基于PLC水塔水位控制系统的设计

重庆科技学院

基于PLC 控制系统的水塔水位设计

考生姓名: 李寿宁 准考证号: [1**********]6

专业层次: 本 科 院 (系):机械与动力工程学院

指导教师: 刘 静 职 称: 讲 师 高等教育自学考试本科毕业论文

重庆科技学院

二0一二年九月二十日

重庆科技学院

高等教育自学考试本科毕业论文

基于PLC 控制系统的水塔水位设计

考生姓名: 李寿宁

准考证号: [1**********]6

专业层次: 本 科

指导教师: 刘 静

院 (系):机械与动力工程学院

重庆科技学院

二0一二年九月二十日

摘 要

随着科技的发展,无论在日常生活中,还是在工农业发展中,PLC 具有广泛的应用。PLC 的一般特点:抗干扰能力强,可靠性极高、编程简单方便、使用方便、维护方便、设计、施工、调试周期短、易于实现机电一体化。PLC 总的发展趋势是:高功能、高速度、高集成度、大容量、小体积、低成本、通信组网能力强。本水塔水位控制系统采用PLC 为控制核心,具备开启和全部停止功能,这是一种PLC 控制的自动调节控制系统。应用此控制系统能显著提高劳动效率,减少劳动强度。但是随着世界人口的不断增长,人们生活用水的增加,以往采用的继电器水塔水位自动控制系统由于频繁操作会产生机械磨损,不方便维护和更新,已经不能满足人们的实际需求,本文采用的是PLC 可编程控制器作为水塔水位自动控制系统核心,对水塔水位自动控制系统的功能进行性进行了需求分析。主要实现方法是通过传感器检测水塔水位的实际水位,将水位具体信息传至PLC 构成的控制模块,经A/D转换后,进行数据比较,来控制抽水电机的动作,同时进行数据还原,显示水位具体信息,如果水位低于或高于某个设定值是,就会发出危险报警的信号。本文以一个水塔水位控制系统的设计过程,给出了基于PLC 水塔水位控制系统的设计好实现的具体过程。

关键词:高集成度,水位控制,组态,水塔水位 ,PLC

Design of water level control system based on PLC water tower

ABSTRACT

With technological development, both in daily life, or the industrial and agricultural development, plc have wide application. PLC general features: strong anti-jamming capability, high reliability, programming is simple and convenient, easy operation and maintenance convenience, design, construction, commissioning period is short, easy to realize the electromechanical integration. PLC general development trend is: high function, high speed, high level of integration, large capacity, small volume, low cost, communication networking capability is strong. This water tower water level control system adopts PLC as control core, with open and full stop functions,this is a kind of PLC automatic adjustment of the control system. Application of this control system can significantly improve the work efficiency and reduces labor intensity. But with the growing world population, it is the increase in water, relay towers used in the past, the water level automatic control system operation due to the frequent cause mechanical wear, convenient maintenance and updating can no longer meet the actual needs of the people, the paper used programmable controller as a series of small water tower water level automatic control system core, the water level of the tower the functions of automatic control system of the requirement analysis. Main achieved is through the actual water level sensor detects the water tower, specific information will be transmitted to the water level control module consisting of PLC, the A / D conversion, to compare data, to control the pumping action of the motor, while data reduction, the indicated level specific information, if the water level lower or higher than a set value, we will send the hazard warning signal. In this paper, a water tank level control system design process, the water tower level control system based on PLC design a good implementation of the specificprocess.

Key words: The high level of , Water level control,DCS, Water level PLC

目 录

中文摘 要 . ............................................................................................................................ 3 英文摘要.................................................................................................................................. 4 1 绪 论.................................................................................................................................. 7

1.1研究背景 ......................................................................................................................... 7

1.2研究的目的及意义 ........................................................................................................... 8

1.3国内外发展现状............................................................................................................... 8 2 PLC简介 . ....................................................................................................................... 10

2.1可编程控制器的产生...................................................................................................... 10

2.2 PLC的发展.....................................................................................................................11

2.3 PLC的未来展望..............................................................................................................11

2.4 PLC的特点.................................................................................................................... 12

2.5 PLC的组成 . ................................................................................................................. 13

2.5.1 中央处理单元(CPU) .......................................................................................... 13

2.5.2 存储器.............................................................................................................. 14

2.5.3、输入/输出模块 ................................................................................................. 14

2.5.4、扩展模块 .......................................................................................................... 15

2.5.5 编程器 ............................................................................................................... 15

2.6 PLC的工作原理............................................................................................................. 16

2.7 梯形图程序设计............................................................................................................ 16 3 水塔水位控制系统PLC 硬件设计.......................................................................... 18

3.1 水塔水位控制系统设计要求 .......................................................................................... 18

3.1.1 工作原理 . ........................................................................................................... 18

3.2 水塔水位控制系统主电路 . ........................................................................................... 18

3.3 I/O接口分配............................................................................................................. 19

3.3.1 列出水塔水位控制系统PLC 的输入/输出接口分配表........................................ 19

3.3.2 水塔水位控制系统的I/O设备........................................................................... 20 4 水塔水位控制系统PLC 软件设计 ....................................................................... 21

4.1 程序流程图 . ................................................................................................................ 21

4.2 梯形图程序设计及工作过程分析 ................................................................................. 22

4.2.1 工作过程 .......................................................................................................... 23

4.2.2 水塔水位控制系统梯形图.................................................................................. 23

5 水塔水位控制系统的组态设计 .............................................................................. 27

5.1 组态软件概述 ............................................................................................................. 27

5.2 组态软件在我国的发展 ............................................................................................... 27

5.3 组态软件的功能特点发展方向 . .................................................................................... 28

5.4 建立WINCC 组态画面 . .................................................................................................. 28

5.4.1 WINCC组态画面 ................................................................................................ 28

5.4.2 画面演示 .......................................................................................................... 29 6 结 论 ............................................................................................................................. 37 致 谢................................................................................................................................ 38 参考文献 .............................................................................................................................. 39 论文原创性声明.................................................................................................................. 40

1 绪 论

在工业生产中,电流、电压、温度、压力、液位、流量、和开关量等都是常用的主要被控参数。其中,水位控制越来越重要。比如自动控制水塔、水池、水槽、锅炉等容器中的蓄水量,生活中抽水马桶的自动补水控制、自动电热水器、电开水机的自动进水控制等。虽然各种水位控制的技术要求不同,精度不同。但其原理都大同小异。特别是在实际操作系统中,稳定、可靠是控制系统的基本要求。在社会经济飞速发展的今天,水在人们正常生活和生产中起着越来越重要的作用。一旦断了水,轻则给人民生活带来极大的不便,重则可能造成严重的生产事故及损失。因此如何设计一个精度高、稳定性好的水位控制系统就显得日益重要。

给水工程往往成为高层建筑或工矿企业中最重要的基础设施之一。任何时候都能提供足够的水量、平稳的水压、合格的水质是对给水系统提出的基本要求。就目前而言,多数工业、生活供水系统都采用水塔、层顶水箱等作为基本储水设备,由一级或二级水泵从地下市政水管补给。传统的控制方式存在控制精度低、能耗大、可靠性差等缺点。可编程控制器(PLC )是根据顺序逻辑控制的需要而发展起来的,是专门为工业环境应用而设计的数字运算操作的电子装置。鉴于其种种优点,目前水位控制的方式被PLC 控制取代。同时,又有PID 控制技术的发展,因此,如何建立一个可靠安全、又易于维护的给水系统是值得我们研究的课题。

1.1研究背景

传统的供水系统大多采用水塔、高位水箱或增压设备,用水泵高出实际用水高度的扬程来“提升”水位高度,以保证有足够的用水量,并且控制精度低、能耗大。随着科学技术的不断发展,自动控制技术在我国的日新月异,继电器控制系统已跟不上时代的发展要求,而需要一种新型的可编程控制器取而代之。

PLC 可编程控制器是二十世纪七十年代发展起来的控制设备,是集微处理器、储存器、输入/输出接口与中断于一体的器件,是在传统的顺序控制器的基础上引入了微电子技术、计算机技术、自动控制技术和通讯技术而形成的一代新型工业控制装置。

1969年,第一台可编程控制器PDP —14由美国数字设备公司(DEC )制作成功,并在GM 公司汽车生产线上使用取得良好的效果,可编程控制器由此诞生,在控制领域内产生了历史性革命。

PLC 问世时间不长,但是随着微处理器的发展,大规模、超大规模集成电路不断出现,数据通信技术不断进步,PLC 迅速发展。PLC 进入九十年代后,工业控制领域几乎全被PLC 占领。国外专家预言,PLC 技术将在工业自动化的三大支柱(PLC 、机器人和CAC/CAM)种跃居首位。

运用PLC 的目的是用来取代继电器、执行逻辑、记时、计数等顺序控制功能,建立柔性的控制系统。已经被广泛应用于机械制造、冶金、化工、能源、交通等各个行业,是工业自动化的主导产品。

1.2研究的目的及意义

在人们日常生产生活中,经常需要对水位进行控制,水塔水位控制系统是我国住宅小区广泛应用的供水系统, 传统的控制方式存在控制精度低、能耗大的缺点, 并且很不稳定,而运用PLC 自动控制原理, 利用水的导电性连续地全天候地测量水位的变化,把测量到的水位变化参数转换成相应的电信号,主控台应用MCGS 组态软件对接收到的信号进行数据处理,完成相应的水位显示、故障报警信息显示、实时曲线和历史曲线的显示,使水位保持在适当的位置,保持水压恒定, 从而提高了供水系统的质量。而且成本低,安装方便,灵敏性好,从而达到了满足企业或居民得到安全、稳定用水以及节约水源的目的,并且实现了自动控制。

不论从古到今,水在人们正常生活和生产中始终如一的起着至关重要、无可取代的作用。一旦断了水,轻则给人民生活带来极大的不便,重则可能造成严重的生产事故及损失,从而满足及时、准确、安全、充足的供水成为人们对供水系统提出的新要求。如果仍然使用传统的方式,不但劳动强度大,工作效率低,并且安全性难以保障,由此运用PLC 自动控制原理进行自动化控制系统的改造,从而实现安全、充足、自动化的供水,具有很高的实际应用价值,对人们的生产生活具有重大意义。

1.3国内外发展现状

我国在八十年代初才开始使用PLC ,目前从国外应进的PLC 使用较为普遍的有日本OMRON 公司C 系列、三菱公司F 系列、美国GE 公司GE 系列和德国西门子公司S 系列等。近年来,德国西门子公司的S7系列PLC 在我国已经广泛使用,并在各行各业的生产过程的自动控制中担任着重要角色。

可编程控制器(PLC )因为抗干扰能力强,可靠性好,控制系统结构简单,通用性强,编程方便,易于使用,维护操作方便等优势已经成为应用面最广,最广泛的通用工业控制装置,成为当代工业自动化的主要支柱之一。通过PLC 对程

序设计,提高液位系统的控制水平,具有很高的应用价值,并且已经在国内外企业及居民生活中得到广泛应用。

长期以来区域的供水系统都是由市政管网经过二次加压和水塔或天面水池来满足用户对供水压力的要求。传统的恒压供水方式是采用水塔、高位水池等设施来实现。由于小区高楼用水有着季节和时段的明显变化,日常供水运行控制就常采用水泵的运行方式调整加上出口阀的开度调节供水的水量水压,大量能量因消耗在出口阀而浪费,而且存在着水池“二次污染”的问题。随着技术的发展和人们对生活饮用水品质要求的不断提高,于是选择一种符合各方面规范、卫生安全而又经济合理的供水方式,对我们给供水设计带来了新的挑战。

我的设计采用PLC 和传感器相互配合检测水塔的准确水位,从而达到快速、安全检测当前实际水位。住宅建筑的小区规划趋向于更具人性化的多层次住宅组合,不再仅仅追求立面和平面的美观和合理,而是追求空间上布局的流畅和设计中贯彻一人文本的理念。现代当今社会在追求舒适、安全的同时力求土地使用率的最大化也是我们共同的目标。但是在设计上我们要求更合理、更经济更实用的潮流,就须要利用小型PLC 进行控,这样我们成功地解决了能耗和污染的两大难题。

2 PLC简介

2.1可编程控制器的产生

可编程控制器是二十世纪七十年代发展起来的控制设备,是集微处理器、储存器、输入/输出接口与中断于一体的器件,已经被广泛应用于机械制造、冶金、化工、能源、交通等各个行业。计算机在操作系统、应用软件、通行能力上的飞速发展,大大加强了可编程控制器通信能力,丰富了可编程控制器编程软件和编程技巧,增强了PLC 过程控制能力。因此,无论是单机还是多机控制、是流水线控制还是过程控制,都可以采用可编程控制器,推广和普及可编程控制器的使用技术,对提高我国工业自动化生产及生产效率都有十分重要的意义。

