨和高压油管中的压力波动;压力限制器保证高压油轨在出现压力异常时,迅速将高压油轨中的压力进行放泄。
从上述分析可见,精确设计高压共轨管的容积和形状适合确定的柴油机是非常关键的。
3、电控喷油器
电控喷油器是共轨式燃油系统中最关键和最复杂的部件,它的作用根据 ECU 发出的控制信号,通过控制电磁阀的开启和关闭,将高压油轨中的燃油以最佳的喷油定时、喷油量和喷油率喷入柴油机的燃烧室。
BOSCH 和 ECD-U2 的电控喷油器的结构基本相似,都是由于传统喷油器相似的喷油嘴、控制活塞、控制量孔、控制电磁阀组成,图 5 为 BOSCH 的电控喷油器结构图。在电磁阀不通电时,电磁阀关闭控制活塞顶部的量孔 A ,高压油轨的燃油压力通过量孔 Z 作用在控制活塞上,将喷嘴关闭;当电磁阀通电时,量孔 A 被打开,控制室的压力迅速降低,控制活塞升起,喷油器开始喷油;当电磁阀关闭时,控制室的压力上升,控制活塞下行关闭喷油器完成喷油过程。
为了实现预定的喷油形状,需对喷油器进行合理的优化设计。控制室的容积的大小决定了针阀开启时的灵敏度,控制室的容积太大,针阀在喷油结束时不能实现快速的断油,使后期的燃油雾化不良;控制室容积太小,不能给针阀提供足够的有效行程,使喷射过程的流动阻力加大,因此对控制室的容积也应根据机型的最大喷油量合理选择。
控制量孔 A 、 Z 的大小对喷油嘴的开启和关闭速度及喷油过程起着决定性的影响。双量孔阀体的三个关键性结构是进油量孔、回油量孔和控制室,它们的结构尺寸对喷油器的喷油性能影响巨大。回油量孔与进油量孔的流量率之差及控制室的容积决定了喷油嘴针阀的开启速度,而喷油嘴针阀的关闭速度由进油量孔的流量率和控制室的容积决定。进油量孔的设计应使喷油嘴针阀有足够的关闭速度,以减少喷油嘴喷射后期雾化不良的部分。
此外喷油嘴的最小喷油压力取决于回油量孔和进油量孔的流量率及控制活塞的端面面积。这样在确定了进油量孔、回油量孔和控制室的结构尺寸后,就确定了喷油嘴针阀完全开启的稳定、最短喷油过程,同时就确定了喷油嘴的稳定最小喷油量。控制室容积的减少可以使针阀的响应速度更快,使燃油温度对喷嘴喷油量的影响更小。
但控制室的容积不可能无限制减少,它应能保证喷油嘴针阀的升程以使针阀完全开启。两个控制量孔决定了控制室中的动态压力,从而决定了针阀的运动规律,通过仔细调节这两个量孔的流量系数,可以产生理想的喷油规律。
由于高压共轨喷射系统的喷射压力非常高,因此其喷油嘴的喷孔截面积很小,如 BOSCH 公司的喷油嘴的喷孔直径为 0.169mm × 6 ,在如此小的喷孔直径和如此高的喷射压力下,燃油流动处于极端不稳定状态,油束的喷雾锥角变大,燃油雾化更好,但贯穿距离变小,因此应改变原柴油机进气的涡流强度、燃烧室结构形状以确保最佳的燃烧过程。
对于喷油器电磁阀,由于共轨系统要求它有足够的开启速度,考虑到预喷射是改善柴油机性能的重要喷射方式,控制电磁阀的响应时间更应缩短。
4、高压油管
高压油管是连接共轨管和电控喷油器的通道,它应有足够的燃油流量减小燃油流动时的压降,并使高压管路系统中的压力波动较小,能承受高压燃油的冲击作用,且起动时共轨中的压力能很快建立。各缸高压油管的长度应尽量相等,使柴油机每一个喷油器有相同的喷油压力,从而减少发动机各缸之间喷油量的偏差。各高压油管应尽可能短,使从共轨到喷油嘴的压力损失最小。 BOSCH 公司的高压油管的外经为 6mm ,内径为 2.4mm ,日本电装公司的高压油管的外经为 8mm ,内径为 3mm
