电脑硬件入门知识全解之一CPU篇

电脑硬件入门知识全解之一:CPU篇!2010-01-12 00:57电脑硬件入门知识全解之一:CPU篇!由于内容很全,篇幅较大。根据不同同学对于不同硬件知识的需要,还有原帖中的一些知识比较老了,我做了一定的修改编辑,以后还会定期编辑,希望大家看起来更加方便。里面的知识都是比较实际的,可以说是初学者的超级福音!老玩家们的进阶天堂。如果能慢慢地把它看完,大家的硬件知识肯定能有很大的提高。硬件不仅仅是高手们的专利,新手们也是很有必要了解的(象我自己得到的知识就很多)。希望所有同学的硬件知识都能的速度越来越快,倍频技术也就应允而生。它可使系统总线工作在相对较低的频率上,而CPU速度可以通过倍频来无限提升。那么CPU主频的计算方式变为:主频 === 外频 x 倍频。也就是倍频是指CPU和系统总线之间相差的倍数,当外频不变时,提高倍频,CPU主频也就越高。================================================================================================主频因素说完了,现在让我们来看看别的影响CPU速度的来安排指令,所以非常不灵活,一旦某一级的指令执行出错的话,整条流水线就会停止下来,再一极一级地去找出错误,然后把整条流水线清空,重新载入指令,这样一来,会浪费很多时间,执行效率反而十分低下,为了解决这个问题,科学家们又采用了各种预测技术来提高指令执行的正确率,希望在保持长流水线的同时尽量避免发生清空流水线的悲剧,这就是经常看到的Intel的广告存的大容量的存储系统了。缓存对CPU的性能影响很大,主要是因为CPU的数据交换顺序和CPU与缓存间的带宽引起的。 缓存的工作原理是当CPU要读取一个数据时,首先从缓存中查找,如果找到就立即读取并送给CPU处理;如果没有找到,就用相对慢的速度从内存中读取并送给CPU处理,同时把这个数据所在的数据块调入缓存中,可以使得以后对整块数据的读取都从缓存中进行,不必再调用内存。 正是这样的读取机制使CPU读取缓存的命中率非常高(大多数CPU可达90%左右),也就是说CPU下一次要读取的数据90%都在缓存中,只有大约10%需要从内存读取。这大大节省了CPU直接读取内存的时间,也使CPU读取数据时基本无需等待。总的来说,CPU读取数据的顺序是先缓存后内存。 最早先的CPU缓存是个整体的,而且容量很低,英特尔公司从Pentium时代开始把缓存进行了分类。当时集成在CPU内核中的缓存已不足以满足CPU的需求,而制造工艺上的限制又不能大幅度提高缓存的容量。因此出现了集成在与CPU同一块电路板上或主板上的缓存,此时就把 CPU内核集成的缓存称为一级缓存,而外部的称为二级缓存。一级缓存中还分数据缓存(Data Cache,D-Cache)和指令缓存(Instruction Cache,I-Cache)。二者分别用来存放数据和执行这些数据的指令,而且两者可以同时被CPU访问,减少了争用Cache所造成的冲突,提高了处理器效能。英特尔公司在推出Pentium 4处理器时,用新增的一种一级追踪缓存替代指令缓存,容量为12KμOps,表示能存储12K条微指令。 随着CPU制造工艺的发展,二级缓存也能轻易的集成在CPU内核中,容量也在逐年提升。现在再用集成在CPU内部与否来定义一、二级缓存,已不确切。而且随着二级缓存被集成入CPU内核中,以往二级缓存与CPU大差距分频的情况也被改变,此时其以相同于主频的速度工作,可以为CPU提供更高的传输速度。 二级缓存是CPU性能表现的关键之一,在CPU核心不变化的情况下,增加二级缓存容量能使性能大幅度提高。而同一核心的CPU高低端之分往往也是在二级缓存上有差异,由此可见二级缓存对于CPU的重要性。 CPU在缓存中找到有用的数据被称为命中,当缓存中没有CPU所需的数据时(这时称为未命中),CPU才访问内存。从理论上讲,在一颗拥有二级缓存的CPU中,读取一级缓存的命中率为80%。也就是说CPU一级缓存中找到的有用数据占数据总量的80%,剩下的20%从二级缓存中读取。由于不能准确预测将要执行的数据,读取二级缓存的命中率也在80%左右(从二级缓存读到有用的数据占总数据的16%)。那么还有的数据就不得不从内存调用,但这已经是一个相当小的比例了。目前的较高端的CPU中,还会带有三级缓存,它是为读取二级缓存后未命中的数据设计的-种缓存,在拥有三级缓存的CPU中,只有约5%的数据需要从内存中调用,这进一步提高了CPU的效率。 为了保证CPU访问时有较高的命中率,缓存中的内容应该按一定的算法替换。一种较常用的算法是数据带宽=(总线频率×数据位宽)÷8。目前PC机上所能达到的前端总线频率有266MHz、333MHz、400MHz、533MHz、800MHz几种,前端总线频率越大,代表着CPU与北桥芯片之间的数据传输能力越大,更能充分发挥出CPU的功能。现在的CPU技术发展很快,运算速度提高很快,而足够大的前端总线可以保障有足够的数据供给给CPU,较低的前端总线将无法供给足够的数据给CPU,这样就限制了CPU性能得发挥,成为系统瓶颈。 CPU和北桥芯片间总线的速度,更实质性的表示了CPU和外界数据传输的速度。而外频的概念是建立在数字脉冲信号震荡速度基础之上的,也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡一万万次,它更多的影响了PIC及其他总线的频率。之所以前端总线与外频这两个概念容易混淆,主要的原因是在以前的很长一段时间里(主要是在Pentium 4出现之前和刚出现Pentium 4时),前端总线频率与外频是相同的,因此往往直接称前端总线为外频,最终造成这样的误会。随着计算机技术的发展,人们发现前端总线频率需要高于外频,因此采用了QDR(Quad Date Rate)技术,或者其他类似的技术实现这个目前。这些技术的原理类似于AGP的2X或者4X,它们使得前端总线的频率成为外频的2倍、4倍甚至更高,从此之后前端总线和外频的区别才开始被人们重视起来。================================================再说说CPU的核心类型Athlon XP的核心类型 Athlon XP有4种不同的核心类型,但都有共同之处:都采用Socket A接口而且都采用PR标称值标注。Palomino 这是最早的Athlon XP的核心,采用0.18um制造工艺,核心电压为1.75V左右,二级缓存为256KB,封装方式采用OPGA,前端总线频率为266MHz。 Thoroughbred 这是第一种采用0.13um制造工艺的Athlon XP核心,又分为Thoroughbred-A和Thoroughbred-B两种版本,核心电压1.65V-1.75V左右,二级缓存为256KB,封装方式采用OPGA,前端总线频率为266MHz和333MHz。 Thorton 采用0.13um制造工艺,核心电压1.65V左右,二级缓存为256KB,封装方式采用OPGA,前端总线频率为333MHz。可以看作是屏蔽了一半二级缓存的Barton。 Barton 采用0.13um制造工艺,核心电压1.65V左右,二级缓存为512KB,封装方式采用OPGA,前端总线频率为333MHz和400MHz。 新Duron的核心类型 AppleBred 采用0.13um制造工艺,核心电压1.5V左右,二级缓存为64KB,封装方式采用OPGA,前端总线频率为266MHz。没有采用PR标称值标注而以实际频率标注,有1.4GHz、1.6GHz和1.8GHz三种。 Athlon 64系列CPU的核心类型 Clawhammer 采用0.13um制造工艺,核心电压1.5V左右,二级缓存为1MB,封装方式采用mPGA,采用Hyper Transport总线,内置1个128bit的内存控制器。采用Socket 754、Socket 940和Socket 939接口。 Newcastle 其与Clawhammer的最主要区别就是二级缓存降为512KB(这也是AMD为了市场需要和加快推广64位CPU而采取的相对低价政策的结果),其它性能基本相同。 AMD双核心处理器 AMD推出的双核心处理器 分别是双核心的Opteron系列和全新的Athlon 64 X2系列处理器。其中Athlon 64 X2是用以抗衡Pentium D和Pentium Extreme Edition的桌面双核心处理器系列。 AMD推出的Athlon 64 X2是由两个Athlon 64处理器上采用的Venice核心组合而成,每个核心拥有独立的512KB(1MB) L2缓存及执行单元。除了多出一个核芯之外,从架构上相对于目前Athlon 64在架构上并没有任何重大的改变。 双核心Athlon 64 X2的大部分规格、功能与我们熟悉的Athlon 64架构没有任何区别,也就是说新推出的Athlon 64 X2双核心处理器仍然支持1GHz规格的HyperTransport总线,并且内建了支持双通道设置的DDR内存控制器。 与Intel双核心处理器不同的是,Athlon 64 X2的两个内核并不需要经过MCH进行相互之间的协调。AMD在Athlon 64 X2双核心处理器的内部提供了一个称为System Request Queue(系统请求队列)的技术,在工作的时候每一个核心都将其请求放在SRQ中,当获得资源之后请求将会被送往相应的执行核心,也就是说所有的处理过程都在CPU核心范围之内完成,并不需要借助外部设备。 对于双核心架构,AMD的做法是将两个核心整合在同一片硅晶内核之中,而Intel的双核心处理方式则更像是简单的将两个核心做到一起而已。与Intel的双核心架构相比,AMD双核心处理器系统不会在两个核心之间存在传输瓶颈的问题。因此从这个方面来说,Athlon 64 X2的架构要明显优于Pentium D架构。 虽然与Intel相比,AMD并不用担心Prescott核心这样的功耗和发热大户,但是同样需要为双核心处理器考虑降低功耗的方式。