章后习题解答 [TOP]
习题
1. 下列数据,各包括几位有效数字?
(1) 2.0321 (2) 0.0215 (3) pK HIn = 6.30
(4) 0.01﹪ (5) 1.0×10-5
解 5;3;2;1;2
2. 分析天平的称量误差为 ±0.0001 g,用减差法称取样品时,两次称量的最大误差可达±0.0002 g,欲使称量的相对误差小于0.1%,求至少应称取样品质量(g)? 解
E ×100% T
0. 0002⨯100 0. 1= T RE =
T = 0.2 g
所称样品至少要大于0.2 g。
3. 两人分析同一试样中的含铜量,其结果质量分数(ω) 如下:
甲 0.3610 0.3612 0.3603
乙 0.364l 0.3642 0.3643
巳知此试样中含铜量的真实值为0.3606。试问何人所得结果的准确度高?何人的结果精密度高?为什么?
解 甲的X = (0.3610 + 0.3612 + 0.3603)/3 = 0.3608
乙的X = (0.364l + 0.3642 + 0.3643)/3 = 0.3642
甲的准确度高,因平均测量值接近于真实值;乙的精密度高, 因它的重现性好。
4. 在用邻苯二甲酸氢钾标定NaOH 溶液的浓度时,若在实验过程中发生下列过失的情况,试说明每种情况下NaOH 溶液所测得的浓度是偏大还是偏小。
(1)滴定管中NaOH 溶液的初读数应为1.00 mL,误记为0.10 mL。
(2)称量邻苯二甲酸氢钾的质量应为0.3518 g,误记为0.3578 g。
解 可利用下式计算NaOH 溶液的浓度:
c (NaOH ) =m (KHC 8H 4O 4) V (NaOH ) ⨯M (KHC 8H 4O 4)
(1)初读数1.00 mL误计为0.10 mL,使V (NaOH)偏大,由上式可知测定的NaOH 溶液浓度偏低;
(2)由于将称量的邻苯二甲酸氢钾的质量0.3518 g误计为0.3578 g,使m (KHC8H 4O 4) 偏大,由上式可知测定的NaOH 溶液的浓度偏高。
5. 某一弱碱型指示剂的K In - = 1.3×10-5,此指示剂的变色范围是多少?
解 p K In - = -lg KIn - = -lg (1.3×10-5) = 4.89
p K HIn = 14-4.89 = 9.11
故变色范围为 pH 8.11~10.11
6. 称取分析纯Na 2CO 3 1.3350 g ,配成一级标准物质溶液250.0 mL ,用来标定近似浓度为0.1 mol·L -1HCl 溶液,测得一级标准物质溶液25.00 mL恰好与HCl 溶液24.50 mL反应完全。求此HCl 溶液的准确浓度。
解 一级标准物质溶液25.00 mL中Na 2CO 3的质量
m (Na 2CO 3) =1.335 0 g ⨯25.00 mL =0.1335 g 250.0 mL
根据Na 2CO 3标定HCl 溶液的计量关系
Na 2CO 3 + 2HCl = 2NaCl + CO2 + H2O
得 c (HCl ) V (HCl ) =2n (Na 2CO 3) =2⨯m (Na 2CO 3) M (Na 2CO 3)
c (HCl ) =2⨯m (Na 2CO 3) 2⨯0. 1335 g ==0. 1028 mol ⋅L -1 -1-3M (Na 2CO 3) ⨯V (HCl ) 106. 0 g ⋅mol ⨯24. 50⨯10 L
因此HCl 溶液的准确浓度为0.1028 mol·L -1。
7. 标定浓度为0.1 mol·L -1的NaOH 溶液,欲消耗25 mL 左右的NaOH 溶液,应称取一级标准物质草酸(H2C 2O 4·2H 2O) 的质量约为多少?能否将称量的相对误差控制在±0.05﹪范围之内?若改用邻苯二甲酸氢钾(KHC8H 4O 4) ,结果又如何?
解 2n (H2C 2O 4⋅2H 2O) =c (NaOH)V (NaOH)
2m (H2C 2O 4⋅2H 2O) =c (NaOH)V (NaOH) M (H2C 2O 4⋅2H 2O)
m (H2C 2O 4⋅2H 2O) =c (NaOH)V (NaOH)⨯M (H2C 2O 4⋅2H 2O)
2
0. 1 mol ⋅L -1⨯25⨯10-3 L ⨯126 g ⋅mol -1
=2
=0. 15 g
若称量草酸采取差减法进行,则分析天平引起的绝对误差为0.0001 g ×2
RE =0. 0002⨯100%=0. 133%,故不能控制在0.05%范围内。 0. 15
若改用邻苯二甲酸氢钾,M (KHC8H 4O 4) =204 g·mol -1
n (KHC8H 4O 4) =c (NaOH ) V (NaOH )
m (KHC8H 4O 4) =c (NaOH ) V (NaOH ) ⨯M (KHC8H 4O 4)
=0. 1 mol ⋅L -1⨯25⨯10-3 L ⨯204 g ⋅mol -1
=0. 51 g
RE =0. 0002⨯100%=0. 039%,故可以控制在0.05%范围内。 0. 51
8. 化学计量点和滴定终点有何不同?在各类酸碱滴定中,计量点、滴定终点和中性点之间的关系如何?
解 化学计量点是化学反应的等量点,而滴定终点则是指示剂的变色点。
在各类酸碱滴定中,所选指示剂的变色点与该反应的化学计量点应尽可能接近。中性点的pH 值永远等于7,而化学计量点和变色点的pH 值则根据滴定反应类型的不同和所选指示剂的不同而不同。
9. 用NaOH 溶液滴定某一元弱酸时,已知加入40.00 mLNaOH 溶液时达到化学计量点,而加入NaOH 标准溶液16.00 mL 时,溶液的 pH 值为6.20。求此弱酸的离解常数。
解 设一元弱酸为HA ,
pH =p K a +lg n (NaA ) 16. 00 mL ⨯c (NaOH ) =p K a +lg n (HA ) (40. 00-16. 00) mL ⨯c (NaOH )
6. 20=p K a +lg 16. 00 mL 24. 00 mL
p K a = 6.38
10. 下列各酸(假设浓度均为0.1000 mol·L -1,体积均为20.00 mL),哪些能用0.1000 mol·L -1NaOH 溶液直接滴定?哪些不能?如能直接滴定,应选用什么指示剂,各有几个滴定突跃?