电控共轨系统工作原理 燃油由发动机凸轮轴驱动的齿轮泵经滤清器从油箱中抽出,通过一个电磁紧急关闭阀流人供油泵。此时的压力约为0.5MPa,然后,油流分为两路,一路经安全阀上的小孔作为冷却油通过供油泵的凸轮轴室流入压力控制阀,然后流回油箱。另一路充人3缸供油泵。在供油泵内,燃油压力上升到135MPa或更高,供入共轨。共轨上有一个压力传感器和一个通过切断油路来控制流量的压力控制阀。用这种方法来调节控制单元设定的共轨压力。高压燃油从共轨流人喷油器后又分为两路:一路直接喷入燃烧室,另一路在喷油期间,与针阀导向部分和控制柱塞处泄漏出的燃油一起流回油箱。
电控共轨系统的组成 电控高压共轨式燃油系统的基本组成如图所示。从功能方面分析,电控共轨系统 可以分成两大部分:1.控制系统· 电控共轨系统可以分成三大部分:传感器、计算机和执行器。计算机是电控共轨燃油系 统的核心部分。根据各个传感器的信息,计算机进行计算、完成各种处理后,求出最佳喷油时间和最合 适的喷油量,并且计算出在什么时刻、在多长的时间范围内向喷油器发出开启电磁阀、或关闭电磁阀的指令等,从而精确控制发动机的工作过程。 电子控制系统的核心是ECU–电子控制单元。 ECU就是一个微型计算机。ECU的输入是安装在车辆和发动机上的各种传感器和开关;ECU的输出是送往各个执行机构的电子信息。2.燃料供给系统燃料供给系统的主要组成部分如图所示。由图可见,燃油供给系统的主要构成是供油泵、共轨和喷油器。燃油供给系统的基本工作原理是:供油泵将燃油加压成高压,供人共轨内;共轨实际上是一种燃油分配管。储存在共轨内的燃油在适当的时刻通过喷油器喷人发动机气缸内。电控共轨系统中的喷油器是一种由电磁阀控制的喷油阀,电磁阀的开启和关闭由计算机控制。四、电控共轨系统的特点 电控高压共轨系统的特点可以归纳为: 1.自由调节喷油压力(共轨压力控制) 通过控制共轨压力而控制喷油压力。利用共轨压力传感器测量燃油压力,从而调整供油泵的供油量、调整共轨压力。此外,还可以根据发动机转速、喷油量的大小与设定了的最佳 值(指令值)始终一致地进行反馈控制。 2.自由调节喷油量 以发动机的转速及油门开度信号为基础,计算机计算出最佳喷油量,并控制喷油器的通断电时间。 3.自由调节喷油率形状 根据发动机用途的需要,设置并控制喷油率形状:预喷射、后喷射、多段喷射等。 4.自由调节喷油时间 根据发动机的转速和喷油量等参数,计算出最佳喷油时间,并控制电控喷油器在适当的 时刻开启,在适当的时刻关闭等,从而准确控制喷油时间。在电控共轨系统中,由各种传感器–发动机转速传感器、油门开度传感器、各种温度 传感器等–实时检测出发动机的实际运行状态,由微型计算机根据预先设计的计算程序进行计算后,定出适合于该运行状态的喷油量、喷油叶间、喷油率模型等参数,使发动机始终 都能在最佳状态下工作。 计算机具有自我诊断功能,对系统的主要零部件进行技术诊断,如果某个零件产生了故障,则诊断系统会向驾驶员发出警报,并根据故障情况自动作出处理;或使发动机停止运 行–即所谓故障应急功能,或切换控制方法,使车辆继续行驶到安全的地方。传统的泵管嘴燃油系统中,喷油压力与发动机的转速和负荷有关,不是一个独立变量。 在高压电控共轨系统中,喷油压力(共轨压力)与发动机的转速和负荷无关,是可以独立控 制的。由共轨压力传感器测出燃油压力,并与设定的目标燃油压力进行比较后进行反馈控制