为此AMD并没有采用降低主频的办法,而是在其使用90nm工艺生产的Athlon 64 X2处理器中采用了所谓的Dual Stress Liner应变硅技术,与SOI技术配合使用,能够生产出性能更高、耗电更低的晶体管。 AMD推出的Athlon 64 X2处理器给用户带来最实惠的好处就是,不需要更换平台就能使用新推出的双核心处理器,只要对老主板升级一下BIOS就可以了,这与Intel双核心处理器必须更换新平台才能支持的做法相比,升级双核心系统会节省不少费用。 英特尔CPU核心 Tualatin 这也就是大名鼎鼎的ntium III-S)和256KB(Pentium III和赛扬),这是最强的Socket 370核心,其性能甚至超过了早期低频的Pentium 4系列CPU。 Willamette 这是早期的Pentium 4和P4赛扬采用的核心,最初采用Socket 423接口,后来改用Socket 478接口(赛扬只有1.7GHz和1.8GHz两种,都是Socket 478接口),采用0.18um制造工艺,前端总线频率为400MHz, 主频范围从1.3GHz到2.0GHz(Socket 423)和1.6GHz到2.0GHz(Socket 478),二级缓存分别为256KB(Pentium 4)和128KB(赛扬),注意,另外还有些型号的Socket 423接口的Pentium 4居然没有二级缓存!核心电压1.75V左右,封装方式采用Socket 423的PPGA INT2,PPGA INT3,OOI 423-pin,PPGA FC-PGA2和Socket 478的PPGA FC-PGA2以及赛扬采用的PPGA等等。Willamette核心制造工艺落后,发热量大,性能低下,已经被淘汰掉,而被Northwood核心所取代。 Northwood 这是目前主流的Pentium 4和赛扬所采用的核心,其与Willamette核心最大的改进是采用了0.13um制造工艺,并都采用Socket 478接口,核心电压1.5V左右,二级缓存分别为128KB(赛扬)和512KB(Pentium 4),前端总线频率分别为400/533/800MHz(赛扬都只有400MHz),主频范围分别为2.0GHz到2.8GHz(赛扬),1.6GHz到2.6GHz(400MHz FSB Pentium 4),2.26GHz到3.06GHz(533MHz FSB Pentium 4)和2.4GHz到3.4GHz(800MHz FSB Pentium 4),并且3.06GHz Pentium 4和所有的800MHz Pentium 4都支持超线程技术(Hyper-Threading Technology),封装方式采用PPGA FC-PGA2和PPGA。按照Intel的规划,Northwood核心会很快被Prescott核心所取代。 Prescott 这是Intel最新的CPU核心,目前Pentium 4 XXX(如Pentium 4 530)和Celeron D采用该核心,还有少量主频在2.8GHz以上的CPU采用该核心。其与Northwood最大的区别是采用了0.09um制造工艺和更多的流水线结构,初期采用Socket 478接口,目前生产的全部转到LGA 775接口,核心电压1.25-1.525V,前端总线频率为533MHz(不支持超线程技术)和800MHz(支持超线程技术),最高有1066MHz的Pentium 4至尊版。其与Northwood相比,其L1 数据缓存从8KB增加到16KB,而L2缓存则从512KB增加到1MB或2MB,封装方式采用PPGA,Prescott核心已经取代Northwood核心成为市场的主流产品。 Intel双核心处理器 目前Intel推出的双核心处理器有Pentium D和Pentium Extreme Edition,同时推出945/955芯片组来支持新推出的双核心处理器,采用90nm工艺生产的这两款新推出的双核心处理器使用是没有针脚的LGA 775接口,但处理器底部的贴片电容数目有所增加,排列方式也有所不同。 桌面平台的核心代号Smithfield的处理器,正式命名为Pentium D处理器,除了摆脱阿拉伯数字改用英文字母来表示这次双核心处理器的世代交替外,D的字母也更容易让人联想起Dual-Core双核心的涵义。 ntel的双核心构架更像是一个双CPU平台,Pentium D处理器继续沿用Prescott架构及90nm生产技术生产。Pentium D内核实际上由于两个独立的2独立的Prescott核心组成,每个核心拥有独立的1MB L2缓存及执行单元,两个核心加起来一共拥有2MB,但由于处理器中的两个核心都拥有独立的缓存,因此必须保正每个二级缓存当中的信息完全一致,否则就会出现运算错误。 为了解决这一问题,Intel将两个核心之间的协调工作交给了外部的MCH(北桥)芯片,虽然缓存之间的数据传输与存储并不巨大,但由于需要通过外部的MCH芯片进行协调处理,毫无疑问的会对整个的处理速度带来一定的延迟,从而影响到处理器整体性能的发挥。 由于采用Prescott内核,因此Pentium D也支持EM64T技术、XD bit安全技术。值得一提的是,Pentium D处理器将不支持Hyper-Threading技术。原因很明显:在多个物理处理器及多个逻辑处理器之间正确分配数据流、平衡运算任务并非易事。比如,如果应用程序需要两个运算线程,很明显每个线程对应一个物理内核,但如果有3个运算线程呢?因此为了减少双核心Pentium D架构复杂性,英特尔决定在针对主流市场的Pentium D中取消对Hyper-Threading技术的支持。 同出自Intel之手,而且Pentium D和Pentium Extreme Edition两款双核心处理器名字上的差别也预示着这两款处理器在规格上也不尽相同。其中它们之间最大的不同就是对于超线程(Hyper-Threading)技术的支持。Pentium D不能支持超线程技术,而Pentium Extreme Edition则没有这方面的限制。在打开超线程技术的情况下,双核心Pentium Extreme Edition处理器能够模拟出另外两个逻辑处理器,可以被系统认成四核心系统。===================================================CPU工艺:指在硅材料上生产CPU时内部各元器材的连接线宽度,一般用微米表示。微米值越小制作工艺越先进,CPU可以达到的频率越高,集成的晶体管就可以更多。目前Intel的P4和AMD的XP都已经达到了0.65微米的制造工艺。 从上面我们了解了CPU的逻辑结构以及一些基本技术参数,本文将继续全面的了解影响CPU性能的有关技术参数。 ===============================================================下面又说说CPU的技术吧CPU扩展指令集:CPU依靠指令来计算和控制系统,每款CPU在设计时就规定了一系列与其硬件电路相配合的指令系统。指令的强弱也是CPU的重要指标,指令集是提高微处理器效率的最有效工具之一。从现阶段的主流体系结构讲,指令集可分为复杂指令集和精简指令集两部分,而从具体运用看,如Intel的MMX(Multi Media Extended)、SSE、 SSE2(Streaming-Single instruction multiple data-Extensions 2)、SEE3和AMD的3DNow!等都是CPU的扩展指令集,分别增强了CPU的多媒体、图形图象和Internet等的处理能力。我们通常会把CPU的扩展指令集称为CPU的指令集。SSE3指令集也是目前规模最小的指令集,此前MMX包含有57条命令,SSE包含有50条命令,SSE2包含有144条命令,SSE3包含有13条命令。目前SSE3也是最先进的指令集,英特尔Prescott处理器已经支持SSE3指令集,AMD会在未来双核心处理器当中加入对SSE3指令集的支持,全美达的处理器也将支持这一指令集。===================================================指令集:(1) X86指令集要知道什么是指令集还要从当今的X86架构的CPU说起。X86指令集是Intel为其第一块16位CPU(i8086)专门开发的,IBM1981年推出的世界第一台PC机中的CPU-i8088(i8086简化版)使用的也是X86指令,同时电脑中为提高浮点数据处理能力而增加的X87芯片系列数学协处理器则另外使用X87指令,以后就将X86指令集和X87指令集统称为X86指令集。虽然随着CPU技术的不断发展,Intel陆续研制出更新型的i80386、i80486直到今天,但为了保证电脑能继续运行以往开发的各类应用程序以保护和继承丰富的软件资源,所以Intel公司所生产的所有CPU仍然继续使用X86指令集,所以它的CPU仍属于X86系列。由于Intel X86系列及其兼容CPU都使用X86指令集,所以就形成了今天庞大的X86系列及兼容CPU阵容。 (2) RISC指令集RISC指令集是以后高性能CPU的发展方向。它与传统的CISC(复杂指令集)相对。相比而言,RISC的指令格式统一,种类比较少,寻址方式也比复杂指令集少。当然处理速度就提高很多了。而且RISC指令集还兼容原来的X86指令集。 ==========================================字节:(8位,32位,64位电脑的由来)电脑技术中对CPU在单位时间内(同一时间)能一次处理的二进制数的位数叫字长。所以能处理字长为8位数据的CPU通常就叫8位的CPU。同理32位的CPU就能在单位时间内处理字长为32位的二进制数据。当前的CPU都是32位的CPU,但是字长的最佳是CPU发展的一个趋势。AMD推出64位的CPU-Atlon64。未来必然是64位CPU的天下。 ======================================================流水线与超流水线:虽然流水线之 前说过了,但是在这再说说超流水线流水线(pipeline)是Intel首次在486芯片中开始使用的。流水线的工作方式就象工业生产上的装配流水线。在CPU中由5~ 6个不同功能的电路单元组成一条指令处理流水线,然后将一条X86指令分成5~6步后再由这些电路单元分别执行,这样就能实现在一个CPU时钟周期完成一条指令,因此提高CPU的运算速度。超流水线(superpiplined)是指某型CPU内部的流水线超过通常的5~6步以上,例如Pentium pro的流水线就长达14步。将流水线设计的步(级)其完成一条指令的速度越快,因此才能适应工作主频更高的CPU。但是流水线过长也带来了一定副作用,很可能会出现主频较高的CPU实际运算速度较低的现象,Intel的奔腾4就出现了这种情况,虽然它的主频可以高达1.4G以上,但其运算性能却远远比不上AMD 1.2G的速龙甚至奔腾III。 ======================================================封装形式:CPU封装是采用特定的材料将CPU芯片或CPU模块固化在其中以防损坏的保护措施,一般必须在封装后CPU才能交付用户使用。CPU的封装方式取决于CPU安装形式和器件集成设计,从大的分类来看通常采用Socket插座进行安装的CPU使用PGA(栅格阵列)方式封装,而采用Slot x槽安装的CPU则全部采用SEC(单边接插盒)的形式封装。现在还有PLGA(Plastic Land Grid Array)、OLGA(Organic Land Grid Array)等封装技术。由于市场竞争日益激烈,目前CPU封装技术的发展方向以节约成本为主。======================================================HT(超线程)说说INTEL大展的HT技术吧,我们班每个同学都懂得HT,但不知道HT是什么东西:)Intel正式发布了器的工作资源(execution resources)。架构指挥中心追踪每个程序或执行绪的执行状况;工作资源指的则是显身手的时候了。那时候,普通用户才能够从超线程技术中得到最直接的好处。 但是我们还是需要看到,随着目前操作系统对于双处理器技术的广泛支持,例如Windows2000、Windows XP等操作系统都支持双处理器,在这些操作系统上使用支持超线程技术的处理器,对于系统的整体性能还是有一定的提高的。。 我自己来说一说:简单地说:就是一个CPU模拟成2个一起运算,假如你的大脑有HT技术,上课就可以边讲话,边听课啦!!======================================================HT还有一个意思是HyperTransport ,这是AMD的饿。。。。。不是前面的因特尔的记得我们班有一个人说,哇,XXX处理器技术超线程前端总线技术,听了我差点吐血!!!A和I几时合平共处了????HyperTransport最初是AMD在1999年提出的一种总线技术,随着AMD64位平台的发布和推广,HyperTransport应用越来越广泛,也越来越被人们所熟知。 HyperTransport是一种为主板上的集成电路互连而设计的端到端总线技术,它可以在内存控制器、磁盘控制器以及PCI总线控制器之间提供更高的数据传输带宽。HyperTransport采用类似DDR的工作方式,在400MHz工作频率下,相当于800MHz的传输频率。此外HyperTransport是在同一个总线中模拟出两个独立数据链进行点对点数据双向传输,因此理论上最大传输速率可以视为翻倍,具有4、8、16及32位频宽的高速序列连接功能。在400MHz下,双向4bit模式的总线带宽为0.8GB/sec,双向8bit模式的总线带宽为1.6GB/sec;800MHz下,双向8bit模式的总线带宽为3.2GB/sec,双向16bit模式的总线带宽为6.4GB/sec,双向32bit模式的总线带宽为12.8GB/sec。以400MHz下,双向4bit模式为例,带宽计算方法为400MHz×2×2×4bit÷8=0.8GB/sec。 HyperTransport还有一大特色,就是当数据位宽并非32bit时,可以分批传输数据来达到与32bit相同的效果。例如16bit的数据就可以分两批传输,8bit的数据就可以分四批传输,这种数据分包传输的方法,给了HyperTransport在应用上更大的弹性空间。 2004年2月,HyperTransport技术联盟(Hyper Transport Technology Consortium)又正式发布了HyperTransport 2.0规格,由于采用了Dual-data技术,使频率成功提升到了1.0GHz、1.2GHz和1.4GHz,数据传输带宽由每通道1.6Gb/sec提升到了2.0GB/sec、2.4Gb/sec和2.8GB/sec,最大带宽由原来的12.8Gb/sec提升到了22.4GB/sec。 当HyperTransport应用于内存控制器时,其实也就类似于传统的前端总线(FSB,Front Side Bus),因此对于将HyperTransport技术用于内存控制器的CPU来说,其HyperTransport的频率也就相当于前端总线的频率。=============================================64位技术:这个不想说太多,懂得编程的朋友应该知道64位代表着更广的寻址空间,有AMD的X86-64,还有I的EMT-64技术,都是64位的CPU我断定!未来的64位CPU是主流!================================================接口类型:socket就是接口的意思 比如AMD的就有462,754,939针脚的,462针脚就是socket A接口 当然现在很少使用462针脚了,主流的闪龙就是754针脚,939就属于高端CPU使用的针脚====================================现在还有AMD准备要出的AM2接口,INTEL的LGA接口等,按电脑报的来说,可以理解为,CPU越强大了就要用更多脚来支持======================================= 核心电压:这个没有什么好说的,就是CPU的工作电压(Supply Voltage),即CPU正常工作所需的电压。任何电器在工作的时候都需要电,自然也有对应额定电压,CPU也不例外。=========================================================下面说说3DNOW技术:由AMD公司提出的3DNow!指令集应该说出现在SSE指令集之前,并被AMD广泛应用于其K6-2 、K6-3以及Athlon(K7)处理器上。3DNow!指令集技术其实就是21条机器码的扩展指令集。 与Intel公司的MMX技术侧重于整数运算有所不同,3DNow!指令集主要针对三维建模、坐标变换 和效果渲染等三维应用场合,在软件的配合下,可以大幅度提高3D处理性能。后来在Athlon上开发了Enhanced 3DNow!。这些AMD标准的SIMD指令和Intel的SSE具有相同效能。因为受到Intel在商业上以及Pentium III成功的影响,软件在支持SSE上比起3DNow!更为普遍。Enhanced 3DNow!AMD公司继续增加至52个指令,包含了一些SSE码,因而在针对SSE做最佳化的软件中能获得更好的效能。===================================================再说说MMXMMX技术:是再来说说SSE:SSE是Streaming SIMD Extension的缩写,也叫KNI指令集。它是被嵌套在Intel Pentium III处理器中的第二套多媒体专用指令集。与MMX指令集不同的是SSE的主要作用是加速CPU的3D运算能力。它总计包括70条指令,50条SIMD浮点指令,主要用于3D处理。12条新MMX指令,8条系统内存数据流传输优化指令。 流式SIMD扩展,是Intel对MMX的一个改进。SSE包括了70条用于图形图象和声音成立的指令,除了比MMX增加了23条指令外,SSE指令也允许浮点运算,使用一个分开的单元,而不是MMX使用的标准浮点单元。 ================================================再说说SSE寄存器:SSE寄存器是专用寄存器,并非通用寄存器,因为它是专门针对多媒体数据处理指令而设计的.标准的32-bit x86架构包括8个通用寄存器(GPR),AMD在X86-64中又增加了8组(R8-R9),将寄存器的数目提高到了16组。X86-64寄存器默认位64-bit。还增加了8组128-bit XMM寄存器(也叫SSE寄存器,XMM8-XMM15)。============================================================================================ 看看这些制造商吧~============================================================================================CPU的厂商  Intel公司  Intel是生产CPU的老大哥,个人电脑市场,它占有80%多的市场份额,Intel生产的CPU就成了事实上的x86CPU技术规范和标准。个人电脑平台最新的酷睿2成为CPU的首选,下一代酷睿i5、酷睿i7抢占先机,在性能上大幅领先其他厂商的产品。   AMD公司    目前使用的CPU有好几家公司的产品,除了Intel公司外,最有力的挑战的就是AMD公司,最新的AMD 速龙II X2和羿龙II具有很好性价比,尤其采用了3DNOW+技术并支持SSE4.0指令集,使其在3D上有很好的表现。   