(1) 蚁酸(HCOOH) p K a = 3.75
(2) 琥珀酸(H2C 4H 4O 4) p K a1 = 4.16; p K a2 = 5.61
(3) 顺丁烯二酸(H2C 4H 2O 4) p K a1 = 1.83; p K a2 = 6.07
(4) 邻苯二甲酸(H2C 8H 4O 4) p K a1 = 2.89; p K a2 = 5.51
(5) 硼酸(H3BO 3) p K a1 = 9.27
解 (1)能,因为p K a = 3.75,K a = 1.7×10-4, cK a ≥ 10-8,由于滴定突跃范围为6.75~9.70,因此可选用酚酞作指示剂。
(2)能,因为c K a1 ≥ 10-8,c K a2 ≥ 10-8,但K a1/K a2
(3)能,因为c K a1 ≥ 10-8,c K a2 ≥ 10-8,且K a1/K a2 > 104, 故有2个滴定突跃,可进行分步滴定。由于第一化学计量点时的pH = 3.95,第二化学计量点时的pH = 9.30,因此可分别选用甲基橙和百里酚酞作为两步滴定的指示剂。
(4)能,因为c K a1 ≥ 10-8,c K a2 ≥ 10-8,但K a1/K a2
(5)不能,因为c K a1 ≤ 10-8
11. 已知柠檬酸H 3Cit(H3OHC 6H 4O 6) 的三级解离常数分别为p K a1 = 3.13,p K a2 =4.76,p K a3 =
6.40,浓度为0.1000 mol·L -1柠檬酸溶液,用0.1000 mol·L -1NaOH 标准溶液滴定时,将有几个滴定突跃?应选用什么指示剂?
解 因为 c K a1 ≥ 10-8、c K a2 ≥ 10-8、c K a3 ≥ 10-8
但 K a1/K a2
因此,只有一个滴定突跃,可作为一元弱酸进行滴定。由于化学计量点时的pH = 9.40,故可选用百里酚酞作指示剂。
12. 某试样中含有Na 2CO 3、NaHCO 3和不与酸反应的杂质,称取该样品0.6839 g溶于水,用0.2000 mol·L -1的HCl 溶液滴定至酚酞的红色褪去, 计用去HCl 溶液23.10 mL 。 加入甲基橙指示剂后,继续用HCl 标准溶液滴定至由黄色变为橙色,又用去HCl 溶液26.81 mL。计算样品中两种主要成份的质量分数。
解
ω(Na 2CO 3) =c (HCl ) ⨯V 1(HCl ) ⨯M (HCl )
m (试样)
-1-3-1
=0.2000 mol ⋅L ⨯23. 10⨯10 L ⨯106.0 g ⋅mol =0. 71600.6839 g
ω(NaHCO 3) =
=c (HCl)⨯[V 2(HCl)-V 1(HCl)]⨯M (HCl)m (试样) -1-3-1 0.2000 mol ⋅L ⨯(26. 81-23. 10) ⨯10L ⨯84.0 g ⋅mol =0. 091140.6839 g
13. 准确称取粗铵盐1.000 g ,加过量NaOH 溶液,将产生的氨经蒸馏吸收在50.00 mL0.2500 mol·L -1H 2SO 4溶液中。过量的酸用0.5000 mol·L -1NaOH 溶液返滴定时,用去NaOH 溶液1.56 mL 。计算样品中氨的质量分数。
解 根据反应式
-NH +
4 + OH = NH3 + H2O
2 NH3 + H2SO 4 = (NH4) 2SO 4 + 2H2O
H 2SO 4 + 2NaOH = Na2SO 4 + 2H2O
可得各物质的计量关系
11n (NH 3) =n (H 2SO 4) =n (NaOH ) 22
n (NH 3) =2n (H 2SO 4)
=2⨯(0. 2500 mol ⋅L -1⨯50. 00⨯10-3 L -0. 5000 mol ⋅L -1⨯1. 56⨯10-3 L )
=2. 422⨯10-2 mol
n (NH 3) ⨯M (NH 3) 2. 422⨯10-2 mol ⨯17. 03 g ⋅mol -1
ω(NH 3) ===0. 4125 m (试样) 1. 000 g
14. 准确量取过氧化氢试样溶液25.00 mL ,置于250 mL 容量瓶中,加水至刻度,混匀。准确吸出25.00 mL,加H 2SO 4酸化,用0.027 32 mol·L -1KMnO 4标准溶液滴定,消耗35.86 mL,计算试样溶液中过氧化氢的质量体积分数。
解 根据反应
5H 2O 2 + 2KMnO4 + 3H2SO 4 = K 2SO 4 + 2MnSO4 + 5O2 + 8H2O
得H 2O 2 与 KMnO 4的计量关系为:
11 n (H 2O 2) =n (KMnO 4) 52
5c (KMnO 4) V (KMnO 4) M (H 2O 2) m (H 2O 2) n (H 2O 2) M (H 2O 2) ρ(H 2O 2) == =V (试样) V (试样) V (试样) 5⨯0. 02732 mol ⋅L -1⨯35. 86⨯10-3 L ⨯34. 01 g ⋅mol -1
=2
25. 00 mL 0. 025L ⨯250. 0 mL
=33. 30 g ⋅L -1
15. 测定血液中 Ca 2+ 含量时, 常将其沉淀为CaC 2O 4,再将沉淀溶解于硫酸,并用KMnO 4标准溶液滴定。设取5.00 mL血液,稀释至50.00 mL,再取稀释后的血液10.00 mL,经上述处理后用0.002 00 mol·L -1的KMnO 4标准溶液滴定至终点,消耗KMnO 4溶液1.15 mL。求100 mL血液中Ca 2+的质量(mg)。
解 根据滴定反应方程式
-Ca 2+ + C 2O 2
4 = CaC 2O 4 ↓
--+2+5C 2O 2
4 + 2MnO 4 + 16H = 2Mn + 10CO2↑ + 8H2O
得各物质的计量关系:
5n (MnO-
4) 2
5c (MnO-
4) V (MnO-
4) 50. 00200 mol ⋅L -1⨯1. 15⨯10-3L 2+n (Ca ) =⨯=⨯=0. 00575 mol ⋅L -1 5 mL 2V (血液) 210.00⨯10-3L ⨯50 mL n (Ca 2+) =n (CaC2O 4) =
则100 mL血液中Ca 2+的质量:
m (Ca2+) = c(Ca2+) × V(血液) × M (Ca2+)
