常用防雷电路设计参考原理图

防雷器基本电路设计图 目录

7

一、交流电源防雷器

8

(一)单相并联式防雷器(电路一~电路三) (二)三相并联式防雷器(电路一~电路三)

二、通信机房用直流电源防雷器

(一)并联式防雷器

1、正极接地(–48V)直流电源 9

2、负极接地(+24V)直流电源

3、正负对称(±110V)直流电源 11

(二)串联式防雷器

1、正极接地(–48V)直流电源

2、负极接地(+24V)直流电源

3、正负对称(±110V)直流电源 14

三、通用二级信号防雷器

(一)双绞线型信号电路

通用电路一~通用电路五 15~19

(二)同轴线型信号电路

(1)外导体接地电路(通用电路一~通用电路三) 20~22

(224

(三)提高传输频率/速率的方法

25

四、小功率电源变压器或开关电源保护电路(电路一~电路三)

26~28

五、通讯电子设备的保护电路(电路一~电路三)

29~31

六、直流电源与信号同传的保护电路

32

七、信号电路的双重二级保护方式

33

八、检测/控制电路的保护(接地、不接地)

34~35

九、单级信号防雷器

1、只用玻璃放电管的保护电路 36

2、只用半导体过压保护器的保护电路 37

3、只用 TVS 管的保护电路 38

4、复合单级保护电路 39

十、天馈防雷器

1、单级电路天馈防雷器 40

2、二级电路天馈防雷器

3、三级电路天馈防雷器 42

十一、防静电保护器

43

1

一、交流电源防雷器 (一)单相并联式防雷器

说明:

1、优点:电路简单,采用复合对称电路,共模、差模全保护, L、N 可以随便接。 缺点:压敏电阻 RV1 短路失效后易引起火灾。最好在每个压敏电阻上串联一个工频保险 丝以防压敏电阻短路起火。如果 L、N 线不可能接反,则可省去压敏电阻 RV2、RV3,将 放电管 G 的上端直接接到 N 线上,构成“1+1”电路。

2、压敏电阻的压敏电压值参照下表选取(选压敏电压高一点的更安全、耐用,故 障率低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏 600V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。

4、压敏电阻和气体放电管都必须按冲击 10 次以上的降额值计算通流容量(压敏电

阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。

2

一、交流电源防雷器 (一)单相并联式防雷器

说明:

1、优点:采用复合对称电路,共模、差模全保护, L、N 可以随便接,正常工作

时无漏电流,可延长器件使用寿命,由于陶瓷气体放电管失效模式大多为开路,不易引

起火灾。缺点:万一压敏电阻和陶瓷气体放电管都短路失效时还有可能起火。

2、压敏电阻的压敏电压值参照下表选取(选压敏电压高一点的更安全、耐用,故 障率低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏

600V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。

4、压敏电阻和气体放电管都必须按冲击 10 次以上的降额值计算通流容量(压敏电

阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。

3

一、交流电源防雷器 (一)单相并联式防雷器

电路三说明:

1、优点:采用复合对称电路,共模、差模全保护,L、N 可以随便接,安全,压敏 电阻短路失效后能与电路脱离,一般不会引起火灾。

2、压敏电阻的压敏电压值参照下表选取(选压敏电压高一点的更安全、耐用,故 障率低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏 电阻并联(应挑选压敏电压相近的并联,每个压敏电阻都要单独串联温度保险管,以延

℃℃ 合。最好再串联一个工频保险丝以防工频过电压瞬间击穿压敏电阻起火。

4、陶瓷气体放电管的通流容量根据要求的通流容量选择,直流击穿电压为 470V~ 600V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。

5、压敏电阻和气体放电管都必须按冲击 10 次以上的降额值计算通流容量(压敏电

阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。

4

一、交流电源防雷器 (二)三相并联式防雷器 电路一:最简单的电路

说明:

1、优点:采用“3+1”电路,电路简单,三相全保护。缺点:压敏电阻短路失效 后易引起火灾。最好在每个压敏电阻上串联一个工频保险丝以防压敏电阻短路起火。

2、压敏电阻的压敏电压值参照下表选取(选压敏电压高一点的更安全、耐用,故

障率低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏 电阻并联(如图所示为每相两个压敏电阻并联,应挑选压敏电压值相近的并联,以延长