IBM和Cyrix  IBM之强在于高端的实验室,工作室的非民用CPU  美国国家半导体公司NS和Cyrix公司合并后,使其终于拥有了自己的芯片生产线,其成品将会日益完善和完备。现在的MII性能也不错,尤其是它的价格很低。   PowerPC   由AIM联盟开发,  PowerPC 是一种精简指令集(RISC)架构的中央处理器(CPU),其基本的设计源自IBM(国际商用机器公司)的POWER(Performance Optimized With Enhanced RISC;《IBM Connect 电子报》2007年8月号译为“增强RISC性能优化”)架构。POWER是1991年,Apple(苹果电脑)、IBM、Motorola(摩托罗拉)组成的AIM联盟所发展出的微处理器架构。PowerPC是整个AIM联盟平台的一部分,并且是到目前为止唯一的一部分。但苹果电脑自2005年起,将旗下电脑产品转用Intel CPU。  PowerPC的历史可以追溯到早在1990年随RISC System/6000一起被介绍的IBM POWER架构。该设计是从早期的RISC架构(比如IBM 801)与MIPS架构的处理器得到灵感的。  OpenRISC   OpenRisc是OpenCores组织提供的基于GPL协议的开放源代码的RISC(精简指令集计算机)处理器。有人认为其性能介于ARM7和ARM9之间,适合一般的嵌入式系统使用。最重要的一点是OpenCores组织提供了大量的开放源代码IP核供研究人员使用,因此对于一般的开发单位具有很大的吸引力。  IDT公司  IDT是处理器厂商的后起之秀,但现在还不太成熟。  VIA威盛公司  VIA威盛是台湾一家主板芯片组厂商,收购了前述的 Cyrix和IDT的cpu部门,推出了自己的CPU  国产龙芯  GodSon 小名狗剩,是国有自主知识产权的通用处理器,目前已经有2代产品,已经能达到现在市场上INTEL和AMD的低端CPU的水平,  ARM Ltd  安谋国际科技,少数只授权其CPU设计而没有自行制造的公司。嵌入式应用软件最常被ARM架构微处理器执行。  Freescale Semiconductor  前身是Motorola的飞思卡尔,设计数款嵌入装置以及SoC PowerPC 处理器。=======================================================================================踏入新世纪的CPU======================================================================================  21世纪以来,CPU进入了更高速发展的时代,1Ghz大关被突破,市场分布方面,仍然是Intel跟AMD公司在两雄争霸,分别推出了Pentium4、Tualatin核心Pentium Ⅱ和Celeron、Tunderbird核心Athlon、AthlonXP和Duron等处理器,竞争日益激烈。   1、在Intel方面,在20个世纪末的2000年11月,Intel发布了旗下第四代的Pentium处理器,也就是接触到的 Pentium 4。Pentium 4没有沿用PIII的架构,而是采用了全新的设计,包括等效于的400MHz前端总线(100 x 4), SSE2指令集,256K-512KB的二级缓存,全新的超管线技术及NetBurst架构,起步频率为1.3GHz。   第一个Pentium4核心为Willamette,全新的Socket 423插座,集成256KB的二级缓存,支持更为强大的SSE2指令集,多达20级的超标量流水线,搭配i850/i845系列芯片组,随后Intel陆 续推出了1.4GHz-2.0GHz的Willamette P4处理器,而后期的P4处理器均转到了针角更多的Socket 478插座。   和奔腾III一样,第一个Pentium4核心并不受到太多的好评,主要原因是新的CPU架构还不能受到程序软件的充分支持,因此 Pentium4经常大幅落后于同频的Athlon,甚至还如Intel自己的奔腾III。但在一年以后,Intel发布了第二个Pentium4核心, 代号为Northwood,改用了更为精细的0.13微米制程,集成了更大的512KB二级缓存,性能有了大幅的提高,加上Intel孜孜不倦的推广和主 板芯片厂家的支持,目前Pentium4已经成为最受欢迎的中高端处理器。   在低端CPU方面,Intel发布了第三代的Celeron核心,代号为Tualatin,这个核心也转用了0.13微米的工艺,与此同时二 级缓存的容量提高到256KB,外频也提高到100Mhz,目前Tualatin Celeron的主频有1.0、1.1、1.2、1.3Ghz等型号。Intel也推出了Tualatin核心的奔腾III,集成了更大的512KB二级 缓存,但它们只应用于服务器和笔记本电脑市场,在台式机市场很少能看到。   2、在AMD方面,在2000年中发布了第二个Athlon核心——Tunderbird,这个核心的Athlon有以下的改进,首先是制造工 艺改进为0.18微米,其次是安装界面改为了SocketA,这是一种类似于Socket370,但针脚数为462的安装接口。最后是二级缓存改为 256KB,但速度和CPU同步,与Coppermine核心的奔腾III一样。   Tunderbird核心的Athlon不但在性能上要稍微领先于奔腾III,而且其最高的主频也一直比奔腾III高,1Ghz频率的里程碑 就是由这款CPU首先达到的。不过随着Pentium4的发布,Tunderbird开始在频率上落后于对手,为此,AMD又发布了第三个Athlon核 心——Palomino,并且采用了新的频率标称制度,从此Athlon型号上的数字并不代表实际频率,而是根据一个公式换算相当于竞争对手(也就是 Intel)产品性能的频率,名字也改为AthlonXP。例如AthlonXP1500+处理器实际频率并不是1.5Ghz,而是1.33GHz。最 后,AthlonXP还兼容Intel的SSE指令集,在专门为SSE指令集优化的软件中也能充分发挥性能。   在低端CPU方面,AMD推出了Duron CPU,它的基本架构和Athlon一样,只是二级缓存只有64KB。Duron从发布开始,就能远远抛离同样主攻低端市场的Celeron,而且价格更 低廉,一时间Duron成为低价DIY兼容机的第一选择,但Duron也有它致命的弱点,首先是继承了Athlon发热量大的特点,其次是它的核心非常脆弱,在安装CPU散热器时很容易损坏。======================================================================================咱们买cpu时的一点点补充!!======================================================================================散装CPU只有一颗CPU,无包装。通常店保一年。一般是厂家提供给装机商,装机商用不掉而流入市场的。有些经销商将散装CPU配搭上风扇,包装成原装的样子,就成了翻包货。  原包CPU ,也称盒装CPU。 原包CPU,是厂家为零售市场推出的CPU产品,带原装风扇和厂家三年质保。 其实散装和盒装CPU本身是没有质量区别的,主要区别在于渠道不同,从而质保不同,盒装基本都保3年,而散装基本只保1年,盒装CPU所配的风扇是原厂封装的风扇,而散装不配搭风扇,或者由经销商自己配搭风扇。  黑盒CPU是指由厂家推出的顶级不锁频CPU,比如AMD的黑盒5000+,这类CPU不带风扇,是厂家专门为超频用户而推出的零售产品。   深包CPU,也称翻包CPU。经销商将散装CPU自行包装,加风扇。没有厂家质保,只能店保,通常是店保三年。或把CPU从国外走私到境内,进行二次包装,加风扇。这类是未税的,价格比散装略便宜。

电脑硬件入门知识全解之一:CPU篇!2010-01-12 00:57电脑硬件入门知识全解之一:CPU篇!由于内容很全,篇幅较大。根据不同同学对于不同硬件知识的需要,还有原帖中的一些知识比较老了,我做了一定的修改编辑,以后还会定期编辑,希望大家看起来更加方便。里面的知识都是比较实际的,可以说是初学者的超级福音!老玩家们的进阶天堂。如果能慢慢地把它看完,大家的硬件知识肯定能有很大的提高。硬件不仅仅是高手们的专利,新手们也是很有必要了解的(象我自己得到的知识就很多)。希望所有同学的硬件知识都能的速度越来越快,倍频技术也就应允而生。它可使系统总线工作在相对较低的频率上,而CPU速度可以通过倍频来无限提升。那么CPU主频的计算方式变为:主频 === 外频 x 倍频。也就是倍频是指CPU和系统总线之间相差的倍数,当外频不变时,提高倍频,CPU主频也就越高。================================================================================================主频因素说完了,现在让我们来看看别的影响CPU速度的来安排指令,所以非常不灵活,一旦某一级的指令执行出错的话,整条流水线就会停止下来,再一极一级地去找出错误,然后把整条流水线清空,重新载入指令,这样一来,会浪费很多时间,执行效率反而十分低下,为了解决这个问题,科学家们又采用了各种预测技术来提高指令执行的正确率,希望在保持长流水线的同时尽量避免发生清空流水线的悲剧,这就是经常看到的Intel的广告存的大容量的存储系统了。缓存对CPU的性能影响很大,主要是因为CPU的数据交换顺序和CPU与缓存间的带宽引起的。 