= 0.0057 5 mol·L -1 × 100 × 10-3 L × 40 g·mol -1
= 23.0 × 10-3 g = 23.0 mg
16. 称取漂白粉样品2.622 g ,加水和过量的KI ,用适量硫酸酸化,析出的I 2立即用0.1109 mol·L -1 Na 2S 2O 3 标准溶液滴定,消耗了35.58 mL。计算样品中有效氯Ca(OCl)2的质量分数。[M(Ca(OCl)2) = 143.0 g·mol -1]
解 据反应式:
Ca(OCl)2 + 4HCl + 4KI = CaCl 2 + 2I2 + 4KCl + 2H2O
2-2- I 2 + 2S 2O 3 = 2I - + S 4O 6
n [Ca(ClO)2]=111n (I2) =n (Na2S 2O 3) =c (Na2S 2O 3) V (Na2S 2O 3) 244
ω[Ca(ClO)2]=m [Ca(ClO)2]n [Ca(ClO)2]⨯M [Ca(ClO)2]=m (试样) m (试样)
1c (Na2S 2O 3) V (Na2S 2O 3) M [Ca(ClO)2] =m (试样)
1⨯0. 1109 mol ⋅L -1⨯35. 58⨯10-3 L -1⨯143. 0 g ⋅mol -1
==0. 053 802. 622 g
17. 精密称取维生素C(C6H 8O 6)(M = 176.12 g·mol -1) 试样0.1988 g,加新煮沸过的冷蒸馏水100 mL和稀HAc10 mL,加淀粉指示剂后,用0.050 00 mol·L -1I 2的标准溶液滴定,达到终点时用去22.14 mL,求维生素试样的质量分数。
解 n (C6H 8O 6) = n (I2) = c (I2) V (I2)
ω(C 6H 8O 6) =
ω(C 6H 8O 6) =m (C 6H 8O 6) c (I 2) V (I 2) M (C 6H 8O 6) =m (试样) m (试样) -1-3-1 0.05000 mol ⋅L ⨯22.14⨯10 L ⨯176. 12 g ⋅mol =0. 98070.1988 g
18. 一定质量的ZnO 与 20.00 mL 0.1000 mol·L -1HCl 溶液恰能完全作用,若滴定相同质量的ZnO ,须用0.050 00 mol·L -1的EDTA 标准溶液多少mL?
解 根据反应
ZnO + 2HCl = ZnCl 2 + H2O
n (ZnO) = 1(HCl) 2
30. 1000 mol ⋅L -1⨯20. 00⨯10-3 L n (ZnO ) ==1. 000⨯10- mol 2
n (ZnO ) =n (EDT A )
n (ZnO ) 1. 000⨯10-3 mol ∴ V (EDT A ) ===20. 00 mL -1c (EDT A ) 0.050 00 mol ⋅L
19. 称取基准物质CaCO 3 0.2100 g,用 HCl 溶液溶解后, 配成250.0 mL溶液,吸取25.00 mL,在pH = 10的体系中,以铬黑T 为指示剂用EDTA 标准溶液滴定,用去标准溶液20.15 mL,求 EDTA 标准溶液的浓度。
解 根据 n (CaCO3) = n (EDTA) = c (EDTA) V (EDTA)
c (EDT A ) =n (CaCO 3) m (CaCO 3) =V (EDTA) M (CaCO 3) ⨯V (EDTA)
25 mL 0.2100 g ⨯250 mL ==0. 010 42 mol ⋅L -1
-1-3100 g ⋅mol ⨯20.15⨯10 L
20. 取100.00 mL水样,在pH 值为10左右,以铬黑T 为指示剂,用0.010 48 mol·L -1 EDTA标准溶液滴定至终点,共消耗14.20 mL ;另取100.00 mL 该水样,调节pH 值至13,使Mg 2+形成Mg(OH)2沉淀,以紫脲酸胺为指示剂,用上述EDTA 标准溶液滴定,消耗EDTA 标准溶液10.54 mL,计算水中Ca 2+、Mg 2+的浓度各为多少。
解
c (Ca2+) =c (EDT A ) V 2(EDT A ) V (水样) 0. 01048 mol ⋅L -1⨯10. 54 mL ==0. 001 105 mol ⋅L -1100. 00 mL
c (Mg 2+) =
=c (EDT A ) V 1(EDTA ) V (水样) -1 0. 01048 mol ⋅L ⨯(14. 20-10. 54) mL =0. 000 383 6mol ⋅L -1
100. 00 mL
21. 取医院放射科含银废液10.00 mL ,经HNO 3酸化后,以NH 4Fe(SO4) 2为指示剂,用0.043 82 mol·L -1NH 4SCN 标准溶液滴定,消耗23.48 mL,求废液中Ag +的含量(g·L 1)。 -
解 Ag +(aq ) + SCN-(aq ) = AgSCN(s )
n (Ag+) = n (SCN-) = c (NH4SCN) V (NH4SCN)
n (Ag +) M (Ag+) c (NH 4SCN ) V (NH 4SCN ) M (Ag+) ρ(Ag ) ==V (试样) V (试样) +
0. 04382 mol ⋅L -1⨯23. 48 mL ⨯107.87 g ⋅mol -1
==11. 09 g ⋅L -1
10. 00 mL
Exercises
1. If you had to do the calculation of (29.837-29.24)/32.065, what would be the correct result of significant figure?
Answer The significant figure would be 0.019
2. Two monoprotic acid, both 0.1000 mol·L -1 in concentration, are titrated with 0.1000 mol·L -1 NaOH. The pH at the equivalence point for HX is 8.8 and that for HY is 7.9 . (a)Which is the weaker acid?