600V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。

4、压敏电阻和气体放电管都必须按冲击 10 次以上的降额值计算通流容量(压敏电

阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。

5

一、交流电源防雷器 (二)三相并联式防雷器 电路二:较安全的电路

说明:

1、优点:采用“3+1”电路,三相全保护,正常工作时无漏电流,可延长器件使 用寿命,由于陶瓷气体放电管失效模式大多为开路,不易引起火灾。缺点:万一压敏电 阻和陶瓷气体放电管都短路失效时还有可能引起火灾。

2、压敏电阻的压敏电压值参照下表选取(选压敏电压高一点的更安全、耐用,故 障率低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏 电阻并联(如图所示为每相两个压敏电阻并联,应挑选压敏电压值相近的并联,以延长

3、陶瓷气体放电管的通流容量根据要求的通流容量选择,直流击穿电压为 470V~ 600V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。

4、压敏电阻和气体放电管都必须按冲击 10 次以上的降额值计算通流容量(压敏电

阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。

6

一、交流电源防雷器 (二)三相并联式防雷器 电路三:通用的安全保护电路

说明:

1、优点:采用“3+1”电路,三相全保护,安全,压敏电阻短路失效后能与电路 脱离,一般不会引起火灾。

2、压敏电阻的压敏电压值参照下表选取(选压敏电压高一点的更安全、耐用,故

障率低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏 电阻并联(如图所示为每相两个压敏电阻并联,应挑选压敏电压值相近的并联,每个压

敏电阻都要单独串联温度保险管,以延长使用寿命和确保安全)。 合。最好再串联一个工频保险丝以防工频过电压瞬间击穿压敏电阻起火。

4、陶瓷气体放电管的通流容量根据要求的通流容量选择,直流击穿电压为 470V~ 600V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。

5、压敏电阻和气体放电管都必须按冲击 10 次以上的降额值计算通流容量(压敏电

阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。

7

一、交流电源防雷器 (三)单相串联式防雷器 单相通用安全保护电路:

1、优点:采用两级复合对称电路,共模、差模全保护,残压低,L、N 可以随便接, 安全,压敏电阻短路失效后能与电路脱离,一般不会引起火灾。

2、压敏电阻的压敏电压值参照下表选取(选压敏电压高一点的更安全、耐用,故 障率低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏 电阻并联(如图所示第一级为 m 个压敏电阻并联,第二级为 n 个并联,应挑选压敏电压 ℃℃ 合。最好再串联一个工频保险丝以防工频过电压瞬间击穿压敏电阻起火。

4、陶瓷气体放电管的通流容量根据要求的通流容量选择,直流击穿电压为 470V~ 600V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。

5、压敏电阻和放电管都必须按冲击 10 次以上的降额值计算通流容量(压敏电阻为

一次冲击通流容量的三分之一左右,放电管为最大通流容量的一半左右)。

6、串联电感为空心电感,电感量应≥20μH,导线直径应按负载电流计算。

8

一、交流电源防雷器

(四)三相串联式防雷器 三相通用安全保护电路:

说明1、优点:采用两级“3+1”电路,三相全保护,残压低,安全,压敏电阻短路失 效后能与电路脱离,一般不会引起火灾。

2、压敏电阻的压敏电压值参照下表选取(选压敏电压高一点的更安全、耐用,故 障率低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏 电阻并联(如图所示第一级为 m 个压敏电阻并联,第二级为 n 个并联,应挑选压敏电压

℃℃ 合。最好再串联一个工频保险丝以防工频过电压瞬间击穿压敏电阻起火。

4、陶瓷气体放电管的通流容量根据要求的通流容量选择,直流击穿电压为 470V~ 600V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。

5、压敏电阻和放电管都必须按冲击 10 次以上的降额值计算通流容量(压敏电阻为

一次冲击通流容量的三分之一左右,放电管为最大通流容量的一半左右)。

6、串联电感为空心电感,电感量应≥20μH,导线直径应按负载电流计算。

9

二、通信机房用直流电源防雷器 (一)并联式直流电源防雷器

1

说明:

1、压敏电阻在图上所标型号中选取(选压敏电压高一点的更安全、耐用,故障率

低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏电阻 并联(应挑选压敏电压相近的并联,每个压敏电阻都要单独串联温度保险管,以延长使