缓存的工作原理是当CPU要读取一个数据时,首先从缓存中查找,如果找到就立即读取并送给CPU处理;如果没有找到,就用相对慢的速度从内存中读取并送给CPU处理,同时把这个数据所在的数据块调入缓存中,可以使得以后对整块数据的读取都从缓存中进行,不必再调用内存。 正是这样的读取机制使CPU读取缓存的命中率非常高(大多数CPU可达90%左右),也就是说CPU下一次要读取的数据90%都在缓存中,只有大约10%需要从内存读取。这大大节省了CPU直接读取内存的时间,也使CPU读取数据时基本无需等待。总的来说,CPU读取数据的顺序是先缓存后内存。 最早先的CPU缓存是个整体的,而且容量很低,英特尔公司从Pentium时代开始把缓存进行了分类。当时集成在CPU内核中的缓存已不足以满足CPU的需求,而制造工艺上的限制又不能大幅度提高缓存的容量。因此出现了集成在与CPU同一块电路板上或主板上的缓存,此时就把 CPU内核集成的缓存称为一级缓存,而外部的称为二级缓存。一级缓存中还分数据缓存(Data Cache,D-Cache)和指令缓存(Instruction Cache,I-Cache)。二者分别用来存放数据和执行这些数据的指令,而且两者可以同时被CPU访问,减少了争用Cache所造成的冲突,提高了处理器效能。英特尔公司在推出Pentium 4处理器时,用新增的一种一级追踪缓存替代指令缓存,容量为12KμOps,表示能存储12K条微指令。 随着CPU制造工艺的发展,二级缓存也能轻易的集成在CPU内核中,容量也在逐年提升。现在再用集成在CPU内部与否来定义一、二级缓存,已不确切。而且随着二级缓存被集成入CPU内核中,以往二级缓存与CPU大差距分频的情况也被改变,此时其以相同于主频的速度工作,可以为CPU提供更高的传输速度。 二级缓存是CPU性能表现的关键之一,在CPU核心不变化的情况下,增加二级缓存容量能使性能大幅度提高。而同一核心的CPU高低端之分往往也是在二级缓存上有差异,由此可见二级缓存对于CPU的重要性。 CPU在缓存中找到有用的数据被称为命中,当缓存中没有CPU所需的数据时(这时称为未命中),CPU才访问内存。从理论上讲,在一颗拥有二级缓存的CPU中,读取一级缓存的命中率为80%。也就是说CPU一级缓存中找到的有用数据占数据总量的80%,剩下的20%从二级缓存中读取。由于不能准确预测将要执行的数据,读取二级缓存的命中率也在80%左右(从二级缓存读到有用的数据占总数据的16%)。那么还有的数据就不得不从内存调用,但这已经是一个相当小的比例了。目前的较高端的CPU中,还会带有三级缓存,它是为读取二级缓存后未命中的数据设计的-种缓存,在拥有三级缓存的CPU中,只有约5%的数据需要从内存中调用,这进一步提高了CPU的效率。 为了保证CPU访问时有较高的命中率,缓存中的内容应该按一定的算法替换。一种较常用的算法是数据带宽=(总线频率×数据位宽)÷8。目前PC机上所能达到的前端总线频率有266MHz、333MHz、400MHz、533MHz、800MHz几种,前端总线频率越大,代表着CPU与北桥芯片之间的数据传输能力越大,更能充分发挥出CPU的功能。现在的CPU技术发展很快,运算速度提高很快,而足够大的前端总线可以保障有足够的数据供给给CPU,较低的前端总线将无法供给足够的数据给CPU,这样就限制了CPU性能得发挥,成为系统瓶颈。 CPU和北桥芯片间总线的速度,更实质性的表示了CPU和外界数据传输的速度。而外频的概念是建立在数字脉冲信号震荡速度基础之上的,也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡一万万次,它更多的影响了PIC及其他总线的频率。之所以前端总线与外频这两个概念容易混淆,主要的原因是在以前的很长一段时间里(主要是在Pentium 4出现之前和刚出现Pentium 4时),前端总线频率与外频是相同的,因此往往直接称前端总线为外频,最终造成这样的误会。随着计算机技术的发展,人们发现前端总线频率需要高于外频,因此采用了QDR(Quad Date Rate)技术,或者其他类似的技术实现这个目前。这些技术的原理类似于AGP的2X或者4X,它们使得前端总线的频率成为外频的2倍、4倍甚至更高,从此之后前端总线和外频的区别才开始被人们重视起来。================================================再说说CPU的核心类型Athlon XP的核心类型 Athlon XP有4种不同的核心类型,但都有共同之处:都采用Socket A接口而且都采用PR标称值标注。Palomino 这是最早的Athlon XP的核心,采用0.18um制造工艺,核心电压为1.75V左右,二级缓存为256KB,封装方式采用OPGA,前端总线频率为266MHz。 Thoroughbred 这是第一种采用0.13um制造工艺的Athlon XP核心,又分为Thoroughbred-A和Thoroughbred-B两种版本,核心电压1.65V-1.75V左右,二级缓存为256KB,封装方式采用OPGA,前端总线频率为266MHz和333MHz。 Thorton 采用0.13um制造工艺,核心电压1.65V左右,二级缓存为256KB,封装方式采用OPGA,前端总线频率为333MHz。可以看作是屏蔽了一半二级缓存的Barton。 Barton 采用0.13um制造工艺,核心电压1.65V左右,二级缓存为512KB,封装方式采用OPGA,前端总线频率为333MHz和400MHz。 新Duron的核心类型 AppleBred 采用0.13um制造工艺,核心电压1.5V左右,二级缓存为64KB,封装方式采用OPGA,前端总线频率为266MHz。没有采用PR标称值标注而以实际频率标注,有1.4GHz、1.6GHz和1.8GHz三种。 Athlon 64系列CPU的核心类型 Clawhammer 采用0.13um制造工艺,核心电压1.5V左右,二级缓存为1MB,封装方式采用mPGA,采用Hyper Transport总线,内置1个128bit的内存控制器。采用Socket 754、Socket 940和Socket 939接口。 Newcastle 其与Clawhammer的最主要区别就是二级缓存降为512KB(这也是AMD为了市场需要和加快推广64位CPU而采取的相对低价政策的结果),其它性能基本相同。 AMD双核心处理器 AMD推出的双核心处理器 分别是双核心的Opteron系列和全新的Athlon 64 X2系列处理器。其中Athlon 64 X2是用以抗衡Pentium D和Pentium Extreme Edition的桌面双核心处理器系列。 AMD推出的Athlon 64 X2是由两个Athlon 64处理器上采用的Venice核心组合而成,每个核心拥有独立的512KB(1MB) L2缓存及执行单元。除了多出一个核芯之外,从架构上相对于目前Athlon 64在架构上并没有任何重大的改变。 双核心Athlon 64 X2的大部分规格、功能与我们熟悉的Athlon 64架构没有任何区别,也就是说新推出的Athlon 64 X2双核心处理器仍然支持1GHz规格的HyperTransport总线,并且内建了支持双通道设置的DDR内存控制器。 与Intel双核心处理器不同的是,Athlon 64 X2的两个内核并不需要经过MCH进行相互之间的协调。AMD在Athlon 64 X2双核心处理器的内部提供了一个称为System Request Queue(系统请求队列)的技术,在工作的时候每一个核心都将其请求放在SRQ中,当获得资源之后请求将会被送往相应的执行核心,也就是说所有的处理过程都在CPU核心范围之内完成,并不需要借助外部设备。 对于双核心架构,AMD的做法是将两个核心整合在同一片硅晶内核之中,而Intel的双核心处理方式则更像是简单的将两个核心做到一起而已。与Intel的双核心架构相比,AMD双核心处理器系统不会在两个核心之间存在传输瓶颈的问题。因此从这个方面来说,Athlon 64 X2的架构要明显优于Pentium D架构。 虽然与Intel相比,AMD并不用担心Prescott核心这样的功耗和发热大户,但是同样需要为双核心处理器考虑降低功耗的方式。为此AMD并没有采用降低主频的办法,而是在其使用90nm工艺生产的Athlon 64 X2处理器中采用了所谓的Dual Stress Liner应变硅技术,与SOI技术配合使用,能够生产出性能更高、耗电更低的晶体管。 AMD推出的Athlon 64 X2处理器给用户带来最实惠的好处就是,不需要更换平台就能使用新推出的双核心处理器,只要对老主板升级一下BIOS就可以了,这与Intel双核心处理器必须更换新平台才能支持的做法相比,升级双核心系统会节省不少费用。 英特尔CPU核心 Tualatin 这也就是大名鼎鼎的ntium III-S)和256KB(Pentium III和赛扬),这是最强的Socket 370核心,其性能甚至超过了早期低频的Pentium 4系列CPU。 Willamette 这是早期的Pentium 4和P4赛扬采用的核心,最初采用Socket 423接口,后来改用Socket 478接口(赛扬只有1.7GHz和1.8GHz两种,都是Socket 478接口),采用0.18um制造工艺,前端总线频率为400MHz, 主频范围从1.3GHz到2.0GHz(Socket 423)和1.6GHz到2.0GHz(Socket 478),二级缓存分别为256KB(Pentium 4)和128KB(赛扬),注意,另外还有些型号的Socket 423接口的Pentium 4居然没有二级缓存!核心电压1.75V左右,封装方式采用Socket 423的PPGA INT2,PPGA INT3,OOI 423-pin,PPGA FC-PGA2和Socket 478的PPGA FC-PGA2以及赛扬采用的PPGA等等。Willamette核心制造工艺落后,发热量大,性能低下,已经被淘汰掉,而被Northwood核心所取代。 