(b) Which indicators in following could be used to titrate each of these acids?
pH ranger for
3.1~4.4
color change
Solution (a)HX is weaker. The higher the pH at the equivalence point, the stronger the conjugate base(X-) and the weaker the conjugate acid(HX).
(b) Phenolphthalein, which changes color in the pH 8~9.6 range, is perfect for HX and probably appropriate for HY.
3. A sample of 0.1276 g of an unknown monoprotic acid, HX, was dissolved in 25.00 mL of water and titrated with 0.0633 mol·L -1 NaOH solution. The volume of base required to reach the equivalence point was 18.40 mL.
(a)What is the molar mass of the acid?
(b) After 10.00 mL of base had been added in the titration, the pH was determined to be 5.87. What is the K a for the unknown acid?
Solution HA + NaOH = NaA + H2O
(a) n (HA) = n (NaOH) = c (NaOH) V (NaOH) 4.4~6.2 6.0~7.5 8.0-9.6 Methyl orange Methyl red Bromthymol blue Phenolphthalein
m (HA ) =c (NaOH)V (NaOH) M (HA )
0. 1276g =0. 0633 mol ⋅L -1⨯18. 40⨯10-3 L M (HA )
M (HA ) =109. 5 g ⋅mol -1 (b)pH =p Ka +lg [NaA ]V (NaA ) =p Ka +lg [HA ]V (HA )
p K a =5.87-lg 10.00 mL =5. 87-0. 076=5. 79 (18.40-10.00) mL
K a = 1.6×10-6
4. How many grams of H2C 2O 4·2H 2O are need to prepare 250.0 mL of a 0.1000 mol·L -1C 2O 4 standard solution and a 0.1000 mol·L -1 H3O + standard solution? 2-
Solution x -3-1 =250. 0⨯10 L ⨯0. 1000 mol ⋅L 126g ⋅mol -1
x = 3.150 g
-3.150 g of H2C 2O 4·2H 2O are needed to prepare 250.0 mL of a 0.1000 mol·L -1C 2O 2
4 standard solution. Ka 15. 6⨯10-2
2∵ =≥10-4Ka 21. 5⨯10
Almost all the H3O + in the solution comes from the first ionization reaction. The concentration in H3O + can be determined by considering only Ka1.
+ H 2C 2O 4 = HC 2O -
4 + H 3O
y-0.1×0.25 0.1×0.25 0.1×0.25
K a 1[HC 2O 4][H 3O +](0. 1000 mol ⋅L -1⨯0. 2500 L ) 2===5. 6⨯10-2 -1[H 2C 2O 4](y -0. 1000 mol ⋅L ⨯0. 2500 L )
y =0. 036 mol -
m (H2C 2O 4·2H 2O) = y×M (H2C 2O 4·2H 2O) = 0.036 mol×126g·mol -1 = 4.5 g
4.5 g of H2C 2O 4·2H 2O are needed to prepare 250.0 mL of a 0.1000 mol·L -1 H3O + standard solution.
5. A student titrated 25.00 mL of NaOH solution with standard sulfuric acid. It took 13.40 mL of 0.05550 mol·L -1 H2SO 4 to neutralize the sodium hydroxide in the solution. What was the molarity of the NaOH solution? The equation for the reaction is 2NaOH + H2SO 4 = Na2SO 4 + 2H2O
Solution 2NaOH + H2SO 4 = Na2SO 4 + 2H2O
1n (NaOH) = n (HSO ) 242
1c (NaOH)V (NaOH) = c (HSO ) V (HSO ) 24242
2⨯c (H 2SO 4) V (H 2SO 4) 2⨯0. 05550 mol ⋅L -1⨯13. 40 mL c (NaOH ) ===0. 05950 mol ⋅L -1 V (NaOH ) 25. 00 mL
6. A freshly prepared solution of sodium hydroxide was standardized with 0.1024 mol·L -1 H2SO 4 . (a)If 19.46 mL of the base was neutralized by 21.28 mL of the acid, what was the molarity of the base? (b)How many grams of NaOH were in each liter of this solution?
Solution (a ) c (NaOH ) V (NaOH) =c (H 2SO 4) V (H 2SO 4) 1
2
0. 1024 mol ⋅L -1⨯21. 28 mL c (NaOH)=⨯2=0. 2240 mol ⋅L -1 19. 46 mL
(b) m (NaOH)=c (NaOH)V (NaOH)M (NaOH)
=0. 2240 mol ⋅L ⨯1L ⨯40 g ⋅mol =8. 958 g -1-1
7. A 0.5720 g sample of a mixture containing Na2CO 3, NaHCO3 and inert impurities is titrated with 0.1090 mol·L -1HCl, requiring 15.70 mL to reach the phenolphthalein end point and a total of 43.80 mL to reach the methyl orange end point. What is the percent each of Na2CO 3 and NaHCO3 in the mixture? M (NaHCO3) = 84.0, M (Na2CO 3) = 106.0.
Solution Na 2CO 3 + HCl = NaCl + NaHCO3 (Indicator: phenolphthalein)
n (Na2CO 3) = n (HCl) = c (HCl)V 1(HCl)
ω(Na 2CO 3) =m (Na 2CO 3) n (Na 2CO 3) M (Na 2CO 3) =⨯100%m (sample ) m (sample ) c(HCl)V1(HCl)M (Na 2CO 3) =⨯100%m (s ample ) 0. 1090 mol ⋅L -1⨯15. 70⨯10-3 L ⨯106 g ⋅L -1=⨯100%=31. 71%0. 5720 g NaHCO 3 + HCl = NaCl + CO2 + H2O (Indicator: methyl orange) n (NaHCO3) = n (HCl) = c (HCl)[ V2(HCl)-V 1(HCl)] ω(NaHCO 3) =m (NaHCO 3) n (NaHCO 3) M (NaHCO 3) =⨯100%m (sample ) m (sample ) c(HCl)[VM (NaHCO 3) 2(HCl)-V 1(HCl)]=⨯100%m (sample ) 0. 1090 mol ⋅L -1⨯(43. 80-15. 70) ⨯10-3 L ⨯84. 0 g ⋅L -1=⨯100%=44. 98%0. 5720 g
11
章后习题解答 [TOP]
习题
1. 下列数据,各包括几位有效数字?