用寿命和确保安全)。

2、温度保险管一般采用 130℃~135℃、10A/250V 的,应与压敏电阻有良好的热耦

合。最好再串联一个电流保险丝以防操作过电压瞬间击穿压敏电阻起火。

3、陶瓷气体放电管的通流容量根据要求的通流容量选择,直流击穿电压一般为 90V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。

4、压敏电阻和气体放电管都必须按冲击 10 次以上的降额值计算通流容量(压敏电

阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。

10

二、通信机房用直流电源防雷器 (一)并联式直流电源防雷器

2

说明:

1、压敏电阻在图上所标型号中选取(选压敏电压高一点的更安全、耐用,故障率

低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏电阻 并联(应挑选压敏电压相近的并联,每个压敏电阻都要单独串联温度保险管,以延长使

用寿命和确保安全)。

2、温度保险管一般采用 130℃~135℃、10A/250V 的,应与压敏电阻有良好的热耦

合。最好再串联一个电流保险丝以防操作过电压瞬间击穿压敏电阻起火。

3、陶瓷气体放电管的通流容量根据要求的通流容量选择,直流击穿电压一般为 90V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。

4、压敏电阻和气体放电管都必须按冲击 10 次以上的降额值计算通流容量(压敏电

阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。

11

二、通信机房用直流电源防雷器 (一)并联式直流电源防雷器

3

说明:

1、压敏电阻在图上所标型号中选取(选压敏电压高一点的更安全、耐用,故障率

低,但残压略高),根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏电阻 并联(应挑选压敏电压相近的并联,每个压敏电阻都要单独串联温度保险管,以延长使

用寿命和确保安全)。

2、温度保险管一般采用 130℃~135℃、10A/250V 的,应与压敏电阻有良好的热耦

合。最好再串联一个电流保险丝以防操作过电压瞬间击穿压敏电阻起火。

3、陶瓷气体放电管的通流容量根据要求的通流容量选择,直流击穿电压一般为 150V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。

4、压敏电阻和气体放电管都必须按冲击 10 次以上的降额值计算通流容量(压敏电

阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。

12

二、通信机房用直流电源防雷器 (二)串联式直流电源防雷器

1

说明:

1、压敏电阻在图上所标型号中选取(压敏电压高的更安全、耐用,故障率低,但 残压略高),根据通流容量要求选择外形尺寸和封装形式,要求通流容量 Im 大时,第一、 二级可以如图所示分别用m个、n个压敏电阻并联(应挑选压敏电压相近的并联,每个 压敏电阻都要单独串联温度保险管,以延长使用寿命和确保安全),按第一级 Im1≥Im, 第二级 Im2≥(0.2~0.3)Im 估算。

2、温度保险管一般采用 130℃~135℃、10A/250V 的,应与压敏电阻有良好的热耦 合。最好再串联一个电流保险丝以防操作过电压瞬间击穿压敏电阻起火。

3、第一个陶瓷气体放电管 G1 的通流容量根据要求的通流容量 Im 选择,第二个放 电管 G2 可以参照第二级 Im2 选择。

4、压敏电阻和放电管都必须按冲击 10 次以上的降额值计算通流容量(压敏电阻为 一次冲击通流容量的三分之一左右,放电管为最大通流容量的一半左右)。

5、串联电感为空心电感,电感量应≥20μH,导线直径应按负载电流计算。

13

二、通信机房用直流电源防雷器 (二)串联式直流电源防雷器 2

说明:

1、压敏电阻在图上所标型号中选取(压敏电压高的更安全、耐用,故障率低,但 残压略高),根据通流容量要求选择外形尺寸和封装形式,要求通流容量 Im 大时,第一、 二级可以如图所示分别用m个、n个压敏电阻并联(应挑选压敏电压相近的并联,每个 压敏电阻都要单独串联温度保险管,以延长使用寿命和确保安全),按第一级 Im1≥Im, 第二级 Im2≥(0.2~0.3)Im 估算。