Northwood 这是目前主流的Pentium 4和赛扬所采用的核心,其与Willamette核心最大的改进是采用了0.13um制造工艺,并都采用Socket 478接口,核心电压1.5V左右,二级缓存分别为128KB(赛扬)和512KB(Pentium 4),前端总线频率分别为400/533/800MHz(赛扬都只有400MHz),主频范围分别为2.0GHz到2.8GHz(赛扬),1.6GHz到2.6GHz(400MHz FSB Pentium 4),2.26GHz到3.06GHz(533MHz FSB Pentium 4)和2.4GHz到3.4GHz(800MHz FSB Pentium 4),并且3.06GHz Pentium 4和所有的800MHz Pentium 4都支持超线程技术(Hyper-Threading Technology),封装方式采用PPGA FC-PGA2和PPGA。按照Intel的规划,Northwood核心会很快被Prescott核心所取代。 Prescott 这是Intel最新的CPU核心,目前Pentium 4 XXX(如Pentium 4 530)和Celeron D采用该核心,还有少量主频在2.8GHz以上的CPU采用该核心。其与Northwood最大的区别是采用了0.09um制造工艺和更多的流水线结构,初期采用Socket 478接口,目前生产的全部转到LGA 775接口,核心电压1.25-1.525V,前端总线频率为533MHz(不支持超线程技术)和800MHz(支持超线程技术),最高有1066MHz的Pentium 4至尊版。其与Northwood相比,其L1 数据缓存从8KB增加到16KB,而L2缓存则从512KB增加到1MB或2MB,封装方式采用PPGA,Prescott核心已经取代Northwood核心成为市场的主流产品。 Intel双核心处理器 目前Intel推出的双核心处理器有Pentium D和Pentium Extreme Edition,同时推出945/955芯片组来支持新推出的双核心处理器,采用90nm工艺生产的这两款新推出的双核心处理器使用是没有针脚的LGA 775接口,但处理器底部的贴片电容数目有所增加,排列方式也有所不同。 桌面平台的核心代号Smithfield的处理器,正式命名为Pentium D处理器,除了摆脱阿拉伯数字改用英文字母来表示这次双核心处理器的世代交替外,D的字母也更容易让人联想起Dual-Core双核心的涵义。 ntel的双核心构架更像是一个双CPU平台,Pentium D处理器继续沿用Prescott架构及90nm生产技术生产。Pentium D内核实际上由于两个独立的2独立的Prescott核心组成,每个核心拥有独立的1MB L2缓存及执行单元,两个核心加起来一共拥有2MB,但由于处理器中的两个核心都拥有独立的缓存,因此必须保正每个二级缓存当中的信息完全一致,否则就会出现运算错误。 为了解决这一问题,Intel将两个核心之间的协调工作交给了外部的MCH(北桥)芯片,虽然缓存之间的数据传输与存储并不巨大,但由于需要通过外部的MCH芯片进行协调处理,毫无疑问的会对整个的处理速度带来一定的延迟,从而影响到处理器整体性能的发挥。 由于采用Prescott内核,因此Pentium D也支持EM64T技术、XD bit安全技术。值得一提的是,Pentium D处理器将不支持Hyper-Threading技术。原因很明显:在多个物理处理器及多个逻辑处理器之间正确分配数据流、平衡运算任务并非易事。比如,如果应用程序需要两个运算线程,很明显每个线程对应一个物理内核,但如果有3个运算线程呢?因此为了减少双核心Pentium D架构复杂性,英特尔决定在针对主流市场的Pentium D中取消对Hyper-Threading技术的支持。 同出自Intel之手,而且Pentium D和Pentium Extreme Edition两款双核心处理器名字上的差别也预示着这两款处理器在规格上也不尽相同。其中它们之间最大的不同就是对于超线程(Hyper-Threading)技术的支持。Pentium D不能支持超线程技术,而Pentium Extreme Edition则没有这方面的限制。在打开超线程技术的情况下,双核心Pentium Extreme Edition处理器能够模拟出另外两个逻辑处理器,可以被系统认成四核心系统。===================================================CPU工艺:指在硅材料上生产CPU时内部各元器材的连接线宽度,一般用微米表示。微米值越小制作工艺越先进,CPU可以达到的频率越高,集成的晶体管就可以更多。目前Intel的P4和AMD的XP都已经达到了0.65微米的制造工艺。 从上面我们了解了CPU的逻辑结构以及一些基本技术参数,本文将继续全面的了解影响CPU性能的有关技术参数。 ===============================================================下面又说说CPU的技术吧CPU扩展指令集:CPU依靠指令来计算和控制系统,每款CPU在设计时就规定了一系列与其硬件电路相配合的指令系统。指令的强弱也是CPU的重要指标,指令集是提高微处理器效率的最有效工具之一。从现阶段的主流体系结构讲,指令集可分为复杂指令集和精简指令集两部分,而从具体运用看,如Intel的MMX(Multi Media Extended)、SSE、 SSE2(Streaming-Single instruction multiple data-Extensions 2)、SEE3和AMD的3DNow!等都是CPU的扩展指令集,分别增强了CPU的多媒体、图形图象和Internet等的处理能力。我们通常会把CPU的扩展指令集称为CPU的指令集。SSE3指令集也是目前规模最小的指令集,此前MMX包含有57条命令,SSE包含有50条命令,SSE2包含有144条命令,SSE3包含有13条命令。目前SSE3也是最先进的指令集,英特尔Prescott处理器已经支持SSE3指令集,AMD会在未来双核心处理器当中加入对SSE3指令集的支持,全美达的处理器也将支持这一指令集。===================================================指令集:(1) X86指令集要知道什么是指令集还要从当今的X86架构的CPU说起。X86指令集是Intel为其第一块16位CPU(i8086)专门开发的,IBM1981年推出的世界第一台PC机中的CPU-i8088(i8086简化版)使用的也是X86指令,同时电脑中为提高浮点数据处理能力而增加的X87芯片系列数学协处理器则另外使用X87指令,以后就将X86指令集和X87指令集统称为X86指令集。虽然随着CPU技术的不断发展,Intel陆续研制出更新型的i80386、i80486直到今天,但为了保证电脑能继续运行以往开发的各类应用程序以保护和继承丰富的软件资源,所以Intel公司所生产的所有CPU仍然继续使用X86指令集,所以它的CPU仍属于X86系列。由于Intel X86系列及其兼容CPU都使用X86指令集,所以就形成了今天庞大的X86系列及兼容CPU阵容。 (2) RISC指令集RISC指令集是以后高性能CPU的发展方向。它与传统的CISC(复杂指令集)相对。相比而言,RISC的指令格式统一,种类比较少,寻址方式也比复杂指令集少。当然处理速度就提高很多了。而且RISC指令集还兼容原来的X86指令集。 ==========================================字节:(8位,32位,64位电脑的由来)电脑技术中对CPU在单位时间内(同一时间)能一次处理的二进制数的位数叫字长。所以能处理字长为8位数据的CPU通常就叫8位的CPU。同理32位的CPU就能在单位时间内处理字长为32位的二进制数据。当前的CPU都是32位的CPU,但是字长的最佳是CPU发展的一个趋势。AMD推出64位的CPU-Atlon64。未来必然是64位CPU的天下。 ======================================================流水线与超流水线:虽然流水线之 前说过了,但是在这再说说超流水线流水线(pipeline)是Intel首次在486芯片中开始使用的。流水线的工作方式就象工业生产上的装配流水线。在CPU中由5~ 6个不同功能的电路单元组成一条指令处理流水线,然后将一条X86指令分成5~6步后再由这些电路单元分别执行,这样就能实现在一个CPU时钟周期完成一条指令,因此提高CPU的运算速度。超流水线(superpiplined)是指某型CPU内部的流水线超过通常的5~6步以上,例如Pentium pro的流水线就长达14步。将流水线设计的步(级)其完成一条指令的速度越快,因此才能适应工作主频更高的CPU。但是流水线过长也带来了一定副作用,很可能会出现主频较高的CPU实际运算速度较低的现象,Intel的奔腾4就出现了这种情况,虽然它的主频可以高达1.4G以上,但其运算性能却远远比不上AMD 1.2G的速龙甚至奔腾III。 ======================================================封装形式:CPU封装是采用特定的材料将CPU芯片或CPU模块固化在其中以防损坏的保护措施,一般必须在封装后CPU才能交付用户使用。CPU的封装方式取决于CPU安装形式和器件集成设计,从大的分类来看通常采用Socket插座进行安装的CPU使用PGA(栅格阵列)方式封装,而采用Slot x槽安装的CPU则全部采用SEC(单边接插盒)的形式封装。现在还有PLGA(Plastic Land Grid Array)、OLGA(Organic Land Grid Array)等封装技术。由于市场竞争日益激烈,目前CPU封装技术的发展方向以节约成本为主。