可编程控制器的产生和继电器—接触器控制系统有很大的关系。继电器—接触器控制已经有伤百年的历史,它是一种弱电信号控制强电信号的电磁开关,具有结构简单、电路直观、价格低廉、容易操作、易于维修的有优点。对于工作模式固定、要求比较简单的场合非常使用,至今仍有广泛的用途。但是当工作模式改变时,就必须改变系统的硬件接线,控制柜中的物件以及接线都要作相应的变动,改造工期长、费用高,用户宁愿扔掉旧控制柜,另做一个新控制柜使用,阻碍了产品更新换代。

随着工业生产的迅速发展,市场竞争的激烈,产品更新换代的周期日益缩短,工业生产从大批量、少品种,向小批量、多品种转换,继电器—接触器控制难以满足市场要求,此问题首先被美国通用汽车公司(GM 公司)提了出来。通用汽车公司为适合汽车型号的不断翻新,满足用户对产品多样性的需求,公开对外招标,要求制造一种新的工业控制装置,取代传统的继电器—接触器控制。其对新装置性能提出的要求就是著名的GM10条,编程方便,现场可修改程序; 维修方便,采用模块化结构;可靠性高于继电器控制装置;体积小于继电器控制装置; 数据可直接送入管理计算机;成本可与继电器控制装置竞争; 输入可以是交流115V ; 输出为交流115V ,2A 以上,能直接驱动电磁阀,接触器等;在扩展时,原系统只要很小变更;用户程序存储器容量至少能扩展到4K 。

用可编程控制器代替了继电器—接触器的控制,实现了逻辑控制功能,并且具有计算机功能灵活、通用性等有点,用程序代替硬接线,并且具有计算机功能灵活、通用性能强等优点,用程序代替硬接线,减少了重新设计,重新接线的工作,此种控制器借鉴计算机的高级语言,利用面向控制过程,面向问题的“自然语言”编程,其标志性语言是极易为IT 电器人员掌握的梯形图语言,使得部熟悉计算机的人也能方便地使用。这样,工作人员不必在变成上发费大量地精力,只

需集中精力区考虑如何操作并发挥改装置地功能即可,输入、输出电平与市电接口,市控制系统可方便地在需要地地方运行。所以,可编程控制器广泛地应用于各工业领域。

2.2 PLC的发展

虽然PLC 问世时间不长,但是随着微处理器的出现,大规模,超大规模集成电路技术的迅速发展和数据通讯技术的不断进步,PLC 也迅速发展,其发展过程大致可分为三各阶段:

早期的PLC 一般称为可编程逻辑控制器。这是的PLC 多少由电继电器控制装置的替代物的含义,其主要功能只是执行原先由继电器完成的顺序控制、定时等。它在硬件上 以计算机的形式出现,在I/O接口电路上作了改进以适应工业控制现场的要求。装置种的器件主要采用分离元件和中小规模集成电路,存储器采用磁芯存储器。另外还采取了一些措施,以提高其抗干扰的能力。在软件编程上采用广大电器工程技术人员所熟悉的继电器控制线路的方式—梯形图。因此,早期的PLC 的性能要优于继电器控制装置,其优点包括简单易懂,便于安装,体积小,能耗低,有故障指示,能重复使用等。其中PLC 特有的编程语言—梯形图一直沿用至今。

在七十年代,微处理器的出现使PLC 发生了巨大的变化。美国,日本,德国等一些厂家先后开始采用微处理器作为PLC 的中央处理单元(CPU )。

LC 的功能大大增强。在软件方面,除了保持其原有的逻辑运算、计时、计数等功能以外,还增加了算术运算、数据处理和传送、通讯、自诊断等功能。再硬件方面,除了保持其原有的开关模块以外,还增加了模拟量快、远程I/O模块、各种特殊功能模块。并扩大了存储器的容量,是各种逻辑线圈的数量增加,还提供了一定数量的数据寄存器,使PLC 的应用范围得以扩大。

进入八十年代中、后期,由于插大规模集成电路技术的迅速发展,微处理器的市场价格大幅度下跌,使得各种类型的PLC 所采用的微处理器的档次普遍提高。而且,为了进一步提高PLC 的处理速度,各制造厂商纷纷开发研制了专用逻辑处理芯片。这样使得PLC 软、硬功能发生了巨大变化。

2.3 PLC的未来展望

21世纪,PLC 会有更大的发展。从技术上看,计算机技术的新成果会更多地应用于可编程控制器的设计和制造上,会有运算速度更快、存储容量更大、智能更强的品种出现;从产品规模上看,会进一步向超小型及超大型方向发展;从产品的配套性上看,产品的品种会更丰富、规格更齐全,完美的人机界面、完备

的通信设备会更好地适应各种工业控制场合的需求;从市场上看,各国各自生产多品种产品的情况会随着国际竞争的加剧而打破,会出现少数几个品牌垄断国际市场的局面,会出现国际通用的编程语言;从网络的发展情况来看,可编程控制器和其它工业控制计算机组网构成大型的控制系统是可编程控制器技术的发展方向。目前的计算机集散控制系统DCS (Distributed Control System )中已有大量的可编程控制器应用。伴随着计算机网络的发展,可编程控制器作为自动化控制网络和国际通用网络的重要组成部分,将在工业及工业以外的众多领域发挥越来越大的作用。

2.4 PLC的特点

(1)可靠性高,抗干扰能力强

高可靠性是电气控制设备的关键性能。PLC 由于采用现代大规模集成电路技术,采用严格的生产工艺制造,内部电路采取了先进的抗干扰技术,具有很高的可靠性。例如三菱公司生产的F 系列PLC 平均无故障时间高达30万小时。一些使用冗余CPU 的PLC 的平均无故障工作时间则更长。从PLC 的机外电路来说,使用PLC 构成控制系统,和同等规模的继电接触器系统相比,电气接线及开关接点已减少到数百甚至数千分之一,故障也就大大降低。此外,PLC 带有硬件故障自我检测功能,出现故障时可及时发出警报信息。在应用软件中,应用者还可以编入外围器件的故障自诊断程序,使系统中除PLC 以外的电路及设备也获得故障自诊断保护。这样,整个系统具有极高的可靠性也就不奇怪了。

(2)配套齐全,功能完善,适用性强

PLC 发展到今天,已经形成了大、中、小各种规模的系列化产品。可以用于各种规模的工业控制场合。除了逻辑处理功能以外,现代PLC 大多具有完善的数据运算能力,可用于各种数字控制领域。近年来PLC 的功能单元大量涌现,使PLC 渗透到了位置控制、温度控制、CNC 等各种工业控制中。加上PLC 通信能力的增强及人机界面技术的发展,使用PLC 组成各种控制系统变得非常容易。

(3)易学易用,深受工程技术人员欢迎

PLC 作为通用工业控制计算机,是面向工矿企业的工控设备。它接口容易,编程语言易于为工程技术人员接受。梯形图语言的图形符号与表达方式和继电器电路图相当接近,只用PLC 的少量开关量逻辑控制指令就可以方便地实现继电器电路的功能。为不熟悉电子电路、不懂计算机原理和汇编语言的人使用计算机从事工业控制打开了方便之门。

(4) 系统的设计、建造工作量小,维护方便,容易改造

PLC 用存储逻辑代替接线逻辑,大大减少了控制设备外部的接线,使控制系统设计及建造的周期大为缩短,同时维护也变得容易起来。更重要的是使同一设备经过改变程序改变生产过程成为可能。这很适合多品种、小批量的生产场合。

(5)体积小,重量轻,能耗低

以超小型PLC 为例,新近出产的品种底部尺寸小于100mm ,重量小于150g ,功耗仅数瓦。由于体积小很容易装入机械内部,是实现机电一体化的理想控制设备。

2.5 PLC的组成

PLC 的硬件主要是由中央处理器(CPU )、存储器、输入单元、输出单元,通信接口、扩展接口电源等部分组成。其中,CPU 是PLC 的核心,输入单元与输出单元是连接现场输入/输出设备与CPU 之间的接口电路,通信接口用于与编程器、上位计算机等外设连接。典型PLC 组成框图如图2-1所示。

图2-1 典型PLC 组成框图

2.5.1 中央处理单元(CPU)

中央处理单元(CPU)是PLC 控制中枢。其功能接收并存储从编程器键入用户程序和数据;检查电源、存储器、I/O以及警戒定时器状态,并能诊断用户程序中语法错误。当PLC 投入运行时,首先它以扫描方式接收现场各输入装置状态和数据,并分别存入I/O映象区,然后从用户程序存储器中逐条读取用户程序,命令解释后按指令规定执行逻辑或算数运算结果送入I/O映象区或数据寄存器内。等所有用户程序执行完毕之后,最后将I/O映象区各输出状态或输出寄存器内数据传送到相应输出装置,如此循环运行,直到停止运行。

2.5.2 存储器

(1)PLC 常用存储器类型

①RAM (Random Assess Memory ) 这是一种读/写存储器(随机存储器) ,其存取速度最快,由锂电池支持。

②EPROM (Erasable Programmable Read Only Memory)这是一种可擦除只读存储器。断电情况下,存储器内所有内容保持不变。紫外线连续照射下可擦除存储器内容) 。

③EEPROM(Electrical Erasable Programmable Read Only Memory)这是一种电可擦除只读存储器。使用编程器就能很容易对其所存储内容进行修改。

(2)PLC 存储空间分配

①系统程序存储区:系统程序存储区中存放着相当于计算机操作系统系统程序。包括监控程序、管理程序、命令解释程序、功能子程序、系统诊断子程序等。由制造厂商将其固化EPROM 中,用户不能直接存取。它和硬件一起决定了该PLC 性能。

②系统RAM 存储区:系统RAM 存储区包括I/O映象区以及各类软设备,如:逻辑线圈;数据寄存器;计时器;计数器;变址寄存器;累加器等存储器。

③用户程序存储区:主要用来存放用户的应用程序。所谓用户程序时指使用户根据工程现场的的产生过程和工艺要求编写的控制程序。次程序由使用者通过编程器输入到PLC 机的RAM 存贮器中,以便于用户随时修改。也可将用户程序存放在EEPROM 中。

2.5.3、输入/输出模块

输入/输出模块是可编程控制器与工业生产设备或工业生产过程连接的借口。现场的输入信号,如按钮开关,行程开关、限位开关以及传感输出的开关量或模拟量(压力、流量、温度、电压、电流)等,都要通过输入模块送到PLC 。由于这些信号电平各式各样,而可编程控制器CPU 所处理的信息只能是标准电平,所以输入模块还需将这些信号转换成PLC 能够接受和处理的数字信号。输入模块的作用是接收中央处理器处理过的数字信号,并把它转换成现场执行部件所能接收的控制信号,以驱动如电磁阀、灯光显示、电机等执行机构。可编程控制器有多种输入/输出模块其类型有数字量输入/输出模块和模拟量输入/输出模块。这些模块分直流和交流、电压和电流类型,每种类型又有不同的参数等级,主要有数字量输入/输出模块和模拟量输入输出/模块,部件上都设有接线端子排,为了滤除信号的噪声和便于PLC 内部对信号的处理,这些模块上都带有滤波、电平转换、信号锁存电路。数字量输入模块带有广电耦合电路,其目的是把PLC

与外部电路隔离起来,以提高PLC 的抗干扰能力。数字两输出有继电器输出、晶体管输出和可控硅输出三种方式。模拟量输入/输出模块主要用来实现模拟量与数字量之间的转换。

2.5.4、扩展模块

当一个PLC 中心单元的I/O点数不够用时,就要对系统进行扩展,扩展接口就是用于连接中心基本单元与扩展单元的。模块随着可编程控制器在工业控制中的广泛应用和发展,使可编程控制器的功能更加强大和完善。只能I/O接口模块种类很多,例如高速计数模块、PLCA 控制模块、数字位基于PLC 的变频恒压供水系统的设计置译码模块、阀门控制模块、智能存贮弄快以及智能I/O模块等。

2.5.5 编程器

它的作用是供用户进行程序的编制、编辑、调试和监视。有的编程器还可与打印机或磁带机相连,以将用户程序和有关信息打印出来或存放在它的作用是供用户进行程序的编制、编辑、调试和监视。有的编程器还可与打印机或磁带机相连,以将用户程序和有关信息打印出来或存放在磁带上,磁带上的信息可以重新装入PLC 。目前编程器主要有以下三种类型:

(1)便于携带的特点,一般只能用指令形式编程,通过按键输入指令,通过数码管或液晶显示器加以显示、这种编程器适合小型可编程控制器的编程要求。

(2)图形编程器以液晶显示器(LCD)或阴极射线管(CRT)作屏幕,用来显示编程内容和提供如输入、输出、辅助继电器的占有情况、程序容量等各种信息,还可在调试程序、检查程序执行时显示各种信号状态、出错提示等。