高压共轨电控燃油喷射系统主要由电控单元、高压油泵、蓄压器(共轨管)、电控喷油器以及各种传感器等组成。低压燃油泵将燃油输入高压油泵,高压油泵将燃油加压送入高压油轨(蓄压器),高压油轨中的压力由电控单元根据油轨压力传感器测量的油轨压力以及需要进行调节,高压油轨内的燃油经过高压油管,根据机器的运行状态,由电控单元从预设的 map 图中确定合适的喷油定时、喷油持续期由电液控制的电子喷油器将燃油喷入气缸。
1、高压油泵
高压油泵的供油量的设计准则是必须保证在任何情况下的柴油机的喷油量与控制油量之和的需求以及起动和加速时的油量变化的需求。由于共轨系统中喷油压力的产生于燃油喷射过程无关,且喷油正时也不由高压油泵的凸轮来保证,因此高压油泵的压油凸轮可以按照峰值扭矩最低、接触应力最小和最耐磨的设计原则来设计凸轮。
bosch 公司采用由柴油机驱动的三缸径向柱塞泵来产生高达 135Mpa 的压力。该高压油泵在每个压油单元中采用了多个压油凸轮,使其峰值扭矩降低为传统高压油泵的 1/9 ,负荷也比较均匀,降低了运行噪声。该系统中高压共轨腔中的压力的控制是通过对共轨腔中燃油的放泄来实现的,为了减小功率损耗,在喷油量较小的情况下,将关闭三缸径向柱塞泵中的一个压油单元使供油量减少。
日本电装公司的ECD-U2高压油泵采用了一个三作用凸轮的直列泵来产生高压。
该高压油泵对油量的控制采用了控制低压燃油有效进油量的方法,该方法使高压油泵不产生额外的功率消耗,但需要确定控制脉冲的宽度和控制脉冲与高压油泵凸轮的相位关系,控制系统比较复杂。其基本原理:
a、柱塞下行,控制阀开启,低压燃油经控制阀流入柱塞腔;
b、柱塞上行,但控制阀中尚未通电,处于开启状态,低压燃油经控制阀流回低压腔;
c、在达到供油量定时时,控制阀通电,使之关闭,回流油路被切断,柱塞腔中的燃油被压缩,燃油经出油阀进入高压油轨。利用控制阀关闭时间的不同,控制进入高压油轨的油量的多少,从而达到控制高压油轨压力的目的;
d、凸轮经过最大升程后,柱塞进入下降行程,柱塞腔内的压力降低,出油阀关闭,停止供油,这时控制阀停止供电,处于开启状态,低压燃油进入柱塞腔进入下一个循环。
2、高压油轨(共轨管)
共轨管将供油泵提供的高压燃油分配到各喷油器中,起蓄压器的作用, ECD-U2 系统的共轨管如图 4 所示。它的容积应削减高压油泵的供油压力波动和每个喷油器由喷油过程引起的压力震荡,使高压油轨中的压力波动控制在 5Mpa 之下。但其容积又不能太大,以保证共轨有足够的压力响应速度以快速跟踪柴油机工况的变化。 ECD-U2 系统的高压泵的最大循环供油量为 600毫升,共轨管容积为 94000毫升。
高压共轨管上还安装了压力传感器、液流缓冲器(限流器)和压力限制器。压力传感器向 ECU 提供高压油轨的压力信号;液流缓冲器(限流器)保证在喷油器出现燃油漏泄故障时切断向喷油器的供油,并可减小共轨和高压油管中的压力波动;压力限制器保证高压油轨在出现压力异常时,迅速将高压油轨中的压力进行放泄。
从上述分析可见,精确设计高压共轨管的容积和形状适合确定的柴油机是非常关键的。