(1) 2.0321 (2) 0.0215 (3) pK HIn = 6.30
(4) 0.01﹪ (5) 1.0×10-5
解 5;3;2;1;2
2. 分析天平的称量误差为 ±0.0001 g,用减差法称取样品时,两次称量的最大误差可达±0.0002 g,欲使称量的相对误差小于0.1%,求至少应称取样品质量(g)? 解
E ×100% T
0. 0002⨯100 0. 1= T RE =
T = 0.2 g
所称样品至少要大于0.2 g。
3. 两人分析同一试样中的含铜量,其结果质量分数(ω) 如下:
甲 0.3610 0.3612 0.3603
乙 0.364l 0.3642 0.3643
巳知此试样中含铜量的真实值为0.3606。试问何人所得结果的准确度高?何人的结果精密度高?为什么?
解 甲的X = (0.3610 + 0.3612 + 0.3603)/3 = 0.3608
乙的X = (0.364l + 0.3642 + 0.3643)/3 = 0.3642
甲的准确度高,因平均测量值接近于真实值;乙的精密度高, 因它的重现性好。
4. 在用邻苯二甲酸氢钾标定NaOH 溶液的浓度时,若在实验过程中发生下列过失的情况,试说明每种情况下NaOH 溶液所测得的浓度是偏大还是偏小。
(1)滴定管中NaOH 溶液的初读数应为1.00 mL,误记为0.10 mL。
(2)称量邻苯二甲酸氢钾的质量应为0.3518 g,误记为0.3578 g。
解 可利用下式计算NaOH 溶液的浓度:
c (NaOH ) =m (KHC 8H 4O 4) V (NaOH ) ⨯M (KHC 8H 4O 4)
(1)初读数1.00 mL误计为0.10 mL,使V (NaOH)偏大,由上式可知测定的NaOH 溶液浓度偏低;
(2)由于将称量的邻苯二甲酸氢钾的质量0.3518 g误计为0.3578 g,使m (KHC8H 4O 4) 偏大,由上式可知测定的NaOH 溶液的浓度偏高。
5. 某一弱碱型指示剂的K In - = 1.3×10-5,此指示剂的变色范围是多少?
解 p K In - = -lg KIn - = -lg (1.3×10-5) = 4.89
p K HIn = 14-4.89 = 9.11
故变色范围为 pH 8.11~10.11
6. 称取分析纯Na 2CO 3 1.3350 g ,配成一级标准物质溶液250.0 mL ,用来标定近似浓度为0.1 mol·L -1HCl 溶液,测得一级标准物质溶液25.00 mL恰好与HCl 溶液24.50 mL反应完全。求此HCl 溶液的准确浓度。
解 一级标准物质溶液25.00 mL中Na 2CO 3的质量
m (Na 2CO 3) =1.335 0 g ⨯25.00 mL =0.1335 g 250.0 mL
根据Na 2CO 3标定HCl 溶液的计量关系
Na 2CO 3 + 2HCl = 2NaCl + CO2 + H2O
得 c (HCl ) V (HCl ) =2n (Na 2CO 3) =2⨯m (Na 2CO 3) M (Na 2CO 3)
c (HCl ) =2⨯m (Na 2CO 3) 2⨯0. 1335 g ==0. 1028 mol ⋅L -1 -1-3M (Na 2CO 3) ⨯V (HCl ) 106. 0 g ⋅mol ⨯24. 50⨯10 L
因此HCl 溶液的准确浓度为0.1028 mol·L -1。
7. 标定浓度为0.1 mol·L -1的NaOH 溶液,欲消耗25 mL 左右的NaOH 溶液,应称取一级标准物质草酸(H2C 2O 4·2H 2O) 的质量约为多少?能否将称量的相对误差控制在±0.05﹪范围之内?若改用邻苯二甲酸氢钾(KHC8H 4O 4) ,结果又如何?
解 2n (H2C 2O 4⋅2H 2O) =c (NaOH)V (NaOH)
2m (H2C 2O 4⋅2H 2O) =c (NaOH)V (NaOH) M (H2C 2O 4⋅2H 2O)
m (H2C 2O 4⋅2H 2O) =c (NaOH)V (NaOH)⨯M (H2C 2O 4⋅2H 2O)
2
0. 1 mol ⋅L -1⨯25⨯10-3 L ⨯126 g ⋅mol -1
=2
=0. 15 g
若称量草酸采取差减法进行,则分析天平引起的绝对误差为0.0001 g ×2
RE =0. 0002⨯100%=0. 133%,故不能控制在0.05%范围内。 0. 15
若改用邻苯二甲酸氢钾,M (KHC8H 4O 4) =204 g·mol -1
n (KHC8H 4O 4) =c (NaOH ) V (NaOH )
m (KHC8H 4O 4) =c (NaOH ) V (NaOH ) ⨯M (KHC8H 4O 4)
=0. 1 mol ⋅L -1⨯25⨯10-3 L ⨯204 g ⋅mol -1
=0. 51 g
RE =0. 0002⨯100%=0. 039%,故可以控制在0.05%范围内。 0. 51
8. 化学计量点和滴定终点有何不同?在各类酸碱滴定中,计量点、滴定终点和中性点之间的关系如何?
解 化学计量点是化学反应的等量点,而滴定终点则是指示剂的变色点。
在各类酸碱滴定中,所选指示剂的变色点与该反应的化学计量点应尽可能接近。中性点的pH 值永远等于7,而化学计量点和变色点的pH 值则根据滴定反应类型的不同和所选指示剂的不同而不同。
9. 用NaOH 溶液滴定某一元弱酸时,已知加入40.00 mLNaOH 溶液时达到化学计量点,而加入NaOH 标准溶液16.00 mL 时,溶液的 pH 值为6.20。求此弱酸的离解常数。
解 设一元弱酸为HA ,
pH =p K a +lg n (NaA ) 16. 00 mL ⨯c (NaOH ) =p K a +lg n (HA ) (40. 00-16. 00) mL ⨯c (NaOH )
6. 20=p K a +lg 16. 00 mL 24. 00 mL
p K a = 6.38
10. 下列各酸(假设浓度均为0.1000 mol·L -1,体积均为20.00 mL),哪些能用0.1000 mol·L -1NaOH 溶液直接滴定?哪些不能?如能直接滴定,应选用什么指示剂,各有几个滴定突跃?