(3)用于IBM —PC 及其兼容机的编程器是个人计算机加上适当的硬件接口和软件包作为编程器,也可直接编制成梯形图,其监控功能也很强。编程器工作方式主要有编程和监控两种,编程工作方式是在PLC 机处于停机状态时可以进行编程,它的功能主要是输入新的程序,或者对已有的程序予以编辑和修改。

监控工作方式可以对运行中的控制器工作状态进行监视和跟踪,一般可以对某一线圈或触点的工作状态进行监视,也可以对成组器件的工作状态进行监视,还可以跟踪某一器件在不同时间的工作状态,除搜索、监视、跟踪外,还可以对一些器件进行操作。因此编程器的监控方式对控制器中新输入程序的调试与试运行是非常有用和方便的。编程器的结构一般包括显示部分与键盘部分。显示一般用液晶显示器,主要的显示内容包括地址、数据、工作方式、指令执行情况及系

统工作状态等。键盘有单功能键和双功能键,在使用双功能键的时候键盘中都备有一个选择键,以选择其中一种方式工作。

用户可根据自己时间控制系统的要求,选用各种合适的扩展模块对PLC 作硬件组态,以求达到各种功能或控制精度,同时节省开支,减少不必要的投资。

当已运行的系统需要改造或扩充时,PLC 可以随时进行升级或改版,所作的工作仅仅是替换或增加扩展模板和修改相应的控制软件。特殊模板及智能模板的开发将进一步扩展可编程控制的功能,专用模板的开发不仅扩大了可编程控制系统的控制功能,而且将进一步提高控制质量与可靠性。

2.6 PLC的工作原理

最初研制生产的PLC 主要用于代替传统的由继电器接触器构成的控制装置,但这两者的运行方式是不相同的:

继电器控制装置采用硬逻辑并行运行的方式,即如果这个继电器的线圈通电或断电,该继电器所有的触点(包括其常开或常闭触点)在继电器控制线路的哪个位置上都会立即同时动作。 而PLC 的CPU 则采用顺序逻辑扫描用户程序的运行方式,即如果一个输出线圈或逻辑线圈被接通或断开,该线圈的所有触点(包括其常开或常闭触点) 不会立即动作,必须等扫描到该触点时才会动作。

为了消除二者之间由于运行方式不同而造成的差异,考虑到继电器控制装置各类触点的动作时间一般在100ms 以上,而PLC 扫描用户程序的时间一般均小于100ms ,因此,PLC 采用了一种不同于一般微型计算机的运行方式---扫描技术。这样在对于I/O响应要求不高的场合,PLC 与继电器控制装置的处理结果上就没有什么区别了。

2.7 梯形图程序设计

梯形图编程语言是一种图形化编程语言,它沿用了传统的继电接触器控制中的触点、线圈、串并联等术语和图形符号,与传统的继电器控制原理电路图非常相似,但又加入了许多功能强而又使用灵活的指令,它比较直观、形象,对于那些熟悉继电器一接触器控制系统的人来说,易被接受。继电器梯形图多半适用于比较简单的控制功能的编程,绝大多数PLC 用户都首选使用梯形图编程。

指令是用英文名称的缩写字母来表达PLC 的各种功能的助记符号,类似于计算机汇编语言。由指令构成的能够完成控制任务的指令组合就是指令表,每一条指令一般由指令助记符和作用器件编号组成,比较抽象,通常都先用其它方式表达,然后改写成相应的语句表,编程设备简单价廉。

通常微、小型PLC 主要采用继电器梯形图编程,其编程的一般规则有:

(1)梯形图按自上而下、从左到右的顺序排列。每一个逻辑行起始于左母线然后是触点的各种连接,最后是线圈或线圈与右母线相连,整个图形呈阶梯形。梯形图所使用的元件编号地址必须在所使用PLC 的有效范围内。

(2)梯形图是PLC 形象化的编程方式,其左右两侧母线并不接任何电源,因而图中各支路也没有真实的电流流过。但为了读图方便,常用“有电流”、“得电”等来形象地描述用户程序解算中满足输出线圈的动作条件,它仅仅是概念上虚拟的“电流”,而且认为它只能由左向右单方向流:层次的改变也只能自上而下。

(3)梯形图中的继电器实质上是变量存储器中的位触发器,相应某位触发器为“l态”,表示该继电器线圈通电,其动合触点闭合,动断触点打开,反之为“o态”。梯形图中继电器的线圈又是广义的,除了输出继电器、内部继电器线圈外,还包括定时器、计数器、移位寄存器、状态器等的线圈以及各种比较、运算的结果。

(4)梯形图中信息流程从左到右,继电器线圈应与右母线直接相连,线圈的右边不能有触点,而左边必须有触点。

(5)继电器线圈在一个程序中不能重复使用:而继电器的触点,编程中可以重复使用,且使用次数不受限制。

(6)PLC 在解算用户逻辑时,是按照梯形图由上而下、从左到右的先后顺序逐步进行的,即按扫描方式顺序执行程序,不存在几条并列支路同时动作,这在设计梯形图时,可以减少许多有约束关系的联锁电路,从而使电路设计大大简化。所以,由梯形图编写指令程序时,应遵循自上而下、从左到右的顺序,梯形图中的每个符号对应于一条指令,一条指令为一个步序。

当PLC 运行时,用户程序中有众多的操作需要去执行,但CPU 是不能同时去执行多个操作的,它只能按分时操作原理每一时刻执行一个操作。这种分时操作的过程称为CPU 对程序的扫描。扫描从0000号存储地址所存放的第一条用户程序开始,在无中断或跳转控制的情况下,按存储地址号递增顺序逐条扫描用户程序,也就是顺序逐条执行用户程序,直到程序结束。每扫描完一次程序就构成一个扫描周期,然后再从头开始扫描,并周而复始。

3 水塔水位控制系统PLC 硬件设计

3.1 水塔水位控制系统设计要求

水塔水位控制装置如图3-1所示:

水塔上限液位开关水塔下限液位开关水流

S2

S1

水池

图3-1 水塔水位控制装置图

3.1.1 工作原理

水塔水位的工作方式

当水池液位低于下限液位开关S 1,S 1此时为ON ,电磁阀打开,开始往水池里注水,当4S 以后,若水池液位没有超过水池下限液位开关时,则系统发出报警,若系统正常,此时水池下限液位开关S 4为OFF, 表示水位高于下限水位。当水位液面高于上限水位,则S 2为ON ,电磁阀关闭。

当水塔水位低于水塔下限水位时,则水塔下限水位开关S 3为ON ,水泵开始工作,向水塔供水,当S 3为OFF 时,表示水塔水位高于水塔下限水位。当水塔液面高于水塔上限水位时,则水塔上限水位开关S 4为OFF ,水泵停止。当水塔水位低于下限水位,同时水池水位也低于下限水位时,水泵不能启动。

3.2 水塔水位控制系统主电路

水塔水位控制系统主电路如图3-2所示:

SQ

FU KM

FR

M

3~

图3-2 水塔水位控制系统主电路图

3.3 I/O接口分配

3.3.1 列出水塔水位控制系统PLC 的输入/输出接口分配表

表3-1 水塔水位控制系统PLC 的输入/输出接口分配表

3.3.2 水塔水位控制系统的I/O设备

这是一个单体控制小系统,没有特殊的控制要求,它有6个开关量,开关量输出触点数有8个,输入、输出触点数共有14个,只需选用一般中小型控制器即可。据此,可以对输入、输出点作出地址分配。

4 水塔水位控制系统PLC 软件设计

4.1 程序流程图

水塔水位控制系统的PLC 控制流程图,根据设计要求,控制流程图,如图4-1所示:

图4-1 水塔水位控制系统的PLC 控制流程图

这种分时操作的过程称为CPU 对程序的扫描。扫描从0000号存储地址所存放的第一条用户程序开始,在无中断或跳转控制的情况下,按存储地址号递增顺序逐条扫描用户程序,也就是顺序逐条执行用户程序,直到程序结束。每扫描完一次程序就构成一个扫描周期,然后再从头开始扫描,并周而复始。

根据控制要求,设计的梯形图程序如图4-2所示。

4.2 梯形图程序设计及工作过程分析

梯形图编程语言是一种图形化编程语言,它沿用了传统的继电接触器控制中的触点、线圈、串并联等术语和图形符号,与传统的继电器控制原理电路图非常相似,但又加入了许多功能强而又使用灵活的指令,它比较直观、形象,对于那些熟悉继电器一接触器控制系统的人来说,易被接受。继电器梯形图多半适用于比较简单的控制功能的编程,绝大多数PLC 用户都首选使用梯形图编程。

梯形图编程的一般规则有:

(1)梯形图按自上而下、从左到右的顺序排列。每一个逻辑行起始于左母线然后是触点的各种连接,最后是线圈或线圈与右母线相连,整个图形呈阶梯形。梯形图所使用的元件编号地址必须在所使用PLC 的有效范围内。

(2)梯形图是PLC 形象化的编程方式,其左右两侧母线并不接任何电源,因而图中各支路也没有真实的电流流过。但为了读图方便,常用“有电流”、“得电”等来形象地描述用户程序解算中满足输出线圈的动作条件,它仅仅是概念上虚拟的“电流”,而且认为它只能由左向右单方向流; 层次的改变也只能自上而下。

(3)梯形图中的继电器实质上是变量存储器中的位触发器,相应某位触发器为“1态”,表示该继电器线圈通电,其动合触点闭合,动断触点打开,反之为“O 态”。梯形图中继电器的线圈又是广义的,除了输出继电器、内部继电器线圈外,还包括定时器、计数器、移位寄存器、状态器等的线圈以及各种比较、运算的结果。

(4)梯形图中信息流程从左到右,继电器线圈应与右母线直接相连,线圈的右边不能有触点,而左边必须有触点。

(5)继电器线圈在一个程序中不能重复使用:而继电器的触点,编程中可以重复使用,且使用次数不受限制。

(6)PLC 在解算用户逻辑时,是按照梯形图由上而下、从左到右的先后顺序逐步进行的,即按扫描方式顺序执行程序,不存在几条并列支路同时动作,这在设计梯形图时,可以减少许多有约束关系的联锁电路,从而使电路设计大大简化。所以,由梯形图编写指令程序时,应遵循自上而下、从左到右的顺序,梯形图中的每个符号对应于一条指令,一条指令为一个步序。当PLC 运行时,用户程

序中有众多的操作需要去执行,但CPU 是不能同时去执行多个操作的,它只能按分时操作原理每一时刻执行一个操作。

4.2.1 工作过程

设水塔、水池初始状态都为空着的,4个液位指示灯全灭。当执行程序时,扫描到水池为液位低于水池下限液位时,水阀打开,开始往水池里进水;如果进水超过4秒,而水池液位没有超过水池下限位,说明系统出现故障,系统就会自动报警,水池报警灯A 2亮。若4秒之后水池液位按预定的超过水池下限位,说明系统在正常的工作,水池下限位的指示灯A 1亮,此时,水池的液位已经超过了下限位了,系统检测到此信号时,由于水塔液位低于水塔水位下限,水泵开始工作,向水塔供水;如果进水超过4秒,而水塔液位没有超过水池下限位,说明系统出现故障,系统就会自动报警,水塔报警灯A 5亮。当水池的液位超过水池上限液位时,水池上限指示灯A 3亮,水阀就关闭。但是水塔现在还没有装满,可此时水塔液位已经超过水塔下限水位,则水塔下限指示灯A 4亮,水泵继续工作,在水池抽水向水塔供水,水塔抽满时,水塔液位超过水塔上限,水塔上限指示灯A 6亮。但刚刚给水塔供水的时候,水泵已经把水池的水抽走了,此时水塔液位已经低于水池上限,水池上限指示灯A 3灭。此次给水塔供水完成。

4.2.2 水塔水位控制系统梯形图

水塔水位控制系统梯形图,如图4-2所示:

图4-2 水塔水位控制系统梯形图

(1)启停程序如图4-3所示:

图4-3 启停程序梯形图

(2)水阀控制程序如图4-4所示:

图4-4 水阀控制程序梯形图

(3)水池下限水位指示程序如图4-5所示:

图4-5 水池下限水位指示程序梯形图

(4)水池水位报警程序如图4-6所示:

图4-6 水池水位报警程序梯形图

(5)水池水位上限指示程序如图4-7所示:

图4-7 水池水位上限指示程序梯形图

(6)水泵启停控制程序如图4-8所示:

图4-8 水泵启停控制程序梯形图

(7)水塔水位下限指示程序如图4-9所示:

图4-9 水塔水位下限指示程序梯形图

(8)水塔水位报警程序如图4-10所示:

图4-10 水塔水位报警程序梯形图

(9)水塔水位上限指示程序如图4-11所示:

图4-11 水塔水位上限指示程序梯形图

5 水塔水位控制系统的组态设计

5.1 组态软件概述

组态软件是有专业性的。一种组态软件只能适合某种领域的应用。组态的概念最早出现在工业计算机控制中。如DCS(集散控制系统) 组态,PLC (可编程控制器)梯形图组态。人机界面生成软件就叫工控组态软件。其实在其他行业也有组态的概念,人们只是不这么叫而已。如AutoCAD ,PhotoShop ,办公软件(PowerPoint)都存在相似的操作,即用软件提供的工具来形成自己的作品,并以数据文件保存作品,而不是执行程序。组态形成的数据只有其制造工具或其他专用工具才能识别。但是不同之处在于,工业控制中形成的组态结果是用在实时监控的。组态工具的解释引擎,要根据这些组态结果实时运行。从表面上看,组态工具的运行程序就是执行自己特定的任务。

5.2 组态软件在我国的发展

组态软件产品于80年代初出现“组态”的概念是伴随着集散型控制系(简称DCS )的出现才开始被广大的生产过程自动化技术人员所熟知的。在工业控制技术的不断发展和应用过程中,PC (包括工控机)相比以前的专用系统具有的优势日趋明显。这些优势主要体现在:PC 技术保持了较快的发展速度,各种相关技术已臻成熟;由PC 构建的工业控制系统具有相对较低的拥有成本;PC 的软件资源和硬件资丰富,软件之间的互操作性强;基于PC 的控制系统易于学习和使用,可以容易地得到技术方面的支持。在PC 技术向工业控制领域的渗透中,组态软件占据着非常特殊而且重要的地位。

组态软件是指一些数据采集与过程控制的专用软件,它们是在自动控制系统监控层一级的软件平台和开发环境,使用灵活的组态方式,为用户提供快速构建工业自动控制系统监控功能的、通用层次的软件工具。组态软件应该能支持各种工控设备和常见的通信协议,并且通常应提供分布式数据管理和网络功能。对应于原有的HMI (人机接口软件,HumanMachineInterface )的概念,组态软件应该是一个使用户能快速建立自己的HMI 的软件工具,或开发环境。在组态软件出现之前,工控领域的用户通过手工或委托第三方编写HMI 应用,开发时间长,效率低,可靠性差;或者购买专用的工控系统,通常是封闭的系统,选择余地小,往往不能满足需求,很难与外界进行数据交互,升级和增加功能都受到严重的限制。组态软件的出现,把用户从这些困境中解脱出来,可以利用组态软件的功能,构建一套最适合自己的应用系统。随着它的快速发展,实时数据库、实时控制、

SCADA 、通讯及联网、开放数据接口、,并在80年代末期进入我国。但在90年代中期之前,组态软件在我国的应用并不普及。

究其原因,大致有以下几点:

(1)国内用户还缺乏对组态软件的认识,项目中没有组态软件的预算,或宁愿投入人力物力针对具体项目做长周期的繁冗的上位机的编程开发,而不采用组态软件;

(2)在很长时间里,国内用户的软件意识还不强,面对价格不菲的进口软件(早期的组态软件多为国外厂家开发),很少有用户愿意去购买正版。

(3)当时国内的工业自动化和信息技术应用的水平还不高,组态软件提供了对大规模应用、大量数据进行采集、监控、处理并可以将处理的结果生成管理所需的数据,这些需求并未完全形成。

随着工业控制系统应用的深入,在面临规模更大、控制更复杂的控制系统时,人们逐渐意识到原有的上位机编程的开发方式。对项目来说是费时费力、得不偿失的,同时,MIS (管理信息系统,ManagementInformationSystem )和CIMS (计算机集成制造系统,ComputerIntegratedManufacturingSystem )的大量应用,要求工业现场为企业的生产、经营、决策提供更详细和深入的数据,以便优化企业生产经营中的各个环节。因此,在1995年以后,组态软件在国内的应用逐渐得到了普及。

5.3 组态软件的功能特点发展方向

目前看到的所有组态软件都能完成类似的功能:比如,几乎所有运行于32位Windows 平台的组态软件都采用类似资源浏览器的窗口结构,并且对工业控制系统中的各种资源(设备、标签量、画面等)进行配置和编辑;都提供多种数据驱动程序;都使用脚本语言提供二次开发的功能,等等。但是,从技术上说,各种组态软件提供实现这些功能的方法却各不相同。从这些不同之处,以及PC 技术发展的趋势,可以看出组态软件未来发展的方向。

5.4 建立WINCC 组态画面

5.4.1 WINCC组态画面

打开WINCC 组态软件,新建单用户项目,然后进入图形编辑管理器,建立WINCC 组态画面,如图5-1所示。

图5-1 WINCC组态画面

5.4.2 画面演示

启动仿真,运行WINCC 组态画面。点击“启动按钮”,“水阀”动作,如图5-2所示和图5-3所示:

图5-2 启动初始WINCC 画面

图5-3 启动初始仿真画面

4秒后,若“水池低水位指示”信号未输入,则“水池低水位”报警灯报警,如图5-4和5-5所示:

图5-4 水池报警WINCC 画面

图5-5 水池报警仿真画面

若“水池低水位”信号输入,则报警不启动,启动“水泵”, 如图5-6和5-7所示:

图5-6 水泵启动WINCC 画面

图5-7 水泵启动仿真画面

4秒后,若“水塔低水位指示”信号未输入,则“水塔低水位”报警灯报警,如图5-7和5-8所示:

图5-7 水塔报警WINCC 画面

图5-8 水塔报警仿真画面

若“水塔低水位”信号输入,则报警不启动,如图5-9和5-10所示:

图5-9 水塔低水位WINCC 画面

图5-10 水塔报警仿真画面

若“水塔高水位指示”信号输入,则关闭水泵,如图5-11和5-12所示:

图5-11 水塔高水位WINCC 画面

图5-12 水塔高水位仿真画面

一段时间后,若“水池高水位指示”信号输入,则关闭水阀,如图5-13和5-14所示:

图5-13 水池高水位WINCC 画面

图5-14 水池高水位仿真画面

至此,这次基于PLC 控制系统的水塔水位控制任务

6 结 论

大学生活即将结束,在毕业之际,要用我求学生涯所学的知识做出一个设计,来给予我所学知识的一个肯定。

我做的这个题目是有关PLC 与组态软件相结合的,也是将我三年所学习的知识的一个结合应用。是这次做毕业设计给予我理论与实践相结合的机会,提高了我实际操作和独立解决问题的能力。

通过这次设计实践。让我更熟练的掌握PLC 的编程方法,对PLC 的工作原理和使用方法也有了更深刻的理解。在对理论的运用中,提高了我的专业基础。在对组态软件的学习当中,躺卧体会到了细节界定一切的道理,刚开始做组态的时候,由于我对一些细节不加重视,当我把自己想出来一些以为是对的东西用到组态软件上,问题出现了,不是不能运行,就是运行的结果和我想要的结果不相符合。经过我一次次的实践,最后把正确的结果做出来时,才看到了自己的缺点。

在设计的过程中我还得到了老师的帮助与意见。在学习的过程中,不是每一个问题都能自己解决,向老师请教或向同学讨论是一个很好的方法。但是一味依靠他人解决问题并不能帮助自己提升,很多时候,自己还是通过查资料来解决毕业设计中遇到的问题。通过自己亲自去查找资料,不仅将自己所学的知识都进行了复习、加深理解,而且和新学的的知识有效的结合了,提升了自己。

现在我的毕业设计是做完了,可是我的学习之路还没有完,这次毕业设计只是对我能力的一次小小测试。这次毕业设计教给了我在以后面对时的另一条道路——自己去寻求答案。

对我来说这次毕业设计,是一个终点,同时也是一个起点。

致 谢

本文的研究工作是在我的老师刘静老师的精心指导和悉心关怀下完成的,在我的学业和论文的研究工作中无不倾注着老师辛勤的汗水和心血。老师的严谨治学态度、渊博的知识、无私的奉献精神使我深受的启迪。从尊敬的老师身上,我不仅学到了扎实、宽广的专业知识,也学到了做人的道理。在此我要向我的老师致以最衷心的感谢和深深的敬意。

经过几个月的查阅和整理材料,随着论文的完成,终于让学生在大学的生活,得以划下了完美的句点。

论文得以完成,要感谢的人实在太多了。要感谢在大学期间所有传授我知识的老师,是你们的悉心教导使我有了良好的专业课知识,这也是论文得以完成的基础。要感谢我的朋友和同学,使他们在我遇到问题是给我以指点。

通过此次的论文,我学到了很多知识,在论文的写作过程中,通过查资料和搜集有关的文献,培养了自学能力和动手能力。并且由原先的被动的接受知识转换为主动的寻求知识,这可以说是学习方法上的一个很大的突破。在以往的传统的学习模式下,我们可能会记住很多的书本知识,但是通过毕业论文,我们学会了如何将学到的知识转化为自己的东西,学会了怎么更好的处理知识和实践相结合的问题。

在论文的写作过程中也学到了做任何事情所要有的态度和心态,首先做学问要一丝不苟,对于发展过程中出现的任何问题和偏差都不要轻视,要通过正确的途径去解决,在做事情的过程中要有耐心和毅力,不要一遇到困难就打退堂鼓,只要坚持下去就可以找到思路去解决问题的。

总之,此次论文的写作过程,我收获了很多,即为大学三年划上了一个完美的句号,也为将来的人生之路做好了一个很好的铺垫。

在此,向所有关心和帮助过我的领导、老师、同学和朋友表示由衷的谢意! 衷心地感谢在百忙之中评阅论文和参加答辩的各位老师!

参考文献

[1]胡学林, 《可编程控制器原理及应用》. 北京. 电子工业出版社,2007:1

[2]胡学林, 《可编程控制器教程(提高篇)》. 北京. 电子工业出版社,2005:8

[3]汪志峰, 《可编程控制器原理及应用》. 西安. 电子科技大学出版社,2004

[4]廖常初, 《S7-300/400PLC应用技术》. 北京. 机械工业出版社,2005

[5]吴中俊. 黄永红 .《可编程序控制器原理及应用》. 北京. 机械工出版社,2004

[6]吕景泉, 《可编程控制器技术教程》. 北京:高等教育出版社,2001

[7]宋德玉, 《可编程序控制器原理及应用系统设计技术》. 北京. 冶金工业出版社,2002

[8]郑晟,巩建平,张学. 《现代可编程序控制器原理与应用》. 北京:科学出版社,2003

[9] 肖峰, 《PLC 编程100例》. 北京:中国电力出版社,2009

[10] 张桂香, 《电气控制与PLC 应用》. 北京:化学工业出版社,2003

[11] 吕景泉, 《可编程序控制器技术教程》.北京:高等教育出版社,2000

[12]李俊季, 赵黎明, 《可编程控制应用技术实训指导》. 北京:化学工业出版社,2001

论文原创性声明

本人以信誉声明:所呈交的毕业论文是在导师的指导下进行的设计(研究)工作及取得的成果,论文中引用他(她)人的文献、数据、图件、资料均已明确标注出,论文中的结论和结果为本人独立完成,不包含他人成果及为获得重庆科技学院或其它教育机构的学位或证书而使用其材料。与我一同工作的同志对本设计(研究)所做的任何贡献均已在论文中作了明确的说明并表示了谢意。

毕业论文作者(签字):

签字日期: 2012 年 8 月 5 日

重庆科技学院

基于PLC 控制系统的水塔水位设计

考生姓名: 李寿宁 准考证号: [1**********]6

专业层次: 本 科 院 (系):机械与动力工程学院

指导教师: 刘 静 职 称: 讲 师 高等教育自学考试本科毕业论文

重庆科技学院

二0一二年九月二十日

重庆科技学院

高等教育自学考试本科毕业论文

基于PLC 控制系统的水塔水位设计

考生姓名: 李寿宁

准考证号: [1**********]6

专业层次: 本 科

指导教师: 刘 静

院 (系):机械与动力工程学院

重庆科技学院

二0一二年九月二十日

摘 要

随着科技的发展,无论在日常生活中,还是在工农业发展中,PLC 具有广泛的应用。PLC 的一般特点:抗干扰能力强,可靠性极高、编程简单方便、使用方便、维护方便、设计、施工、调试周期短、易于实现机电一体化。PLC 总的发展趋势是:高功能、高速度、高集成度、大容量、小体积、低成本、通信组网能力强。本水塔水位控制系统采用PLC 为控制核心,具备开启和全部停止功能,这是一种PLC 控制的自动调节控制系统。应用此控制系统能显著提高劳动效率,减少劳动强度。但是随着世界人口的不断增长,人们生活用水的增加,以往采用的继电器水塔水位自动控制系统由于频繁操作会产生机械磨损,不方便维护和更新,已经不能满足人们的实际需求,本文采用的是PLC 可编程控制器作为水塔水位自动控制系统核心,对水塔水位自动控制系统的功能进行性进行了需求分析。主要实现方法是通过传感器检测水塔水位的实际水位,将水位具体信息传至PLC 构成的控制模块,经A/D转换后,进行数据比较,来控制抽水电机的动作,同时进行数据还原,显示水位具体信息,如果水位低于或高于某个设定值是,就会发出危险报警的信号。本文以一个水塔水位控制系统的设计过程,给出了基于PLC 水塔水位控制系统的设计好实现的具体过程。

关键词:高集成度,水位控制,组态,水塔水位 ,PLC

Design of water level control system based on PLC water tower

ABSTRACT

With technological development, both in daily life, or the industrial and agricultural development, plc have wide application. PLC general features: strong anti-jamming capability, high reliability, programming is simple and convenient, easy operation and maintenance convenience, design, construction, commissioning period is short, easy to realize the electromechanical integration. PLC general development trend is: high function, high speed, high level of integration, large capacity, small volume, low cost, communication networking capability is strong. This water tower water level control system adopts PLC as control core, with open and full stop functions,this is a kind of PLC automatic adjustment of the control system. Application of this control system can significantly improve the work efficiency and reduces labor intensity. But with the growing world population, it is the increase in water, relay towers used in the past, the water level automatic control system operation due to the frequent cause mechanical wear, convenient maintenance and updating can no longer meet the actual needs of the people, the paper used programmable controller as a series of small water tower water level automatic control system core, the water level of the tower the functions of automatic control system of the requirement analysis. Main achieved is through the actual water level sensor detects the water tower, specific information will be transmitted to the water level control module consisting of PLC, the A / D conversion, to compare data, to control the pumping action of the motor, while data reduction, the indicated level specific information, if the water level lower or higher than a set value, we will send the hazard warning signal. In this paper, a water tank level control system design process, the water tower level control system based on PLC design a good implementation of the specificprocess.