======================================================HT(超线程)说说INTEL大展的HT技术吧,我们班每个同学都懂得HT,但不知道HT是什么东西:)Intel正式发布了器的工作资源(execution resources)。架构指挥中心追踪每个程序或执行绪的执行状况;工作资源指的则是显身手的时候了。那时候,普通用户才能够从超线程技术中得到最直接的好处。 但是我们还是需要看到,随着目前操作系统对于双处理器技术的广泛支持,例如Windows2000、Windows XP等操作系统都支持双处理器,在这些操作系统上使用支持超线程技术的处理器,对于系统的整体性能还是有一定的提高的。。 我自己来说一说:简单地说:就是一个CPU模拟成2个一起运算,假如你的大脑有HT技术,上课就可以边讲话,边听课啦!!======================================================HT还有一个意思是HyperTransport ,这是AMD的饿。。。。。不是前面的因特尔的记得我们班有一个人说,哇,XXX处理器技术超线程前端总线技术,听了我差点吐血!!!A和I几时合平共处了????HyperTransport最初是AMD在1999年提出的一种总线技术,随着AMD64位平台的发布和推广,HyperTransport应用越来越广泛,也越来越被人们所熟知。 HyperTransport是一种为主板上的集成电路互连而设计的端到端总线技术,它可以在内存控制器、磁盘控制器以及PCI总线控制器之间提供更高的数据传输带宽。HyperTransport采用类似DDR的工作方式,在400MHz工作频率下,相当于800MHz的传输频率。此外HyperTransport是在同一个总线中模拟出两个独立数据链进行点对点数据双向传输,因此理论上最大传输速率可以视为翻倍,具有4、8、16及32位频宽的高速序列连接功能。在400MHz下,双向4bit模式的总线带宽为0.8GB/sec,双向8bit模式的总线带宽为1.6GB/sec;800MHz下,双向8bit模式的总线带宽为3.2GB/sec,双向16bit模式的总线带宽为6.4GB/sec,双向32bit模式的总线带宽为12.8GB/sec。以400MHz下,双向4bit模式为例,带宽计算方法为400MHz×2×2×4bit÷8=0.8GB/sec。 HyperTransport还有一大特色,就是当数据位宽并非32bit时,可以分批传输数据来达到与32bit相同的效果。例如16bit的数据就可以分两批传输,8bit的数据就可以分四批传输,这种数据分包传输的方法,给了HyperTransport在应用上更大的弹性空间。 2004年2月,HyperTransport技术联盟(Hyper Transport Technology Consortium)又正式发布了HyperTransport 2.0规格,由于采用了Dual-data技术,使频率成功提升到了1.0GHz、1.2GHz和1.4GHz,数据传输带宽由每通道1.6Gb/sec提升到了2.0GB/sec、2.4Gb/sec和2.8GB/sec,最大带宽由原来的12.8Gb/sec提升到了22.4GB/sec。 当HyperTransport应用于内存控制器时,其实也就类似于传统的前端总线(FSB,Front Side Bus),因此对于将HyperTransport技术用于内存控制器的CPU来说,其HyperTransport的频率也就相当于前端总线的频率。=============================================64位技术:这个不想说太多,懂得编程的朋友应该知道64位代表着更广的寻址空间,有AMD的X86-64,还有I的EMT-64技术,都是64位的CPU我断定!未来的64位CPU是主流!================================================接口类型:socket就是接口的意思 比如AMD的就有462,754,939针脚的,462针脚就是socket A接口 当然现在很少使用462针脚了,主流的闪龙就是754针脚,939就属于高端CPU使用的针脚====================================现在还有AMD准备要出的AM2接口,INTEL的LGA接口等,按电脑报的来说,可以理解为,CPU越强大了就要用更多脚来支持======================================= 核心电压:这个没有什么好说的,就是CPU的工作电压(Supply Voltage),即CPU正常工作所需的电压。任何电器在工作的时候都需要电,自然也有对应额定电压,CPU也不例外。=========================================================下面说说3DNOW技术:由AMD公司提出的3DNow!指令集应该说出现在SSE指令集之前,并被AMD广泛应用于其K6-2 、K6-3以及Athlon(K7)处理器上。3DNow!指令集技术其实就是21条机器码的扩展指令集。 与Intel公司的MMX技术侧重于整数运算有所不同,3DNow!指令集主要针对三维建模、坐标变换 和效果渲染等三维应用场合,在软件的配合下,可以大幅度提高3D处理性能。后来在Athlon上开发了Enhanced 3DNow!。这些AMD标准的SIMD指令和Intel的SSE具有相同效能。因为受到Intel在商业上以及Pentium III成功的影响,软件在支持SSE上比起3DNow!更为普遍。Enhanced 3DNow!AMD公司继续增加至52个指令,包含了一些SSE码,因而在针对SSE做最佳化的软件中能获得更好的效能。===================================================再说说MMXMMX技术:是再来说说SSE:SSE是Streaming SIMD Extension的缩写,也叫KNI指令集。它是被嵌套在Intel Pentium III处理器中的第二套多媒体专用指令集。与MMX指令集不同的是SSE的主要作用是加速CPU的3D运算能力。它总计包括70条指令,50条SIMD浮点指令,主要用于3D处理。12条新MMX指令,8条系统内存数据流传输优化指令。 流式SIMD扩展,是Intel对MMX的一个改进。SSE包括了70条用于图形图象和声音成立的指令,除了比MMX增加了23条指令外,SSE指令也允许浮点运算,使用一个分开的单元,而不是MMX使用的标准浮点单元。 ================================================再说说SSE寄存器:SSE寄存器是专用寄存器,并非通用寄存器,因为它是专门针对多媒体数据处理指令而设计的.标准的32-bit x86架构包括8个通用寄存器(GPR),AMD在X86-64中又增加了8组(R8-R9),将寄存器的数目提高到了16组。X86-64寄存器默认位64-bit。还增加了8组128-bit XMM寄存器(也叫SSE寄存器,XMM8-XMM15)。============================================================================================ 看看这些制造商吧~============================================================================================CPU的厂商  Intel公司  Intel是生产CPU的老大哥,个人电脑市场,它占有80%多的市场份额,Intel生产的CPU就成了事实上的x86CPU技术规范和标准。个人电脑平台最新的酷睿2成为CPU的首选,下一代酷睿i5、酷睿i7抢占先机,在性能上大幅领先其他厂商的产品。   AMD公司    目前使用的CPU有好几家公司的产品,除了Intel公司外,最有力的挑战的就是AMD公司,最新的AMD 速龙II X2和羿龙II具有很好性价比,尤其采用了3DNOW+技术并支持SSE4.0指令集,使其在3D上有很好的表现。   IBM和Cyrix  IBM之强在于高端的实验室,工作室的非民用CPU  美国国家半导体公司NS和Cyrix公司合并后,使其终于拥有了自己的芯片生产线,其成品将会日益完善和完备。现在的MII性能也不错,尤其是它的价格很低。   PowerPC   由AIM联盟开发,  PowerPC 是一种精简指令集(RISC)架构的中央处理器(CPU),其基本的设计源自IBM(国际商用机器公司)的POWER(Performance Optimized With Enhanced RISC;《IBM Connect 电子报》2007年8月号译为“增强RISC性能优化”)架构。POWER是1991年,Apple(苹果电脑)、IBM、Motorola(摩托罗拉)组成的AIM联盟所发展出的微处理器架构。PowerPC是整个AIM联盟平台的一部分,并且是到目前为止唯一的一部分。但苹果电脑自2005年起,将旗下电脑产品转用Intel CPU。  PowerPC的历史可以追溯到早在1990年随RISC System/6000一起被介绍的IBM POWER架构。该设计是从早期的RISC架构(比如IBM 801)与MIPS架构的处理器得到灵感的。  OpenRISC   OpenRisc是OpenCores组织提供的基于GPL协议的开放源代码的RISC(精简指令集计算机)处理器。有人认为其性能介于ARM7和ARM9之间,适合一般的嵌入式系统使用。最重要的一点是OpenCores组织提供了大量的开放源代码IP核供研究人员使用,因此对于一般的开发单位具有很大的吸引力。  IDT公司  IDT是处理器厂商的后起之秀,但现在还不太成熟。  