(1) 蚁酸(HCOOH) p K a = 3.75
(2) 琥珀酸(H2C 4H 4O 4) p K a1 = 4.16; p K a2 = 5.61
(3) 顺丁烯二酸(H2C 4H 2O 4) p K a1 = 1.83; p K a2 = 6.07
(4) 邻苯二甲酸(H2C 8H 4O 4) p K a1 = 2.89; p K a2 = 5.51
(5) 硼酸(H3BO 3) p K a1 = 9.27
解 (1)能,因为p K a = 3.75,K a = 1.7×10-4, cK a ≥ 10-8,由于滴定突跃范围为6.75~9.70,因此可选用酚酞作指示剂。
(2)能,因为c K a1 ≥ 10-8,c K a2 ≥ 10-8,但K a1/K a2
(3)能,因为c K a1 ≥ 10-8,c K a2 ≥ 10-8,且K a1/K a2 > 104, 故有2个滴定突跃,可进行分步滴定。由于第一化学计量点时的pH = 3.95,第二化学计量点时的pH = 9.30,因此可分别选用甲基橙和百里酚酞作为两步滴定的指示剂。
(4)能,因为c K a1 ≥ 10-8,c K a2 ≥ 10-8,但K a1/K a2
(5)不能,因为c K a1 ≤ 10-8
11. 已知柠檬酸H 3Cit(H3OHC 6H 4O 6) 的三级解离常数分别为p K a1 = 3.13,p K a2 =4.76,p K a3 =
6.40,浓度为0.1000 mol·L -1柠檬酸溶液,用0.1000 mol·L -1NaOH 标准溶液滴定时,将有几个滴定突跃?应选用什么指示剂?
解 因为 c K a1 ≥ 10-8、c K a2 ≥ 10-8、c K a3 ≥ 10-8
但 K a1/K a2
因此,只有一个滴定突跃,可作为一元弱酸进行滴定。由于化学计量点时的pH = 9.40,故可选用百里酚酞作指示剂。
12. 某试样中含有Na 2CO 3、NaHCO 3和不与酸反应的杂质,称取该样品0.6839 g溶于水,用0.2000 mol·L -1的HCl 溶液滴定至酚酞的红色褪去, 计用去HCl 溶液23.10 mL 。 加入甲基橙指示剂后,继续用HCl 标准溶液滴定至由黄色变为橙色,又用去HCl 溶液26.81 mL。计算样品中两种主要成份的质量分数。
解
ω(Na 2CO 3) =c (HCl ) ⨯V 1(HCl ) ⨯M (HCl )
m (试样)
-1-3-1
=0.2000 mol ⋅L ⨯23. 10⨯10 L ⨯106.0 g ⋅mol =0. 71600.6839 g
ω(NaHCO 3) =
=c (HCl)⨯[V 2(HCl)-V 1(HCl)]⨯M (HCl)m (试样) -1-3-1 0.2000 mol ⋅L ⨯(26. 81-23. 10) ⨯10L ⨯84.0 g ⋅mol =0. 091140.6839 g
13. 准确称取粗铵盐1.000 g ,加过量NaOH 溶液,将产生的氨经蒸馏吸收在50.00 mL0.2500 mol·L -1H 2SO 4溶液中。过量的酸用0.5000 mol·L -1NaOH 溶液返滴定时,用去NaOH 溶液1.56 mL 。计算样品中氨的质量分数。
解 根据反应式
-NH +
4 + OH = NH3 + H2O
2 NH3 + H2SO 4 = (NH4) 2SO 4 + 2H2O
H 2SO 4 + 2NaOH = Na2SO 4 + 2H2O
可得各物质的计量关系
11n (NH 3) =n (H 2SO 4) =n (NaOH ) 22
n (NH 3) =2n (H 2SO 4)
=2⨯(0. 2500 mol ⋅L -1⨯50. 00⨯10-3 L -0. 5000 mol ⋅L -1⨯1. 56⨯10-3 L )
=2. 422⨯10-2 mol
n (NH 3) ⨯M (NH 3) 2. 422⨯10-2 mol ⨯17. 03 g ⋅mol -1
ω(NH 3) ===0. 4125 m (试样) 1. 000 g
14. 准确量取过氧化氢试样溶液25.00 mL ,置于250 mL 容量瓶中,加水至刻度,混匀。准确吸出25.00 mL,加H 2SO 4酸化,用0.027 32 mol·L -1KMnO 4标准溶液滴定,消耗35.86 mL,计算试样溶液中过氧化氢的质量体积分数。
解 根据反应
5H 2O 2 + 2KMnO4 + 3H2SO 4 = K 2SO 4 + 2MnSO4 + 5O2 + 8H2O
得H 2O 2 与 KMnO 4的计量关系为:
11 n (H 2O 2) =n (KMnO 4) 52
5c (KMnO 4) V (KMnO 4) M (H 2O 2) m (H 2O 2) n (H 2O 2) M (H 2O 2) ρ(H 2O 2) == =V (试样) V (试样) V (试样) 5⨯0. 02732 mol ⋅L -1⨯35. 86⨯10-3 L ⨯34. 01 g ⋅mol -1
=2
25. 00 mL 0. 025L ⨯250. 0 mL
=33. 30 g ⋅L -1
15. 测定血液中 Ca 2+ 含量时, 常将其沉淀为CaC 2O 4,再将沉淀溶解于硫酸,并用KMnO 4标准溶液滴定。设取5.00 mL血液,稀释至50.00 mL,再取稀释后的血液10.00 mL,经上述处理后用0.002 00 mol·L -1的KMnO 4标准溶液滴定至终点,消耗KMnO 4溶液1.15 mL。求100 mL血液中Ca 2+的质量(mg)。
解 根据滴定反应方程式
-Ca 2+ + C 2O 2
4 = CaC 2O 4 ↓
--+2+5C 2O 2
4 + 2MnO 4 + 16H = 2Mn + 10CO2↑ + 8H2O
得各物质的计量关系:
5n (MnO-
4) 2
5c (MnO-
4) V (MnO-
4) 50. 00200 mol ⋅L -1⨯1. 15⨯10-3L 2+n (Ca ) =⨯=⨯=0. 00575 mol ⋅L -1 5 mL 2V (血液) 210.00⨯10-3L ⨯50 mL n (Ca 2+) =n (CaC2O 4) =
则100 mL血液中Ca 2+的质量:
m (Ca2+) = c(Ca2+) × V(血液) × M (Ca2+)