Key words: The high level of , Water level control,DCS, Water level PLC

目 录

中文摘 要 . ............................................................................................................................ 3 英文摘要.................................................................................................................................. 4 1 绪 论.................................................................................................................................. 7

1.1研究背景 ......................................................................................................................... 7

1.2研究的目的及意义 ........................................................................................................... 8

1.3国内外发展现状............................................................................................................... 8 2 PLC简介 . ....................................................................................................................... 10

2.1可编程控制器的产生...................................................................................................... 10

2.2 PLC的发展.....................................................................................................................11

2.3 PLC的未来展望..............................................................................................................11

2.4 PLC的特点.................................................................................................................... 12

2.5 PLC的组成 . ................................................................................................................. 13

2.5.1 中央处理单元(CPU) .......................................................................................... 13

2.5.2 存储器.............................................................................................................. 14

2.5.3、输入/输出模块 ................................................................................................. 14

2.5.4、扩展模块 .......................................................................................................... 15

2.5.5 编程器 ............................................................................................................... 15

2.6 PLC的工作原理............................................................................................................. 16

2.7 梯形图程序设计............................................................................................................ 16 3 水塔水位控制系统PLC 硬件设计.......................................................................... 18

3.1 水塔水位控制系统设计要求 .......................................................................................... 18

3.1.1 工作原理 . ........................................................................................................... 18

3.2 水塔水位控制系统主电路 . ........................................................................................... 18

3.3 I/O接口分配............................................................................................................. 19

3.3.1 列出水塔水位控制系统PLC 的输入/输出接口分配表........................................ 19

3.3.2 水塔水位控制系统的I/O设备........................................................................... 20 4 水塔水位控制系统PLC 软件设计 ....................................................................... 21

4.1 程序流程图 . ................................................................................................................ 21

4.2 梯形图程序设计及工作过程分析 ................................................................................. 22

4.2.1 工作过程 .......................................................................................................... 23

4.2.2 水塔水位控制系统梯形图.................................................................................. 23

5 水塔水位控制系统的组态设计 .............................................................................. 27

5.1 组态软件概述 ............................................................................................................. 27

5.2 组态软件在我国的发展 ............................................................................................... 27

5.3 组态软件的功能特点发展方向 . .................................................................................... 28

5.4 建立WINCC 组态画面 . .................................................................................................. 28

5.4.1 WINCC组态画面 ................................................................................................ 28

5.4.2 画面演示 .......................................................................................................... 29 6 结 论 ............................................................................................................................. 37 致 谢................................................................................................................................ 38 参考文献 .............................................................................................................................. 39 论文原创性声明.................................................................................................................. 40

1 绪 论

在工业生产中,电流、电压、温度、压力、液位、流量、和开关量等都是常用的主要被控参数。其中,水位控制越来越重要。比如自动控制水塔、水池、水槽、锅炉等容器中的蓄水量,生活中抽水马桶的自动补水控制、自动电热水器、电开水机的自动进水控制等。虽然各种水位控制的技术要求不同,精度不同。但其原理都大同小异。特别是在实际操作系统中,稳定、可靠是控制系统的基本要求。在社会经济飞速发展的今天,水在人们正常生活和生产中起着越来越重要的作用。一旦断了水,轻则给人民生活带来极大的不便,重则可能造成严重的生产事故及损失。因此如何设计一个精度高、稳定性好的水位控制系统就显得日益重要。

给水工程往往成为高层建筑或工矿企业中最重要的基础设施之一。任何时候都能提供足够的水量、平稳的水压、合格的水质是对给水系统提出的基本要求。就目前而言,多数工业、生活供水系统都采用水塔、层顶水箱等作为基本储水设备,由一级或二级水泵从地下市政水管补给。传统的控制方式存在控制精度低、能耗大、可靠性差等缺点。可编程控制器(PLC )是根据顺序逻辑控制的需要而发展起来的,是专门为工业环境应用而设计的数字运算操作的电子装置。鉴于其种种优点,目前水位控制的方式被PLC 控制取代。同时,又有PID 控制技术的发展,因此,如何建立一个可靠安全、又易于维护的给水系统是值得我们研究的课题。

1.1研究背景

传统的供水系统大多采用水塔、高位水箱或增压设备,用水泵高出实际用水高度的扬程来“提升”水位高度,以保证有足够的用水量,并且控制精度低、能耗大。随着科学技术的不断发展,自动控制技术在我国的日新月异,继电器控制系统已跟不上时代的发展要求,而需要一种新型的可编程控制器取而代之。

PLC 可编程控制器是二十世纪七十年代发展起来的控制设备,是集微处理器、储存器、输入/输出接口与中断于一体的器件,是在传统的顺序控制器的基础上引入了微电子技术、计算机技术、自动控制技术和通讯技术而形成的一代新型工业控制装置。

1969年,第一台可编程控制器PDP —14由美国数字设备公司(DEC )制作成功,并在GM 公司汽车生产线上使用取得良好的效果,可编程控制器由此诞生,在控制领域内产生了历史性革命。

PLC 问世时间不长,但是随着微处理器的发展,大规模、超大规模集成电路不断出现,数据通信技术不断进步,PLC 迅速发展。PLC 进入九十年代后,工业控制领域几乎全被PLC 占领。国外专家预言,PLC 技术将在工业自动化的三大支柱(PLC 、机器人和CAC/CAM)种跃居首位。

运用PLC 的目的是用来取代继电器、执行逻辑、记时、计数等顺序控制功能,建立柔性的控制系统。已经被广泛应用于机械制造、冶金、化工、能源、交通等各个行业,是工业自动化的主导产品。

1.2研究的目的及意义

在人们日常生产生活中,经常需要对水位进行控制,水塔水位控制系统是我国住宅小区广泛应用的供水系统, 传统的控制方式存在控制精度低、能耗大的缺点, 并且很不稳定,而运用PLC 自动控制原理, 利用水的导电性连续地全天候地测量水位的变化,把测量到的水位变化参数转换成相应的电信号,主控台应用MCGS 组态软件对接收到的信号进行数据处理,完成相应的水位显示、故障报警信息显示、实时曲线和历史曲线的显示,使水位保持在适当的位置,保持水压恒定, 从而提高了供水系统的质量。而且成本低,安装方便,灵敏性好,从而达到了满足企业或居民得到安全、稳定用水以及节约水源的目的,并且实现了自动控制。

不论从古到今,水在人们正常生活和生产中始终如一的起着至关重要、无可取代的作用。一旦断了水,轻则给人民生活带来极大的不便,重则可能造成严重的生产事故及损失,从而满足及时、准确、安全、充足的供水成为人们对供水系统提出的新要求。如果仍然使用传统的方式,不但劳动强度大,工作效率低,并且安全性难以保障,由此运用PLC 自动控制原理进行自动化控制系统的改造,从而实现安全、充足、自动化的供水,具有很高的实际应用价值,对人们的生产生活具有重大意义。

1.3国内外发展现状

我国在八十年代初才开始使用PLC ,目前从国外应进的PLC 使用较为普遍的有日本OMRON 公司C 系列、三菱公司F 系列、美国GE 公司GE 系列和德国西门子公司S 系列等。近年来,德国西门子公司的S7系列PLC 在我国已经广泛使用,并在各行各业的生产过程的自动控制中担任着重要角色。

可编程控制器(PLC )因为抗干扰能力强,可靠性好,控制系统结构简单,通用性强,编程方便,易于使用,维护操作方便等优势已经成为应用面最广,最广泛的通用工业控制装置,成为当代工业自动化的主要支柱之一。通过PLC 对程

序设计,提高液位系统的控制水平,具有很高的应用价值,并且已经在国内外企业及居民生活中得到广泛应用。

长期以来区域的供水系统都是由市政管网经过二次加压和水塔或天面水池来满足用户对供水压力的要求。传统的恒压供水方式是采用水塔、高位水池等设施来实现。由于小区高楼用水有着季节和时段的明显变化,日常供水运行控制就常采用水泵的运行方式调整加上出口阀的开度调节供水的水量水压,大量能量因消耗在出口阀而浪费,而且存在着水池“二次污染”的问题。随着技术的发展和人们对生活饮用水品质要求的不断提高,于是选择一种符合各方面规范、卫生安全而又经济合理的供水方式,对我们给供水设计带来了新的挑战。

我的设计采用PLC 和传感器相互配合检测水塔的准确水位,从而达到快速、安全检测当前实际水位。住宅建筑的小区规划趋向于更具人性化的多层次住宅组合,不再仅仅追求立面和平面的美观和合理,而是追求空间上布局的流畅和设计中贯彻一人文本的理念。现代当今社会在追求舒适、安全的同时力求土地使用率的最大化也是我们共同的目标。但是在设计上我们要求更合理、更经济更实用的潮流,就须要利用小型PLC 进行控,这样我们成功地解决了能耗和污染的两大难题。

2 PLC简介

2.1可编程控制器的产生

可编程控制器是二十世纪七十年代发展起来的控制设备,是集微处理器、储存器、输入/输出接口与中断于一体的器件,已经被广泛应用于机械制造、冶金、化工、能源、交通等各个行业。计算机在操作系统、应用软件、通行能力上的飞速发展,大大加强了可编程控制器通信能力,丰富了可编程控制器编程软件和编程技巧,增强了PLC 过程控制能力。因此,无论是单机还是多机控制、是流水线控制还是过程控制,都可以采用可编程控制器,推广和普及可编程控制器的使用技术,对提高我国工业自动化生产及生产效率都有十分重要的意义。

可编程控制器的产生和继电器—接触器控制系统有很大的关系。继电器—接触器控制已经有伤百年的历史,它是一种弱电信号控制强电信号的电磁开关,具有结构简单、电路直观、价格低廉、容易操作、易于维修的有优点。对于工作模式固定、要求比较简单的场合非常使用,至今仍有广泛的用途。但是当工作模式改变时,就必须改变系统的硬件接线,控制柜中的物件以及接线都要作相应的变动,改造工期长、费用高,用户宁愿扔掉旧控制柜,另做一个新控制柜使用,阻碍了产品更新换代。

随着工业生产的迅速发展,市场竞争的激烈,产品更新换代的周期日益缩短,工业生产从大批量、少品种,向小批量、多品种转换,继电器—接触器控制难以满足市场要求,此问题首先被美国通用汽车公司(GM 公司)提了出来。通用汽车公司为适合汽车型号的不断翻新,满足用户对产品多样性的需求,公开对外招标,要求制造一种新的工业控制装置,取代传统的继电器—接触器控制。其对新装置性能提出的要求就是著名的GM10条,编程方便,现场可修改程序; 维修方便,采用模块化结构;可靠性高于继电器控制装置;体积小于继电器控制装置; 数据可直接送入管理计算机;成本可与继电器控制装置竞争; 输入可以是交流115V ; 输出为交流115V ,2A 以上,能直接驱动电磁阀,接触器等;在扩展时,原系统只要很小变更;用户程序存储器容量至少能扩展到4K 。