3、电控喷油器
电控喷油器是共轨式燃油系统中最关键和最复杂的部件,它的作用根据 ECU 发出的控制信号,通过控制电磁阀的开启和关闭,将高压油轨中的燃油以最佳的喷油定时、喷油量和喷油率喷入柴油机的燃烧室。
BOSCH 和 ECD-U2 的电控喷油器的结构基本相似,都是由于传统喷油器相似的喷油嘴、控制活塞、控制量孔、控制电磁阀组成,图 5 为 BOSCH 的电控喷油器结构图。在电磁阀不通电时,电磁阀关闭控制活塞顶部的量孔 A ,高压油轨的燃油压力通过量孔 Z 作用在控制活塞上,将喷嘴关闭;当电磁阀通电时,量孔 A 被打开,控制室的压力迅速降低,控制活塞升起,喷油器开始喷油;当电磁阀关闭时,控制室的压力上升,控制活塞下行关闭喷油器完成喷油过程。
为了实现预定的喷油形状,需对喷油器进行合理的优化设计。控制室的容积的大小决定了针阀开启时的灵敏度,控制室的容积太大,针阀在喷油结束时不能实现快速的断油,使后期的燃油雾化不良;控制室容积太小,不能给针阀提供足够的有效行程,使喷射过程的流动阻力加大,因此对控制室的容积也应根据机型的最大喷油量合理选择。
控制量孔 A 、 Z 的大小对喷油嘴的开启和关闭速度及喷油过程起着决定性的影响。双量孔阀体的三个关键性结构是进油量孔、回油量孔和控制室,它们的结构尺寸对喷油器的喷油性能影响巨大。回油量孔与进油量孔的流量率之差及控制室的容积决定了喷油嘴针阀的开启速度,而喷油嘴针阀的关闭速度由进油量孔的流量率和控制室的容积决定。进油量孔的设计应使喷油嘴针阀有足够的关闭速度,以减少喷油嘴喷射后期雾化不良的部分。
此外喷油嘴的最小喷油压力取决于回油量孔和进油量孔的流量率及控制活塞的端面面积。这样在确定了进油量孔、回油量孔和控制室的结构尺寸后,就确定了喷油嘴针阀完全开启的稳定、最短喷油过程,同时就确定了喷油嘴的稳定最小喷油量。控制室容积的减少可以使针阀的响应速度更快,使燃油温度对喷嘴喷油量的影响更小。
但控制室的容积不可能无限制减少,它应能保证喷油嘴针阀的升程以使针阀完全开启。两个控制量孔决定了控制室中的动态压力,从而决定了针阀的运动规律,通过仔细调节这两个量孔的流量系数,可以产生理想的喷油规律。
由于高压共轨喷射系统的喷射压力非常高,因此其喷油嘴的喷孔截面积很小,如 BOSCH 公司的喷油嘴的喷孔直径为 0.169mm × 6 ,在如此小的喷孔直径和如此高的喷射压力下,燃油流动处于极端不稳定状态,油束的喷雾锥角变大,燃油雾化更好,但贯穿距离变小,因此应改变原柴油机进气的涡流强度、燃烧室结构形状以确保最佳的燃烧过程。
对于喷油器电磁阀,由于共轨系统要求它有足够的开启速度,考虑到预喷射是改善柴油机性能的重要喷射方式,控制电磁阀的响应时间更应缩短。
4、高压油管
高压油管是连接共轨管和电控喷油器的通道,它应有足够的燃油流量减小燃油流动时的压降,并使高压管路系统中的压力波动较小,能承受高压燃油的冲击作用,且起动时共轨中的压力能很快建立。各缸高压油管的长度应尽量相等,使柴油机每一个喷油器有相同的喷油压力,从而减少发动机各缸之间喷油量的偏差。各高压油管应尽可能短,使从共轨到喷油嘴的压力损失最小。 BOSCH 公司的高压油管的外经为 6mm ,内径为 2.4mm ,日本电装公司的高压油管的外经为 8mm ,内径为 3mm