= 0.0057 5 mol·L -1 × 100 × 10-3 L × 40 g·mol -1
= 23.0 × 10-3 g = 23.0 mg
16. 称取漂白粉样品2.622 g ,加水和过量的KI ,用适量硫酸酸化,析出的I 2立即用0.1109 mol·L -1 Na 2S 2O 3 标准溶液滴定,消耗了35.58 mL。计算样品中有效氯Ca(OCl)2的质量分数。[M(Ca(OCl)2) = 143.0 g·mol -1]
解 据反应式:
Ca(OCl)2 + 4HCl + 4KI = CaCl 2 + 2I2 + 4KCl + 2H2O
2-2- I 2 + 2S 2O 3 = 2I - + S 4O 6
n [Ca(ClO)2]=111n (I2) =n (Na2S 2O 3) =c (Na2S 2O 3) V (Na2S 2O 3) 244
ω[Ca(ClO)2]=m [Ca(ClO)2]n [Ca(ClO)2]⨯M [Ca(ClO)2]=m (试样) m (试样)
1c (Na2S 2O 3) V (Na2S 2O 3) M [Ca(ClO)2] =m (试样)
1⨯0. 1109 mol ⋅L -1⨯35. 58⨯10-3 L -1⨯143. 0 g ⋅mol -1
==0. 053 802. 622 g
17. 精密称取维生素C(C6H 8O 6)(M = 176.12 g·mol -1) 试样0.1988 g,加新煮沸过的冷蒸馏水100 mL和稀HAc10 mL,加淀粉指示剂后,用0.050 00 mol·L -1I 2的标准溶液滴定,达到终点时用去22.14 mL,求维生素试样的质量分数。
解 n (C6H 8O 6) = n (I2) = c (I2) V (I2)
ω(C 6H 8O 6) =
ω(C 6H 8O 6) =m (C 6H 8O 6) c (I 2) V (I 2) M (C 6H 8O 6) =m (试样) m (试样) -1-3-1 0.05000 mol ⋅L ⨯22.14⨯10 L ⨯176. 12 g ⋅mol =0. 98070.1988 g
18. 一定质量的ZnO 与 20.00 mL 0.1000 mol·L -1HCl 溶液恰能完全作用,若滴定相同质量的ZnO ,须用0.050 00 mol·L -1的EDTA 标准溶液多少mL?
解 根据反应
ZnO + 2HCl = ZnCl 2 + H2O
n (ZnO) = 1(HCl) 2
30. 1000 mol ⋅L -1⨯20. 00⨯10-3 L n (ZnO ) ==1. 000⨯10- mol 2
n (ZnO ) =n (EDT A )
n (ZnO ) 1. 000⨯10-3 mol ∴ V (EDT A ) ===20. 00 mL -1c (EDT A ) 0.050 00 mol ⋅L
19. 称取基准物质CaCO 3 0.2100 g,用 HCl 溶液溶解后, 配成250.0 mL溶液,吸取25.00 mL,在pH = 10的体系中,以铬黑T 为指示剂用EDTA 标准溶液滴定,用去标准溶液20.15 mL,求 EDTA 标准溶液的浓度。
解 根据 n (CaCO3) = n (EDTA) = c (EDTA) V (EDTA)
c (EDT A ) =n (CaCO 3) m (CaCO 3) =V (EDTA) M (CaCO 3) ⨯V (EDTA)
25 mL 0.2100 g ⨯250 mL ==0. 010 42 mol ⋅L -1
-1-3100 g ⋅mol ⨯20.15⨯10 L
20. 取100.00 mL水样,在pH 值为10左右,以铬黑T 为指示剂,用0.010 48 mol·L -1 EDTA标准溶液滴定至终点,共消耗14.20 mL ;另取100.00 mL 该水样,调节pH 值至13,使Mg 2+形成Mg(OH)2沉淀,以紫脲酸胺为指示剂,用上述EDTA 标准溶液滴定,消耗EDTA 标准溶液10.54 mL,计算水中Ca 2+、Mg 2+的浓度各为多少。
解
c (Ca2+) =c (EDT A ) V 2(EDT A ) V (水样) 0. 01048 mol ⋅L -1⨯10. 54 mL ==0. 001 105 mol ⋅L -1100. 00 mL
c (Mg 2+) =
=c (EDT A ) V 1(EDTA ) V (水样) -1 0. 01048 mol ⋅L ⨯(14. 20-10. 54) mL =0. 000 383 6mol ⋅L -1
100. 00 mL
21. 取医院放射科含银废液10.00 mL ,经HNO 3酸化后,以NH 4Fe(SO4) 2为指示剂,用0.043 82 mol·L -1NH 4SCN 标准溶液滴定,消耗23.48 mL,求废液中Ag +的含量(g·L 1)。 -
解 Ag +(aq ) + SCN-(aq ) = AgSCN(s )
n (Ag+) = n (SCN-) = c (NH4SCN) V (NH4SCN)
n (Ag +) M (Ag+) c (NH 4SCN ) V (NH 4SCN ) M (Ag+) ρ(Ag ) ==V (试样) V (试样) +
0. 04382 mol ⋅L -1⨯23. 48 mL ⨯107.87 g ⋅mol -1
==11. 09 g ⋅L -1
10. 00 mL
Exercises
1. If you had to do the calculation of (29.837-29.24)/32.065, what would be the correct result of significant figure?
Answer The significant figure would be 0.019
2. Two monoprotic acid, both 0.1000 mol·L -1 in concentration, are titrated with 0.1000 mol·L -1 NaOH. The pH at the equivalence point for HX is 8.8 and that for HY is 7.9 . (a)Which is the weaker acid?