VIA威盛公司  VIA威盛是台湾一家主板芯片组厂商,收购了前述的 Cyrix和IDT的cpu部门,推出了自己的CPU  国产龙芯  GodSon 小名狗剩,是国有自主知识产权的通用处理器,目前已经有2代产品,已经能达到现在市场上INTEL和AMD的低端CPU的水平,  ARM Ltd  安谋国际科技,少数只授权其CPU设计而没有自行制造的公司。嵌入式应用软件最常被ARM架构微处理器执行。  Freescale Semiconductor  前身是Motorola的飞思卡尔,设计数款嵌入装置以及SoC PowerPC 处理器。=======================================================================================踏入新世纪的CPU======================================================================================  21世纪以来,CPU进入了更高速发展的时代,1Ghz大关被突破,市场分布方面,仍然是Intel跟AMD公司在两雄争霸,分别推出了Pentium4、Tualatin核心Pentium Ⅱ和Celeron、Tunderbird核心Athlon、AthlonXP和Duron等处理器,竞争日益激烈。   1、在Intel方面,在20个世纪末的2000年11月,Intel发布了旗下第四代的Pentium处理器,也就是接触到的 Pentium 4。Pentium 4没有沿用PIII的架构,而是采用了全新的设计,包括等效于的400MHz前端总线(100 x 4), SSE2指令集,256K-512KB的二级缓存,全新的超管线技术及NetBurst架构,起步频率为1.3GHz。   第一个Pentium4核心为Willamette,全新的Socket 423插座,集成256KB的二级缓存,支持更为强大的SSE2指令集,多达20级的超标量流水线,搭配i850/i845系列芯片组,随后Intel陆 续推出了1.4GHz-2.0GHz的Willamette P4处理器,而后期的P4处理器均转到了针角更多的Socket 478插座。   和奔腾III一样,第一个Pentium4核心并不受到太多的好评,主要原因是新的CPU架构还不能受到程序软件的充分支持,因此 Pentium4经常大幅落后于同频的Athlon,甚至还如Intel自己的奔腾III。但在一年以后,Intel发布了第二个Pentium4核心, 代号为Northwood,改用了更为精细的0.13微米制程,集成了更大的512KB二级缓存,性能有了大幅的提高,加上Intel孜孜不倦的推广和主 板芯片厂家的支持,目前Pentium4已经成为最受欢迎的中高端处理器。   在低端CPU方面,Intel发布了第三代的Celeron核心,代号为Tualatin,这个核心也转用了0.13微米的工艺,与此同时二 级缓存的容量提高到256KB,外频也提高到100Mhz,目前Tualatin Celeron的主频有1.0、1.1、1.2、1.3Ghz等型号。Intel也推出了Tualatin核心的奔腾III,集成了更大的512KB二级 缓存,但它们只应用于服务器和笔记本电脑市场,在台式机市场很少能看到。   2、在AMD方面,在2000年中发布了第二个Athlon核心——Tunderbird,这个核心的Athlon有以下的改进,首先是制造工 艺改进为0.18微米,其次是安装界面改为了SocketA,这是一种类似于Socket370,但针脚数为462的安装接口。最后是二级缓存改为 256KB,但速度和CPU同步,与Coppermine核心的奔腾III一样。   Tunderbird核心的Athlon不但在性能上要稍微领先于奔腾III,而且其最高的主频也一直比奔腾III高,1Ghz频率的里程碑 就是由这款CPU首先达到的。不过随着Pentium4的发布,Tunderbird开始在频率上落后于对手,为此,AMD又发布了第三个Athlon核 心——Palomino,并且采用了新的频率标称制度,从此Athlon型号上的数字并不代表实际频率,而是根据一个公式换算相当于竞争对手(也就是 Intel)产品性能的频率,名字也改为AthlonXP。例如AthlonXP1500+处理器实际频率并不是1.5Ghz,而是1.33GHz。最 后,AthlonXP还兼容Intel的SSE指令集,在专门为SSE指令集优化的软件中也能充分发挥性能。   在低端CPU方面,AMD推出了Duron CPU,它的基本架构和Athlon一样,只是二级缓存只有64KB。Duron从发布开始,就能远远抛离同样主攻低端市场的Celeron,而且价格更 低廉,一时间Duron成为低价DIY兼容机的第一选择,但Duron也有它致命的弱点,首先是继承了Athlon发热量大的特点,其次是它的核心非常脆弱,在安装CPU散热器时很容易损坏。======================================================================================咱们买cpu时的一点点补充!!======================================================================================散装CPU只有一颗CPU,无包装。通常店保一年。一般是厂家提供给装机商,装机商用不掉而流入市场的。有些经销商将散装CPU配搭上风扇,包装成原装的样子,就成了翻包货。  原包CPU ,也称盒装CPU。 原包CPU,是厂家为零售市场推出的CPU产品,带原装风扇和厂家三年质保。 其实散装和盒装CPU本身是没有质量区别的,主要区别在于渠道不同,从而质保不同,盒装基本都保3年,而散装基本只保1年,盒装CPU所配的风扇是原厂封装的风扇,而散装不配搭风扇,或者由经销商自己配搭风扇。  黑盒CPU是指由厂家推出的顶级不锁频CPU,比如AMD的黑盒5000+,这类CPU不带风扇,是厂家专门为超频用户而推出的零售产品。   深包CPU,也称翻包CPU。经销商将散装CPU自行包装,加风扇。没有厂家质保,只能店保,通常是店保三年。或把CPU从国外走私到境内,进行二次包装,加风扇。这类是未税的,价格比散装略便宜。


相关内容

  • 电脑基础知识学习
  • 电脑基础知识学习 1.中央处理器(CPU): 中央处理器(英文Central Processing Unit,CPU)是一台计算机的运算核心和控制核心.CPU.内部存储器和输入/输出设备是电子计算机三大核心部件.电脑中所有操作都由CPU负责读取指令,对指令译码并执行指令的核心部件.其功能主要是解释计 ...

  • 计算机市场调查报告 张发文 18
  • 微型计算机硬件市场调查 学生姓名 张发文 专业班级 多媒体技术 学 号 [1**********] 系(部) 信息工程系 指导老师 郁彦明 完成时间 2012年4月20日 目 录 摘 要................................................I 1 计算机配置 ...

  • 计算机组装与维护实习报告
  • 实习目的:熟练掌握电脑的组装、bios设置、系统安装、故障排除的过程;通过计算机的组装,认识计算机的硬件和结构,了解计算机的整个组装过程和注意事项。 实习要求:识别计算机的各个部件,能自己动手组装一台计算机;并且能根据所学课本知识对计算机硬件进行及时安全维护。 一.计算机拆装 (1)主要部件: 1. ...

  • 电脑关机后需要拔下电源插头吗
  • <电脑关机后需要拔下电源插头吗> 有网友问到这个问题就是电脑用完之后电源的插头需要拔下来吗?可能有很多网友看到这个问题都非常的茫然,小编认为会有很多网友赞同将电源的插头拔下来!针对这个问题,小编详细的给大家解说一下! 为什么要将电源插头拔下来? 电脑关机之后,小编的个人习惯就是将插头拔下 ...

  • 电脑主板芯片组基础知识
  • 电脑主板芯片组基础知识 2010-03-31 20:40:13| 分类: 电脑维护 | 标签: |字号大中小 订阅 主板芯片组几乎决定着主板的全部功能,其中CPU 的类型.主板的系统总线频率,内存类型.容量和性能,显卡插槽规格是由芯片组中的北桥芯片决定的:而扩展槽的种类与数量.扩展接口的类型和数量( ...

  • 计算机导论第二章知识点
  • <计算机导论>第二章要求掌握的知识点 1. 课件中出现的和教材P2.30-2.33页全部英文术语 2. 计算机技术中为什么要使用"二进制编码方案"?常用"二进制编码方案"有哪三种? 各适用于什么环境? 在计算机进行数据处理前,必须将人类能够理解的信 ...

  • 电脑的基本组成
  • 电脑基本结构及组成 什么是电脑的基本组成,电脑系统,电脑基础知识的解释 1.了解电脑的基本组成 一般我们看到的电脑都是由:主机(主要部分).输出设备(显示器).输入设备(键盘和鼠标)三大件组成.而主机是电脑的主体,在主机箱中有:主板.CPU.内存.电源.显卡.声卡.网卡.硬盘.软驱.光驱等硬件. 从 ...

  • 当前计算机热点配置及发展趋势 文本文档
  • 计算机的主要配置: CPU 主板,内存,显卡,硬盘, 微型计算机配置的一般原则:个人观点: 1.实用性:够用就好!这是经典原理.计算机的升级永远比你的淘汰速度快!不要过于追求高端配置,因为高端配置在市场上的软硬件兼容性不完善,造成以后升级.维修等困难. 2.适用性:分清计算机的使用范围.比如:办公, ...

  • 电脑英文缩写
  • 电脑硬件那些接口的英文缩写解释 大家喜欢将CPU 比作电脑的大脑或心脏,那么电脑主板就可称为电脑的神经系统.主板是一种高科技.高工艺融为一体的集成产品,大家在攒机的时候难免有认知上的迷惑.所以先了解一些主板的基本知识对大家攒机是大有裨益的.下面,我就把主板常用的一些术语简单的给大家解释一下. 主板: ...