2、温度保险管一般采用 130℃~135℃、10A/250V 的,应与压敏电阻有良好的热耦 合。最好再串联一个电流保险丝以防操作过电压瞬间击穿压敏电阻起火。

3、第一个陶瓷气体放电管 G1 的通流容量根据要求的通流容量 Im 选择,第二个放 电管 G2 可以参照第二级 Im2 选择。

4、压敏电阻和放电管都必须按冲击 10 次以上的降额值计算通流容量(压敏电阻为 一次冲击通流容量的三分之一左右,放电管为最大通流容量的一半左右)。

5、串联电感为空心电感,电感量应≥20μH,导线直径应按负载电流计算。

14

二、通信机房用直流电源防雷器 (二)串联式直流电源防雷器

3

说明:

1、压敏电阻在图上所标型号中选取(选压敏电压高一点的更安全、耐用,故障率 低,但残压略高),根据通流容量要求选择外形尺寸和封装形式,要求通流容量 Im 大时,

第一、二级可以如图所示分别用m个、n个压敏电阻并联(应挑选压敏电压相近的并联,

每个压敏电阻都要单独串联温度保险管,以延长使用寿命和确保安全),按第一级 Im1≥Im,第二级 Im2≥(0.2~0.3)Im 估算。

2、温度保险管一般采用 130℃~135℃、10A/250V 的,应与压敏电阻有良好的热耦 合。最好再串联一个电流保险丝以防操作过电压瞬间击穿压敏电阻起火。

3、陶瓷气体放电管的通流容量根据要求的通流容量选择

4、压敏电阻和气体放电管都必须按冲击 10 次以上的降额值计算通流容量(压敏电 阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。

5、串联电感为空心电感,电感量应≥20μH,导线直径应按负载电流计算。

15

三、通用两级信号防雷器 (一)双绞线型

通用电路一:

说明:

①R1、R2 可以用普通金属氧化膜电阻(2W-4.3~5.1Ω),也可以用冷态电阻相当 的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。

16

三、通用两级信号防雷器 (一)双绞线型

通用电路二:

说明:

①R1、R2 可以用普通金属氧化膜电阻(2W-4.3~5.1Ω),也可以用冷态电阻相当 的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。

没有连续直流电压。

③本电路只适用于冲击电流不大于玻璃放电管最大脉冲放电电流的场合,且电路中

17

三、通用两级信号防雷器 (一)双绞线型

说明:

①R1、R2 可以用普通金属氧化膜电阻(2W-4.3~5.6Ω),也可以用冷态电阻相当 的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。

②陶瓷气体放电管和半导体过压保护器的直流击穿电压根据信号电压幅度选择,

见下表:

③本电路只适用于电路中没有连续直流电压的场合。

18

三、通用二级信号防雷器 (一)双绞线型

说明:

①R1、R2 可以用普通金属氧化膜电阻(2W-4.3~5.6Ω),也可以用冷态电阻相当 的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。

②陶瓷气体放电管和半导体过电压保护器的直流击穿电压根据信号电压幅度选

③使用电压低的半导体过电压保护器时,必须如图所示在接地端串联玻璃放电管; 当使用电压高于 100V 的半导体过电压保护器时可以不串联玻璃放电管。

④本电路只适用于电路中没有连续直流电压的场合。

19

三、通用两级信号防雷器 (一)双绞线型

通用电路五:

说明:

①R1、R2 可以用普通金属氧化膜电阻(2W-4.3~5.1Ω),也可以用冷态电阻相当 的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。

②陶瓷气体放电管和 TVS 管的直流击穿电压根据信号电压幅度选择,见下表: ③本电路适用于传输高频/高速信号(最高频率可达 20MHZ)。

20

三、通用两级信号防雷器 (二)同轴线型

(1)外导体接地电路:

通用电路一:

说明:

①R1、R2 可以用普通金属氧化膜电阻(2W-4.3~5.1Ω),也可以用冷态电阻相当 的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。

③电路带宽很宽,可以传输 20MHZ 以下的高频信号。 ④输入、输出接头应分别与原系统的接头类型相配。

21

三、通用两级信号防雷器 (二)同轴线型

(1)外导体接地电路:

通用电路二:

说明:

①R1、R2 可以用普通金属氧化膜电阻(2W-4.3~5.6Ω),也可以用冷态电阻相当 的正温度系数热敏电阻(自恢复保险丝:LP60-010/030,LB180(U))。

②陶瓷气体放电管和半导体过压保护器的直流击穿电压根据信号电压幅度选择,

见下表:

③本电路只适用于电路中没有连续直流电压的场合。 ④输入、输出接头应分别与原系统的接头类型相配。

22

三、通用两级信号防雷器 (二)同轴线型

(1)外导体接地电路:

通用电路三:

说明:

①本电路只适用于信号频率/速率较低,且电路中没有连续直流电压的场合。 ②R 可以用普通金属氧化膜电阻(2W-4.3~5.6Ω),也可以用冷态电阻相当的正温 度系数热敏电阻(自恢复保险丝:LP60-010/030,LB180(U))。

③玻璃放电管和半导体过电压保护器的直流击穿电压根据信号电压幅度选择,见

④输入、输出接头应分别与原系统的接头类型相配。

三、通用两级信号防雷器

(二)同轴线型 (2)外导体不接地电路:

通用电路一:

23

说明:

①电路带宽很宽,可以传输 20MHZ 以下的高频信号。

②陶瓷气体放电管和 TVS1 的直流击穿电压根据信号电压幅度选择,见下表: ③R1、R2 可以用普通金属氧化膜电阻(2W-4.3~5.1Ω),也可以用冷态电阻相当 的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。

④输入、输出接头应分别与原系统的接头类型相配。

24

三、通用两级信号防雷器 (二)同轴线型

(2)外导体不接地电路:

通用电路二:

说明:

①R1、R2 可以用普通金属氧化膜电阻(2W-4.3~5.1Ω),也可以用冷态电阻相当 的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。

②玻璃放电管和半导体过压保护器的直流击穿电压根据信号电压幅度选择,见下

表:

③本电路只适用于信号频率/速率较低的场合。 ④输入、输出接头应分别与原系统的接头类型相配。

25

三、通用两级信号防雷器 (三)提高传输频率/速率的方法

1、采用低电容 TVS 管或半导体过压保护器

传输频率/速率≥10MHz,Cj≤60pF; 传输频率/速率≥100MHz,Cj≤20pF。

2、将 所示):

26

四、小功率电源变压器或开关电源保护电路(以两组输出为例)

说明:

①自恢复保险丝 PTC 根据输入电流和最高工作环境温度选择,压敏电阻 RV1 的通

流容量根据输入浪涌电流大小选择(一个不够时,可用几个并联,参照“一、交流电源

防雷器” ),压敏电压应在 470~620V 之间选取(电压很不稳定的地方应选更高的)。

② RV2、RV3 根据 U1、U2 的数值选择压敏电压值,外形大小根据输出线长度选择, 不带长引线时用 5D 或 7D,用长引线输出时,应选用通流容量更大的压敏电阻(引线越 长,通流容量要越大)。

③陶瓷气体放电管一般用直流击穿电压 470V 的,通流容量根据输入浪涌电流大小 选择。

27

四、小功率电源变压器或开关电源保护电路(以两组输出为例) 电路二:

①自恢复保险丝输入

LBR×××PTC根据输入电流和最高工作环境温度选择,压敏电阻

RV1 的通

流容量根据输入浪涌电流大小选择(一个不够时,可用几个并联,参照“一、交流电源 防雷器” ),压敏电压应在 470~620V 之间选取(电压很不稳定的地方应选更高的)。

② TVS1、TVS2 一般用 1.5KE 系列的(浪涌电流很小的地方也可用 P6KE 系列的), 根据 U1、U2 的最大峰值电压选择击穿电压值(VBRmin≥1.2Up)。

③陶瓷气体放电管一般用直流击穿电压保护接地470V 的,通流容量根据输入浪涌电流大小 选择。

④本电路只适用于输出端不带长引线、浪涌电流较小的地方使用(例如在同一块 电路板或相邻电路板上)。

PE

28

四、小功率电源变压器或开关电源保护电路(以两组输出为例)

说明:

①自恢复保险丝 PTC 根据输入电流和最高工作环境温度选择,压敏电阻 RV1 的通

流容量根据输入浪涌电流大小选择(一个不够时,可用几个并联,参照“一、交流电源

防雷器” ),压敏电压应在 470~620V 之间选取(电压很不稳定的地方应选更高的)。

② RV2、RV3 根据 U1、U2 的数值选择压敏电压值,外形大小根据输出线长度选 择,不带长引线时用 5D 或 7D,用长引线输出时,应选用通流容量更大的压敏电阻(引 线越长,通流容量要越大)。输出电流较大时,要在线上串联自恢复保险丝 PTC2、PTC3 (根据输出电流和最高环境温度选择)。