用可编程控制器代替了继电器—接触器的控制,实现了逻辑控制功能,并且具有计算机功能灵活、通用性等有点,用程序代替硬接线,并且具有计算机功能灵活、通用性能强等优点,用程序代替硬接线,减少了重新设计,重新接线的工作,此种控制器借鉴计算机的高级语言,利用面向控制过程,面向问题的“自然语言”编程,其标志性语言是极易为IT 电器人员掌握的梯形图语言,使得部熟悉计算机的人也能方便地使用。这样,工作人员不必在变成上发费大量地精力,只

需集中精力区考虑如何操作并发挥改装置地功能即可,输入、输出电平与市电接口,市控制系统可方便地在需要地地方运行。所以,可编程控制器广泛地应用于各工业领域。

2.2 PLC的发展

虽然PLC 问世时间不长,但是随着微处理器的出现,大规模,超大规模集成电路技术的迅速发展和数据通讯技术的不断进步,PLC 也迅速发展,其发展过程大致可分为三各阶段:

早期的PLC 一般称为可编程逻辑控制器。这是的PLC 多少由电继电器控制装置的替代物的含义,其主要功能只是执行原先由继电器完成的顺序控制、定时等。它在硬件上 以计算机的形式出现,在I/O接口电路上作了改进以适应工业控制现场的要求。装置种的器件主要采用分离元件和中小规模集成电路,存储器采用磁芯存储器。另外还采取了一些措施,以提高其抗干扰的能力。在软件编程上采用广大电器工程技术人员所熟悉的继电器控制线路的方式—梯形图。因此,早期的PLC 的性能要优于继电器控制装置,其优点包括简单易懂,便于安装,体积小,能耗低,有故障指示,能重复使用等。其中PLC 特有的编程语言—梯形图一直沿用至今。

在七十年代,微处理器的出现使PLC 发生了巨大的变化。美国,日本,德国等一些厂家先后开始采用微处理器作为PLC 的中央处理单元(CPU )。

LC 的功能大大增强。在软件方面,除了保持其原有的逻辑运算、计时、计数等功能以外,还增加了算术运算、数据处理和传送、通讯、自诊断等功能。再硬件方面,除了保持其原有的开关模块以外,还增加了模拟量快、远程I/O模块、各种特殊功能模块。并扩大了存储器的容量,是各种逻辑线圈的数量增加,还提供了一定数量的数据寄存器,使PLC 的应用范围得以扩大。

进入八十年代中、后期,由于插大规模集成电路技术的迅速发展,微处理器的市场价格大幅度下跌,使得各种类型的PLC 所采用的微处理器的档次普遍提高。而且,为了进一步提高PLC 的处理速度,各制造厂商纷纷开发研制了专用逻辑处理芯片。这样使得PLC 软、硬功能发生了巨大变化。

2.3 PLC的未来展望

21世纪,PLC 会有更大的发展。从技术上看,计算机技术的新成果会更多地应用于可编程控制器的设计和制造上,会有运算速度更快、存储容量更大、智能更强的品种出现;从产品规模上看,会进一步向超小型及超大型方向发展;从产品的配套性上看,产品的品种会更丰富、规格更齐全,完美的人机界面、完备

的通信设备会更好地适应各种工业控制场合的需求;从市场上看,各国各自生产多品种产品的情况会随着国际竞争的加剧而打破,会出现少数几个品牌垄断国际市场的局面,会出现国际通用的编程语言;从网络的发展情况来看,可编程控制器和其它工业控制计算机组网构成大型的控制系统是可编程控制器技术的发展方向。目前的计算机集散控制系统DCS (Distributed Control System )中已有大量的可编程控制器应用。伴随着计算机网络的发展,可编程控制器作为自动化控制网络和国际通用网络的重要组成部分,将在工业及工业以外的众多领域发挥越来越大的作用。

2.4 PLC的特点

(1)可靠性高,抗干扰能力强

高可靠性是电气控制设备的关键性能。PLC 由于采用现代大规模集成电路技术,采用严格的生产工艺制造,内部电路采取了先进的抗干扰技术,具有很高的可靠性。例如三菱公司生产的F 系列PLC 平均无故障时间高达30万小时。一些使用冗余CPU 的PLC 的平均无故障工作时间则更长。从PLC 的机外电路来说,使用PLC 构成控制系统,和同等规模的继电接触器系统相比,电气接线及开关接点已减少到数百甚至数千分之一,故障也就大大降低。此外,PLC 带有硬件故障自我检测功能,出现故障时可及时发出警报信息。在应用软件中,应用者还可以编入外围器件的故障自诊断程序,使系统中除PLC 以外的电路及设备也获得故障自诊断保护。这样,整个系统具有极高的可靠性也就不奇怪了。

(2)配套齐全,功能完善,适用性强

PLC 发展到今天,已经形成了大、中、小各种规模的系列化产品。可以用于各种规模的工业控制场合。除了逻辑处理功能以外,现代PLC 大多具有完善的数据运算能力,可用于各种数字控制领域。近年来PLC 的功能单元大量涌现,使PLC 渗透到了位置控制、温度控制、CNC 等各种工业控制中。加上PLC 通信能力的增强及人机界面技术的发展,使用PLC 组成各种控制系统变得非常容易。

(3)易学易用,深受工程技术人员欢迎

PLC 作为通用工业控制计算机,是面向工矿企业的工控设备。它接口容易,编程语言易于为工程技术人员接受。梯形图语言的图形符号与表达方式和继电器电路图相当接近,只用PLC 的少量开关量逻辑控制指令就可以方便地实现继电器电路的功能。为不熟悉电子电路、不懂计算机原理和汇编语言的人使用计算机从事工业控制打开了方便之门。

(4) 系统的设计、建造工作量小,维护方便,容易改造

PLC 用存储逻辑代替接线逻辑,大大减少了控制设备外部的接线,使控制系统设计及建造的周期大为缩短,同时维护也变得容易起来。更重要的是使同一设备经过改变程序改变生产过程成为可能。这很适合多品种、小批量的生产场合。

(5)体积小,重量轻,能耗低

以超小型PLC 为例,新近出产的品种底部尺寸小于100mm ,重量小于150g ,功耗仅数瓦。由于体积小很容易装入机械内部,是实现机电一体化的理想控制设备。

2.5 PLC的组成

PLC 的硬件主要是由中央处理器(CPU )、存储器、输入单元、输出单元,通信接口、扩展接口电源等部分组成。其中,CPU 是PLC 的核心,输入单元与输出单元是连接现场输入/输出设备与CPU 之间的接口电路,通信接口用于与编程器、上位计算机等外设连接。典型PLC 组成框图如图2-1所示。

图2-1 典型PLC 组成框图

2.5.1 中央处理单元(CPU)

中央处理单元(CPU)是PLC 控制中枢。其功能接收并存储从编程器键入用户程序和数据;检查电源、存储器、I/O以及警戒定时器状态,并能诊断用户程序中语法错误。当PLC 投入运行时,首先它以扫描方式接收现场各输入装置状态和数据,并分别存入I/O映象区,然后从用户程序存储器中逐条读取用户程序,命令解释后按指令规定执行逻辑或算数运算结果送入I/O映象区或数据寄存器内。等所有用户程序执行完毕之后,最后将I/O映象区各输出状态或输出寄存器内数据传送到相应输出装置,如此循环运行,直到停止运行。

2.5.2 存储器

(1)PLC 常用存储器类型

①RAM (Random Assess Memory ) 这是一种读/写存储器(随机存储器) ,其存取速度最快,由锂电池支持。

②EPROM (Erasable Programmable Read Only Memory)这是一种可擦除只读存储器。断电情况下,存储器内所有内容保持不变。紫外线连续照射下可擦除存储器内容) 。

③EEPROM(Electrical Erasable Programmable Read Only Memory)这是一种电可擦除只读存储器。使用编程器就能很容易对其所存储内容进行修改。

(2)PLC 存储空间分配

①系统程序存储区:系统程序存储区中存放着相当于计算机操作系统系统程序。包括监控程序、管理程序、命令解释程序、功能子程序、系统诊断子程序等。由制造厂商将其固化EPROM 中,用户不能直接存取。它和硬件一起决定了该PLC 性能。

②系统RAM 存储区:系统RAM 存储区包括I/O映象区以及各类软设备,如:逻辑线圈;数据寄存器;计时器;计数器;变址寄存器;累加器等存储器。

③用户程序存储区:主要用来存放用户的应用程序。所谓用户程序时指使用户根据工程现场的的产生过程和工艺要求编写的控制程序。次程序由使用者通过编程器输入到PLC 机的RAM 存贮器中,以便于用户随时修改。也可将用户程序存放在EEPROM 中。

2.5.3、输入/输出模块

输入/输出模块是可编程控制器与工业生产设备或工业生产过程连接的借口。现场的输入信号,如按钮开关,行程开关、限位开关以及传感输出的开关量或模拟量(压力、流量、温度、电压、电流)等,都要通过输入模块送到PLC 。由于这些信号电平各式各样,而可编程控制器CPU 所处理的信息只能是标准电平,所以输入模块还需将这些信号转换成PLC 能够接受和处理的数字信号。输入模块的作用是接收中央处理器处理过的数字信号,并把它转换成现场执行部件所能接收的控制信号,以驱动如电磁阀、灯光显示、电机等执行机构。可编程控制器有多种输入/输出模块其类型有数字量输入/输出模块和模拟量输入/输出模块。这些模块分直流和交流、电压和电流类型,每种类型又有不同的参数等级,主要有数字量输入/输出模块和模拟量输入输出/模块,部件上都设有接线端子排,为了滤除信号的噪声和便于PLC 内部对信号的处理,这些模块上都带有滤波、电平转换、信号锁存电路。数字量输入模块带有广电耦合电路,其目的是把PLC

与外部电路隔离起来,以提高PLC 的抗干扰能力。数字两输出有继电器输出、晶体管输出和可控硅输出三种方式。模拟量输入/输出模块主要用来实现模拟量与数字量之间的转换。

2.5.4、扩展模块

当一个PLC 中心单元的I/O点数不够用时,就要对系统进行扩展,扩展接口就是用于连接中心基本单元与扩展单元的。模块随着可编程控制器在工业控制中的广泛应用和发展,使可编程控制器的功能更加强大和完善。只能I/O接口模块种类很多,例如高速计数模块、PLCA 控制模块、数字位基于PLC 的变频恒压供水系统的设计置译码模块、阀门控制模块、智能存贮弄快以及智能I/O模块等。

2.5.5 编程器

它的作用是供用户进行程序的编制、编辑、调试和监视。有的编程器还可与打印机或磁带机相连,以将用户程序和有关信息打印出来或存放在它的作用是供用户进行程序的编制、编辑、调试和监视。有的编程器还可与打印机或磁带机相连,以将用户程序和有关信息打印出来或存放在磁带上,磁带上的信息可以重新装入PLC 。目前编程器主要有以下三种类型:

(1)便于携带的特点,一般只能用指令形式编程,通过按键输入指令,通过数码管或液晶显示器加以显示、这种编程器适合小型可编程控制器的编程要求。

(2)图形编程器以液晶显示器(LCD)或阴极射线管(CRT)作屏幕,用来显示编程内容和提供如输入、输出、辅助继电器的占有情况、程序容量等各种信息,还可在调试程序、检查程序执行时显示各种信号状态、出错提示等。

(3)用于IBM —PC 及其兼容机的编程器是个人计算机加上适当的硬件接口和软件包作为编程器,也可直接编制成梯形图,其监控功能也很强。编程器工作方式主要有编程和监控两种,编程工作方式是在PLC 机处于停机状态时可以进行编程,它的功能主要是输入新的程序,或者对已有的程序予以编辑和修改。

监控工作方式可以对运行中的控制器工作状态进行监视和跟踪,一般可以对某一线圈或触点的工作状态进行监视,也可以对成组器件的工作状态进行监视,还可以跟踪某一器件在不同时间的工作状态,除搜索、监视、跟踪外,还可以对一些器件进行操作。因此编程器的监控方式对控制器中新输入程序的调试与试运行是非常有用和方便的。编程器的结构一般包括显示部分与键盘部分。显示一般用液晶显示器,主要的显示内容包括地址、数据、工作方式、指令执行情况及系

统工作状态等。键盘有单功能键和双功能键,在使用双功能键的时候键盘中都备有一个选择键,以选择其中一种方式工作。

用户可根据自己时间控制系统的要求,选用各种合适的扩展模块对PLC 作硬件组态,以求达到各种功能或控制精度,同时节省开支,减少不必要的投资。

当已运行的系统需要改造或扩充时,PLC 可以随时进行升级或改版,所作的工作仅仅是替换或增加扩展模板和修改相应的控制软件。特殊模板及智能模板的开发将进一步扩展可编程控制的功能,专用模板的开发不仅扩大了可编程控制系统的控制功能,而且将进一步提高控制质量与可靠性。

2.6 PLC的工作原理

最初研制生产的PLC 主要用于代替传统的由继电器接触器构成的控制装置,但这两者的运行方式是不相同的:

继电器控制装置采用硬逻辑并行运行的方式,即如果这个继电器的线圈通电或断电,该继电器所有的触点(包括其常开或常闭触点)在继电器控制线路的哪个位置上都会立即同时动作。 而PLC 的CPU 则采用顺序逻辑扫描用户程序的运行方式,即如果一个输出线圈或逻辑线圈被接通或断开,该线圈的所有触点(包括其常开或常闭触点) 不会立即动作,必须等扫描到该触点时才会动作。

为了消除二者之间由于运行方式不同而造成的差异,考虑到继电器控制装置各类触点的动作时间一般在100ms 以上,而PLC 扫描用户程序的时间一般均小于100ms ,因此,PLC 采用了一种不同于一般微型计算机的运行方式---扫描技术。这样在对于I/O响应要求不高的场合,PLC 与继电器控制装置的处理结果上就没有什么区别了。

2.7 梯形图程序设计

梯形图编程语言是一种图形化编程语言,它沿用了传统的继电接触器控制中的触点、线圈、串并联等术语和图形符号,与传统的继电器控制原理电路图非常相似,但又加入了许多功能强而又使用灵活的指令,它比较直观、形象,对于那些熟悉继电器一接触器控制系统的人来说,易被接受。继电器梯形图多半适用于比较简单的控制功能的编程,绝大多数PLC 用户都首选使用梯形图编程。

指令是用英文名称的缩写字母来表达PLC 的各种功能的助记符号,类似于计算机汇编语言。由指令构成的能够完成控制任务的指令组合就是指令表,每一条指令一般由指令助记符和作用器件编号组成,比较抽象,通常都先用其它方式表达,然后改写成相应的语句表,编程设备简单价廉。

通常微、小型PLC 主要采用继电器梯形图编程,其编程的一般规则有:

(1)梯形图按自上而下、从左到右的顺序排列。每一个逻辑行起始于左母线然后是触点的各种连接,最后是线圈或线圈与右母线相连,整个图形呈阶梯形。梯形图所使用的元件编号地址必须在所使用PLC 的有效范围内。

(2)梯形图是PLC 形象化的编程方式,其左右两侧母线并不接任何电源,因而图中各支路也没有真实的电流流过。但为了读图方便,常用“有电流”、“得电”等来形象地描述用户程序解算中满足输出线圈的动作条件,它仅仅是概念上虚拟的“电流”,而且认为它只能由左向右单方向流:层次的改变也只能自上而下。

(3)梯形图中的继电器实质上是变量存储器中的位触发器,相应某位触发器为“l态”,表示该继电器线圈通电,其动合触点闭合,动断触点打开,反之为“o态”。梯形图中继电器的线圈又是广义的,除了输出继电器、内部继电器线圈外,还包括定时器、计数器、移位寄存器、状态器等的线圈以及各种比较、运算的结果。

(4)梯形图中信息流程从左到右,继电器线圈应与右母线直接相连,线圈的右边不能有触点,而左边必须有触点。

(5)继电器线圈在一个程序中不能重复使用:而继电器的触点,编程中可以重复使用,且使用次数不受限制。

(6)PLC 在解算用户逻辑时,是按照梯形图由上而下、从左到右的先后顺序逐步进行的,即按扫描方式顺序执行程序,不存在几条并列支路同时动作,这在设计梯形图时,可以减少许多有约束关系的联锁电路,从而使电路设计大大简化。所以,由梯形图编写指令程序时,应遵循自上而下、从左到右的顺序,梯形图中的每个符号对应于一条指令,一条指令为一个步序。

当PLC 运行时,用户程序中有众多的操作需要去执行,但CPU 是不能同时去执行多个操作的,它只能按分时操作原理每一时刻执行一个操作。这种分时操作的过程称为CPU 对程序的扫描。扫描从0000号存储地址所存放的第一条用户程序开始,在无中断或跳转控制的情况下,按存储地址号递增顺序逐条扫描用户程序,也就是顺序逐条执行用户程序,直到程序结束。每扫描完一次程序就构成一个扫描周期,然后再从头开始扫描,并周而复始。

3 水塔水位控制系统PLC 硬件设计

3.1 水塔水位控制系统设计要求

水塔水位控制装置如图3-1所示:

水塔上限液位开关水塔下限液位开关水流

S2

S1

水池

图3-1 水塔水位控制装置图

3.1.1 工作原理

水塔水位的工作方式

当水池液位低于下限液位开关S 1,S 1此时为ON ,电磁阀打开,开始往水池里注水,当4S 以后,若水池液位没有超过水池下限液位开关时,则系统发出报警,若系统正常,此时水池下限液位开关S 4为OFF, 表示水位高于下限水位。当水位液面高于上限水位,则S 2为ON ,电磁阀关闭。

当水塔水位低于水塔下限水位时,则水塔下限水位开关S 3为ON ,水泵开始工作,向水塔供水,当S 3为OFF 时,表示水塔水位高于水塔下限水位。当水塔液面高于水塔上限水位时,则水塔上限水位开关S 4为OFF ,水泵停止。当水塔水位低于下限水位,同时水池水位也低于下限水位时,水泵不能启动。

3.2 水塔水位控制系统主电路

水塔水位控制系统主电路如图3-2所示:

SQ

FU KM

FR

M

3~

图3-2 水塔水位控制系统主电路图

3.3 I/O接口分配

3.3.1 列出水塔水位控制系统PLC 的输入/输出接口分配表

表3-1 水塔水位控制系统PLC 的输入/输出接口分配表

3.3.2 水塔水位控制系统的I/O设备

这是一个单体控制小系统,没有特殊的控制要求,它有6个开关量,开关量输出触点数有8个,输入、输出触点数共有14个,只需选用一般中小型控制器即可。据此,可以对输入、输出点作出地址分配。

4 水塔水位控制系统PLC 软件设计

4.1 程序流程图

水塔水位控制系统的PLC 控制流程图,根据设计要求,控制流程图,如图4-1所示:

图4-1 水塔水位控制系统的PLC 控制流程图

这种分时操作的过程称为CPU 对程序的扫描。扫描从0000号存储地址所存放的第一条用户程序开始,在无中断或跳转控制的情况下,按存储地址号递增顺序逐条扫描用户程序,也就是顺序逐条执行用户程序,直到程序结束。每扫描完一次程序就构成一个扫描周期,然后再从头开始扫描,并周而复始。

根据控制要求,设计的梯形图程序如图4-2所示。

4.2 梯形图程序设计及工作过程分析

梯形图编程语言是一种图形化编程语言,它沿用了传统的继电接触器控制中的触点、线圈、串并联等术语和图形符号,与传统的继电器控制原理电路图非常相似,但又加入了许多功能强而又使用灵活的指令,它比较直观、形象,对于那些熟悉继电器一接触器控制系统的人来说,易被接受。继电器梯形图多半适用于比较简单的控制功能的编程,绝大多数PLC 用户都首选使用梯形图编程。

梯形图编程的一般规则有:

(1)梯形图按自上而下、从左到右的顺序排列。每一个逻辑行起始于左母线然后是触点的各种连接,最后是线圈或线圈与右母线相连,整个图形呈阶梯形。梯形图所使用的元件编号地址必须在所使用PLC 的有效范围内。

(2)梯形图是PLC 形象化的编程方式,其左右两侧母线并不接任何电源,因而图中各支路也没有真实的电流流过。但为了读图方便,常用“有电流”、“得电”等来形象地描述用户程序解算中满足输出线圈的动作条件,它仅仅是概念上虚拟的“电流”,而且认为它只能由左向右单方向流; 层次的改变也只能自上而下。

(3)梯形图中的继电器实质上是变量存储器中的位触发器,相应某位触发器为“1态”,表示该继电器线圈通电,其动合触点闭合,动断触点打开,反之为“O 态”。梯形图中继电器的线圈又是广义的,除了输出继电器、内部继电器线圈外,还包括定时器、计数器、移位寄存器、状态器等的线圈以及各种比较、运算的结果。

(4)梯形图中信息流程从左到右,继电器线圈应与右母线直接相连,线圈的右边不能有触点,而左边必须有触点。

(5)继电器线圈在一个程序中不能重复使用:而继电器的触点,编程中可以重复使用,且使用次数不受限制。

(6)PLC 在解算用户逻辑时,是按照梯形图由上而下、从左到右的先后顺序逐步进行的,即按扫描方式顺序执行程序,不存在几条并列支路同时动作,这在设计梯形图时,可以减少许多有约束关系的联锁电路,从而使电路设计大大简化。所以,由梯形图编写指令程序时,应遵循自上而下、从左到右的顺序,梯形图中的每个符号对应于一条指令,一条指令为一个步序。当PLC 运行时,用户程

序中有众多的操作需要去执行,但CPU 是不能同时去执行多个操作的,它只能按分时操作原理每一时刻执行一个操作。

4.2.1 工作过程

设水塔、水池初始状态都为空着的,4个液位指示灯全灭。当执行程序时,扫描到水池为液位低于水池下限液位时,水阀打开,开始往水池里进水;如果进水超过4秒,而水池液位没有超过水池下限位,说明系统出现故障,系统就会自动报警,水池报警灯A 2亮。若4秒之后水池液位按预定的超过水池下限位,说明系统在正常的工作,水池下限位的指示灯A 1亮,此时,水池的液位已经超过了下限位了,系统检测到此信号时,由于水塔液位低于水塔水位下限,水泵开始工作,向水塔供水;如果进水超过4秒,而水塔液位没有超过水池下限位,说明系统出现故障,系统就会自动报警,水塔报警灯A 5亮。当水池的液位超过水池上限液位时,水池上限指示灯A 3亮,水阀就关闭。但是水塔现在还没有装满,可此时水塔液位已经超过水塔下限水位,则水塔下限指示灯A 4亮,水泵继续工作,在水池抽水向水塔供水,水塔抽满时,水塔液位超过水塔上限,水塔上限指示灯A 6亮。但刚刚给水塔供水的时候,水泵已经把水池的水抽走了,此时水塔液位已经低于水池上限,水池上限指示灯A 3灭。此次给水塔供水完成。

4.2.2 水塔水位控制系统梯形图

水塔水位控制系统梯形图,如图4-2所示:

图4-2 水塔水位控制系统梯形图

(1)启停程序如图4-3所示:

图4-3 启停程序梯形图

(2)水阀控制程序如图4-4所示:

图4-4 水阀控制程序梯形图

(3)水池下限水位指示程序如图4-5所示:

图4-5 水池下限水位指示程序梯形图

(4)水池水位报警程序如图4-6所示:

图4-6 水池水位报警程序梯形图

(5)水池水位上限指示程序如图4-7所示:

图4-7 水池水位上限指示程序梯形图

(6)水泵启停控制程序如图4-8所示:

图4-8 水泵启停控制程序梯形图

(7)水塔水位下限指示程序如图4-9所示:

图4-9 水塔水位下限指示程序梯形图

(8)水塔水位报警程序如图4-10所示:

图4-10 水塔水位报警程序梯形图

(9)水塔水位上限指示程序如图4-11所示:

图4-11 水塔水位上限指示程序梯形图

5 水塔水位控制系统的组态设计

5.1 组态软件概述

组态软件是有专业性的。一种组态软件只能适合某种领域的应用。组态的概念最早出现在工业计算机控制中。如DCS(集散控制系统) 组态,PLC (可编程控制器)梯形图组态。人机界面生成软件就叫工控组态软件。其实在其他行业也有组态的概念,人们只是不这么叫而已。如AutoCAD ,PhotoShop ,办公软件(PowerPoint)都存在相似的操作,即用软件提供的工具来形成自己的作品,并以数据文件保存作品,而不是执行程序。组态形成的数据只有其制造工具或其他专用工具才能识别。但是不同之处在于,工业控制中形成的组态结果是用在实时监控的。组态工具的解释引擎,要根据这些组态结果实时运行。从表面上看,组态工具的运行程序就是执行自己特定的任务。

5.2 组态软件在我国的发展

组态软件产品于80年代初出现“组态”的概念是伴随着集散型控制系(简称DCS )的出现才开始被广大的生产过程自动化技术人员所熟知的。在工业控制技术的不断发展和应用过程中,PC (包括工控机)相比以前的专用系统具有的优势日趋明显。这些优势主要体现在:PC 技术保持了较快的发展速度,各种相关技术已臻成熟;由PC 构建的工业控制系统具有相对较低的拥有成本;PC 的软件资源和硬件资丰富,软件之间的互操作性强;基于PC 的控制系统易于学习和使用,可以容易地得到技术方面的支持。在PC 技术向工业控制领域的渗透中,组态软件占据着非常特殊而且重要的地位。