(b) Which indicators in following could be used to titrate each of these acids?
pH ranger for
3.1~4.4
color change
Solution (a)HX is weaker. The higher the pH at the equivalence point, the stronger the conjugate base(X-) and the weaker the conjugate acid(HX).
(b) Phenolphthalein, which changes color in the pH 8~9.6 range, is perfect for HX and probably appropriate for HY.
3. A sample of 0.1276 g of an unknown monoprotic acid, HX, was dissolved in 25.00 mL of water and titrated with 0.0633 mol·L -1 NaOH solution. The volume of base required to reach the equivalence point was 18.40 mL.
(a)What is the molar mass of the acid?
(b) After 10.00 mL of base had been added in the titration, the pH was determined to be 5.87. What is the K a for the unknown acid?
Solution HA + NaOH = NaA + H2O
(a) n (HA) = n (NaOH) = c (NaOH) V (NaOH) 4.4~6.2 6.0~7.5 8.0-9.6 Methyl orange Methyl red Bromthymol blue Phenolphthalein
m (HA ) =c (NaOH)V (NaOH) M (HA )
0. 1276g =0. 0633 mol ⋅L -1⨯18. 40⨯10-3 L M (HA )
M (HA ) =109. 5 g ⋅mol -1 (b)pH =p Ka +lg [NaA ]V (NaA ) =p Ka +lg [HA ]V (HA )
p K a =5.87-lg 10.00 mL =5. 87-0. 076=5. 79 (18.40-10.00) mL
K a = 1.6×10-6
4. How many grams of H2C 2O 4·2H 2O are need to prepare 250.0 mL of a 0.1000 mol·L -1C 2O 4 standard solution and a 0.1000 mol·L -1 H3O + standard solution? 2-
Solution x -3-1 =250. 0⨯10 L ⨯0. 1000 mol ⋅L 126g ⋅mol -1
x = 3.150 g
-3.150 g of H2C 2O 4·2H 2O are needed to prepare 250.0 mL of a 0.1000 mol·L -1C 2O 2
4 standard solution. Ka 15. 6⨯10-2
2∵ =≥10-4Ka 21. 5⨯10
Almost all the H3O + in the solution comes from the first ionization reaction. The concentration in H3O + can be determined by considering only Ka1.
+ H 2C 2O 4 = HC 2O -
4 + H 3O
y-0.1×0.25 0.1×0.25 0.1×0.25
K a 1[HC 2O 4][H 3O +](0. 1000 mol ⋅L -1⨯0. 2500 L ) 2===5. 6⨯10-2 -1[H 2C 2O 4](y -0. 1000 mol ⋅L ⨯0. 2500 L )
y =0. 036 mol -
m (H2C 2O 4·2H 2O) = y×M (H2C 2O 4·2H 2O) = 0.036 mol×126g·mol -1 = 4.5 g
4.5 g of H2C 2O 4·2H 2O are needed to prepare 250.0 mL of a 0.1000 mol·L -1 H3O + standard solution.
5. A student titrated 25.00 mL of NaOH solution with standard sulfuric acid. It took 13.40 mL of 0.05550 mol·L -1 H2SO 4 to neutralize the sodium hydroxide in the solution. What was the molarity of the NaOH solution? The equation for the reaction is 2NaOH + H2SO 4 = Na2SO 4 + 2H2O
Solution 2NaOH + H2SO 4 = Na2SO 4 + 2H2O
1n (NaOH) = n (HSO ) 242
1c (NaOH)V (NaOH) = c (HSO ) V (HSO ) 24242
2⨯c (H 2SO 4) V (H 2SO 4) 2⨯0. 05550 mol ⋅L -1⨯13. 40 mL c (NaOH ) ===0. 05950 mol ⋅L -1 V (NaOH ) 25. 00 mL
6. A freshly prepared solution of sodium hydroxide was standardized with 0.1024 mol·L -1 H2SO 4 . (a)If 19.46 mL of the base was neutralized by 21.28 mL of the acid, what was the molarity of the base? (b)How many grams of NaOH were in each liter of this solution?
Solution (a ) c (NaOH ) V (NaOH) =c (H 2SO 4) V (H 2SO 4) 1
2
0. 1024 mol ⋅L -1⨯21. 28 mL c (NaOH)=⨯2=0. 2240 mol ⋅L -1 19. 46 mL
(b) m (NaOH)=c (NaOH)V (NaOH)M (NaOH)
=0. 2240 mol ⋅L ⨯1L ⨯40 g ⋅mol =8. 958 g -1-1
7. A 0.5720 g sample of a mixture containing Na2CO 3, NaHCO3 and inert impurities is titrated with 0.1090 mol·L -1HCl, requiring 15.70 mL to reach the phenolphthalein end point and a total of 43.80 mL to reach the methyl orange end point. What is the percent each of Na2CO 3 and NaHCO3 in the mixture? M (NaHCO3) = 84.0, M (Na2CO 3) = 106.0.
Solution Na 2CO 3 + HCl = NaCl + NaHCO3 (Indicator: phenolphthalein)
n (Na2CO 3) = n (HCl) = c (HCl)V 1(HCl)
ω(Na 2CO 3) =m (Na 2CO 3) n (Na 2CO 3) M (Na 2CO 3) =⨯100%m (sample ) m (sample ) c(HCl)V1(HCl)M (Na 2CO 3) =⨯100%m (s ample ) 0. 1090 mol ⋅L -1⨯15. 70⨯10-3 L ⨯106 g ⋅L -1=⨯100%=31. 71%0. 5720 g NaHCO 3 + HCl = NaCl + CO2 + H2O (Indicator: methyl orange) n (NaHCO3) = n (HCl) = c (HCl)[ V2(HCl)-V 1(HCl)] ω(NaHCO 3) =m (NaHCO 3) n (NaHCO 3) M (NaHCO 3) =⨯100%m (sample ) m (sample ) c(HCl)[VM (NaHCO 3) 2(HCl)-V 1(HCl)]=⨯100%m (sample ) 0. 1090 mol ⋅L -1⨯(43. 80-15. 70) ⨯10-3 L ⨯84. 0 g ⋅L -1=⨯100%=44. 98%0. 5720 g
11