电控共轨系统工作原理 燃油由发动机凸轮轴驱动的齿轮泵经滤清器从油箱中抽出,通过一个电磁紧急关闭阀流人供油泵。此时的压力约为0.5MPa,然后,油流分为两路,一路经安全阀上的小孔作为冷却油通过供油泵的凸轮轴室流入压力控制阀,然后流回油箱。另一路充人3缸供油泵。在供油泵内,燃油压力上升到135MPa或更高,供入共轨。共轨上有一个压力传感器和一个通过切断油路来控制流量的压力控制阀。用这种方法来调节控制单元设定的共轨压力。高压燃油从共轨流人喷油器后又分为两路:一路直接喷入燃烧室,另一路在喷油期间,与针阀导向部分和控制柱塞处泄漏出的燃油一起流回油箱。
电控共轨系统的组成 电控高压共轨式燃油系统的基本组成如图所示。从功能方面分析,电控共轨系统 可以分成两大部分:1.控制系统· 电控共轨系统可以分成三大部分:传感器、计算机和执行器。计算机是电控共轨燃油系 统的核心部分。根据各个传感器的信息,计算机进行计算、完成各种处理后,求出最佳喷油时间和最合 适的喷油量,并且计算出在什么时刻、在多长的时间范围内向喷油器发出开启电磁阀、或关闭电磁阀的指令等,从而精确控制发动机的工作过程。 电子控制系统的核心是ECU–电子控制单元。 ECU就是一个微型计算机。ECU的输入是安装在车辆和发动机上的各种传感器和开关;ECU的输出是送往各个执行机构的电子信息。2.燃料供给系统燃料供给系统的主要组成部分如图所示。由图可见,燃油供给系统的主要构成是供油泵、共轨和喷油器。燃油供给系统的基本工作原理是:供油泵将燃油加压成高压,供人共轨内;共轨实际上是一种燃油分配管。储存在共轨内的燃油在适当的时刻通过喷油器喷人发动机气缸内。电控共轨系统中的喷油器是一种由电磁阀控制的喷油阀,电磁阀的开启和关闭由计算机控制。四、电控共轨系统的特点 电控高压共轨系统的特点可以归纳为: 1.自由调节喷油压力(共轨压力控制) 通过控制共轨压力而控制喷油压力。利用共轨压力传感器测量燃油压力,从而调整供油泵的供油量、调整共轨压力。此外,还可以根据发动机转速、喷油量的大小与设定了的最佳 值(指令值)始终一致地进行反馈控制。 2.自由调节喷油量 以发动机的转速及油门开度信号为基础,计算机计算出最佳喷油量,并控制喷油器的通断电时间。 3.自由调节喷油率形状 根据发动机用途的需要,设置并控制喷油率形状:预喷射、后喷射、多段喷射等。 4.自由调节喷油时间 根据发动机的转速和喷油量等参数,计算出最佳喷油时间,并控制电控喷油器在适当的 时刻开启,在适当的时刻关闭等,从而准确控制喷油时间。在电控共轨系统中,由各种传感器–发动机转速传感器、油门开度传感器、各种温度 传感器等–实时检测出发动机的实际运行状态,由微型计算机根据预先设计的计算程序进行计算后,定出适合于该运行状态的喷油量、喷油叶间、喷油率模型等参数,使发动机始终 都能在最佳状态下工作。 计算机具有自我诊断功能,对系统的主要零部件进行技术诊断,如果某个零件产生了故障,则诊断系统会向驾驶员发出警报,并根据故障情况自动作出处理;或使发动机停止运 行–即所谓故障应急功能,或切换控制方法,使车辆继续行驶到安全的地方。传统的泵管嘴燃油系统中,喷油压力与发动机的转速和负荷有关,不是一个独立变量。 在高压电控共轨系统中,喷油压力(共轨压力)与发动机的转速和负荷无关,是可以独立控 制的。由共轨压力传感器测出燃油压力,并与设定的目标燃油压力进行比较后进行反馈控制