组态软件是指一些数据采集与过程控制的专用软件,它们是在自动控制系统监控层一级的软件平台和开发环境,使用灵活的组态方式,为用户提供快速构建工业自动控制系统监控功能的、通用层次的软件工具。组态软件应该能支持各种工控设备和常见的通信协议,并且通常应提供分布式数据管理和网络功能。对应于原有的HMI (人机接口软件,HumanMachineInterface )的概念,组态软件应该是一个使用户能快速建立自己的HMI 的软件工具,或开发环境。在组态软件出现之前,工控领域的用户通过手工或委托第三方编写HMI 应用,开发时间长,效率低,可靠性差;或者购买专用的工控系统,通常是封闭的系统,选择余地小,往往不能满足需求,很难与外界进行数据交互,升级和增加功能都受到严重的限制。组态软件的出现,把用户从这些困境中解脱出来,可以利用组态软件的功能,构建一套最适合自己的应用系统。随着它的快速发展,实时数据库、实时控制、

SCADA 、通讯及联网、开放数据接口、,并在80年代末期进入我国。但在90年代中期之前,组态软件在我国的应用并不普及。

究其原因,大致有以下几点:

(1)国内用户还缺乏对组态软件的认识,项目中没有组态软件的预算,或宁愿投入人力物力针对具体项目做长周期的繁冗的上位机的编程开发,而不采用组态软件;

(2)在很长时间里,国内用户的软件意识还不强,面对价格不菲的进口软件(早期的组态软件多为国外厂家开发),很少有用户愿意去购买正版。

(3)当时国内的工业自动化和信息技术应用的水平还不高,组态软件提供了对大规模应用、大量数据进行采集、监控、处理并可以将处理的结果生成管理所需的数据,这些需求并未完全形成。

随着工业控制系统应用的深入,在面临规模更大、控制更复杂的控制系统时,人们逐渐意识到原有的上位机编程的开发方式。对项目来说是费时费力、得不偿失的,同时,MIS (管理信息系统,ManagementInformationSystem )和CIMS (计算机集成制造系统,ComputerIntegratedManufacturingSystem )的大量应用,要求工业现场为企业的生产、经营、决策提供更详细和深入的数据,以便优化企业生产经营中的各个环节。因此,在1995年以后,组态软件在国内的应用逐渐得到了普及。

5.3 组态软件的功能特点发展方向

目前看到的所有组态软件都能完成类似的功能:比如,几乎所有运行于32位Windows 平台的组态软件都采用类似资源浏览器的窗口结构,并且对工业控制系统中的各种资源(设备、标签量、画面等)进行配置和编辑;都提供多种数据驱动程序;都使用脚本语言提供二次开发的功能,等等。但是,从技术上说,各种组态软件提供实现这些功能的方法却各不相同。从这些不同之处,以及PC 技术发展的趋势,可以看出组态软件未来发展的方向。

5.4 建立WINCC 组态画面

5.4.1 WINCC组态画面

打开WINCC 组态软件,新建单用户项目,然后进入图形编辑管理器,建立WINCC 组态画面,如图5-1所示。

图5-1 WINCC组态画面

5.4.2 画面演示

启动仿真,运行WINCC 组态画面。点击“启动按钮”,“水阀”动作,如图5-2所示和图5-3所示:

图5-2 启动初始WINCC 画面

图5-3 启动初始仿真画面

4秒后,若“水池低水位指示”信号未输入,则“水池低水位”报警灯报警,如图5-4和5-5所示:

图5-4 水池报警WINCC 画面

图5-5 水池报警仿真画面

若“水池低水位”信号输入,则报警不启动,启动“水泵”, 如图5-6和5-7所示:

图5-6 水泵启动WINCC 画面

图5-7 水泵启动仿真画面

4秒后,若“水塔低水位指示”信号未输入,则“水塔低水位”报警灯报警,如图5-7和5-8所示:

图5-7 水塔报警WINCC 画面

图5-8 水塔报警仿真画面

若“水塔低水位”信号输入,则报警不启动,如图5-9和5-10所示:

图5-9 水塔低水位WINCC 画面

图5-10 水塔报警仿真画面

若“水塔高水位指示”信号输入,则关闭水泵,如图5-11和5-12所示:

图5-11 水塔高水位WINCC 画面

图5-12 水塔高水位仿真画面

一段时间后,若“水池高水位指示”信号输入,则关闭水阀,如图5-13和5-14所示:

图5-13 水池高水位WINCC 画面

图5-14 水池高水位仿真画面

至此,这次基于PLC 控制系统的水塔水位控制任务

6 结 论

大学生活即将结束,在毕业之际,要用我求学生涯所学的知识做出一个设计,来给予我所学知识的一个肯定。

我做的这个题目是有关PLC 与组态软件相结合的,也是将我三年所学习的知识的一个结合应用。是这次做毕业设计给予我理论与实践相结合的机会,提高了我实际操作和独立解决问题的能力。

通过这次设计实践。让我更熟练的掌握PLC 的编程方法,对PLC 的工作原理和使用方法也有了更深刻的理解。在对理论的运用中,提高了我的专业基础。在对组态软件的学习当中,躺卧体会到了细节界定一切的道理,刚开始做组态的时候,由于我对一些细节不加重视,当我把自己想出来一些以为是对的东西用到组态软件上,问题出现了,不是不能运行,就是运行的结果和我想要的结果不相符合。经过我一次次的实践,最后把正确的结果做出来时,才看到了自己的缺点。

在设计的过程中我还得到了老师的帮助与意见。在学习的过程中,不是每一个问题都能自己解决,向老师请教或向同学讨论是一个很好的方法。但是一味依靠他人解决问题并不能帮助自己提升,很多时候,自己还是通过查资料来解决毕业设计中遇到的问题。通过自己亲自去查找资料,不仅将自己所学的知识都进行了复习、加深理解,而且和新学的的知识有效的结合了,提升了自己。

现在我的毕业设计是做完了,可是我的学习之路还没有完,这次毕业设计只是对我能力的一次小小测试。这次毕业设计教给了我在以后面对时的另一条道路——自己去寻求答案。

对我来说这次毕业设计,是一个终点,同时也是一个起点。

致 谢

本文的研究工作是在我的老师刘静老师的精心指导和悉心关怀下完成的,在我的学业和论文的研究工作中无不倾注着老师辛勤的汗水和心血。老师的严谨治学态度、渊博的知识、无私的奉献精神使我深受的启迪。从尊敬的老师身上,我不仅学到了扎实、宽广的专业知识,也学到了做人的道理。在此我要向我的老师致以最衷心的感谢和深深的敬意。

经过几个月的查阅和整理材料,随着论文的完成,终于让学生在大学的生活,得以划下了完美的句点。

论文得以完成,要感谢的人实在太多了。要感谢在大学期间所有传授我知识的老师,是你们的悉心教导使我有了良好的专业课知识,这也是论文得以完成的基础。要感谢我的朋友和同学,使他们在我遇到问题是给我以指点。

通过此次的论文,我学到了很多知识,在论文的写作过程中,通过查资料和搜集有关的文献,培养了自学能力和动手能力。并且由原先的被动的接受知识转换为主动的寻求知识,这可以说是学习方法上的一个很大的突破。在以往的传统的学习模式下,我们可能会记住很多的书本知识,但是通过毕业论文,我们学会了如何将学到的知识转化为自己的东西,学会了怎么更好的处理知识和实践相结合的问题。

在论文的写作过程中也学到了做任何事情所要有的态度和心态,首先做学问要一丝不苟,对于发展过程中出现的任何问题和偏差都不要轻视,要通过正确的途径去解决,在做事情的过程中要有耐心和毅力,不要一遇到困难就打退堂鼓,只要坚持下去就可以找到思路去解决问题的。

总之,此次论文的写作过程,我收获了很多,即为大学三年划上了一个完美的句号,也为将来的人生之路做好了一个很好的铺垫。

在此,向所有关心和帮助过我的领导、老师、同学和朋友表示由衷的谢意! 衷心地感谢在百忙之中评阅论文和参加答辩的各位老师!

参考文献

[1]胡学林, 《可编程控制器原理及应用》. 北京. 电子工业出版社,2007:1

[2]胡学林, 《可编程控制器教程(提高篇)》. 北京. 电子工业出版社,2005:8

[3]汪志峰, 《可编程控制器原理及应用》. 西安. 电子科技大学出版社,2004

[4]廖常初, 《S7-300/400PLC应用技术》. 北京. 机械工业出版社,2005

[5]吴中俊. 黄永红 .《可编程序控制器原理及应用》. 北京. 机械工出版社,2004

[6]吕景泉, 《可编程控制器技术教程》. 北京:高等教育出版社,2001

[7]宋德玉, 《可编程序控制器原理及应用系统设计技术》. 北京. 冶金工业出版社,2002

[8]郑晟,巩建平,张学. 《现代可编程序控制器原理与应用》. 北京:科学出版社,2003

[9] 肖峰, 《PLC 编程100例》. 北京:中国电力出版社,2009

[10] 张桂香, 《电气控制与PLC 应用》. 北京:化学工业出版社,2003

[11] 吕景泉, 《可编程序控制器技术教程》.北京:高等教育出版社,2000

[12]李俊季, 赵黎明, 《可编程控制应用技术实训指导》. 北京:化学工业出版社,2001

论文原创性声明

本人以信誉声明:所呈交的毕业论文是在导师的指导下进行的设计(研究)工作及取得的成果,论文中引用他(她)人的文献、数据、图件、资料均已明确标注出,论文中的结论和结果为本人独立完成,不包含他人成果及为获得重庆科技学院或其它教育机构的学位或证书而使用其材料。与我一同工作的同志对本设计(研究)所做的任何贡献均已在论文中作了明确的说明并表示了谢意。

毕业论文作者(签字):

签字日期: 2012 年 8 月 5 日


相关内容

  • 基于单片机的水塔水位自动控制系统
  • 摘 要 在工业和农业生产过程中,经常需要测量和控制水位.在日常生活中水位控制应用也相当广泛,如水塔.地下水.水电站的控制.然而,随着世界人口不断增长,增加了人们的生活用水,过去由于频繁操作使用的继电器使水位自动控制系统会产生机械磨损,即不方便维护和更新,也不能满足实际需求. 本论文使用的是西门子S7 ...

  • 基于PLC水塔水位控制的毕业设计
  • 目 录 摘要............................................................................................................. 一 概论 . ........................... ...

  • PLC水塔液位自动控制系统
  • 毕 业 设 计(论文) (说 明 书) 题 目:基于PLC 的水塔液位自动控制系统设计 姓 名: 王 松 学 号: 平顶山工业职业技术学院 年 月 日 平顶山工业职业技术学院 毕 业 设 计 (论文) 任 务 书 姓 名 王 松 专业班级 电气自动化对口1班 任 务 下 达 日 期 年 月 日 设计 ...

  • 安全检测与监控技术课程设计
  • 水塔水位检测控制系统的设计 摘要:本文采用PLC进行主控制,在水箱上安装一个自动测水位装置.利用水的导电性连续地全天候地测量水位的变化,把测量到的水位变化转换成相应的电信号,主控台对接收到的信号进行数据处理,完成相应的水位显示.故障报警信息显示.实时曲线和历史曲线的显示,使水位保持在适当的位置. 关 ...

  • 水塔水位控制
  • 青岛理工大学 毕 业 设 计 题目: 水塔水位自动控制系统 学生姓名: 学生学号: 院系名称: 专业班级: 指导教师: 年 月 日 摘 要 水塔水位的控制系统是我国供水系统较为常用的,水塔供水的主要问题是塔内水位应该始终保持在一定的范围内,避免"空塔"."溢塔" ...

  • 基于AT89C51单片机的水位控制系统的课程设计
  • 基于单片机的水位控制系统设计 目录 1 概述 . .............................................................................................................. 3 2 设计的基本任务和要求 ...

  • 水位控制器设计
  • 电子技术课程设计报告 水位控制器的设计 姓 名: 学 号: 专业年级:指导教师:设计时间: 目 录 第一章 设计任务与要求„„„„„„„„„„„„„„„„„„„„„„„ 第二章 设计方案„„„„„„„„„„„„„„„„„„„„„„„„„„ 第三章 设计原理与电路„„„„„„„„„„„„„„„„„„„ ...

  • PLC毕业设计论文题目
  • P L C 第1-100个PLC毕业设计论文题目 1. 智能压力传感器系统设计 2. 智能定时器 3. 液位控制系统设计 4. 液晶控制模块的制作 5. 嵌入式激光打标机运动控制卡软件系统设计 6. 嵌入式激光打标机运动控制卡硬件系统设计 7. 基于单片机控制的数字气压计的设计与实现 8. 基于MS ...

  • YUYW-01C 高性能维修电工及技能实训装置
  • YUYW-01C 高性能维修电工及技能实训装置 一.概述 "YUYW-01C 型高性能维修电工及技能实训装置"是根据机械工业职业技能鉴定指导中心组织编写的<机械工人职业技能培训教材>研制生产的,可对<初级维修电工技术><中级维修电工技术>< ...