③陶瓷气体放电管一般用直流击穿电压 470V 的,通流容量根据输入浪涌电流大小 选择。

五、通讯电子设备的保护电路

电路一:

29

说明:

①本电路适用于架空线引入或其它浪涌电流较大的场合。

②陶瓷气体放电管的最大放电电流一般选 10kA 或 5kA,直流击穿电压根据信号电 压幅度选择,见下表:

③TVS 管用 P6KE220CA 型。如果传输线上没有振铃信号,则可用 P6KE68CA 型。 ④R1、R2 可以用普通金属氧化膜电阻(4.3~5.6Ω),也可以用冷态电阻相当的正 温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。

五、通讯电子设备的保护电路

电路二:

30

说明:

①在埋地电缆引入或其它浪涌电流较小的场合使用。 ②BLSA1、BLSA2 用 YA-301 型或 YS-301 型玻璃放电管。

③TVS 管用 P6KE220CA 型。如果传输线上没有振铃信号,TVS 管可用 P6KE68CA 型。 ④R1、R2 可以用普通金属氧化膜电阻(3.6~5.1Ω),也可以用冷态电阻相当的正 温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。

31

五、通讯电子设备的保护电路 电路三:

(2)没有振铃信号:

说明:

①在埋地电缆引入或其它浪涌电流较小的场合使用。

②R1、R2 可以用普通金属氧化膜电阻(3.6~5.1Ω),也可以用冷态电阻相当的正 温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。

③使用电压低(≤100V)的半导体过压保护器时,必须如图所示在接地端串联玻璃

放电管(BLSA3);当使用电压高于 100V 的半导体过压保护器时可以不串联玻璃放电管。

32

六、直流电源与信号同传 1、110V 不接地电源与信号同传:

2、+24V 负极接地电源与信号同传

33

七、信号电路的二级双重保护方式

说明:

图中所标元件型号适用于信号幅度≤6V,整流桥中所接的 P0080 可以用 P6KE7.5A 型 TVS 管代替(负端朝左)。其它信号幅度时,要更换元件型号。

34

八、检测/控制电路的保护

例如:水、电、煤气抄表系统,门禁、对讲、报警系统,这类系统一 般采用低频(脉冲)信号或直流(交流)开关信号。这类系统又分为不接 地系统和接地系统两大类。

(1

说明:

①R1、R2 可以用普通金属氧化膜电阻(4.3~5.1Ω),也可以用冷态电阻相当的正 温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。

②陶瓷气体放电管和 TVS 管的直流击穿电压根据信号电压幅度选择,见下表: ③电路中没有连续直流电压时,TVS 管可以用击穿电压相当的半导体过压保护器代 替。当浪涌电流较小时,陶瓷气体放电管可以用击穿电压相当的玻璃放电管代替。

35

八、检测/控制电路的保护

例如:水、电、煤气抄表系统,门禁、对讲、报警系统,这类系统一 般采用低频(脉冲)信号或直流(交流)开关信号。这类系统又分为不接 地系统和接地系统两大类。

(2)接地系统保护电路:

说明:

①R 可以用普通金属氧化膜电阻(4.3~5.1Ω),也可以用冷态电阻相当的正温度 系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。

③电路中没有连续直流电压时,TVS 管可以用击穿电压相当的半导体过压保护器代 替。当浪涌电流较小时,陶瓷气体放电管可以用击穿电压相当的玻璃放电管代替。

36

九、单级信号防雷器 1

说明:

①可用于信号频率/传输速率很高,但没有连续直流电压的场合。 ②玻璃放电管的直流击穿电压应根据信号电压峰值,按下式选择:

VBRmin≥1.2USpeak

③既可以对不接地的双线传输线进行保护,也可以在有公共接地线的传输系统中 (如图中虚线所示)对需要保护的线进行独立保护。

37

九、单级信号防雷器

2、只用半导体过压保护器的保护电路 (1)不带差模保护

(2)带差模保护

说明:

①可用于信号频率/传输速率较低,且没有连续直流电压的场合。 ②半导体过压保护器的击穿电压应根据信号峰值电压,按下式选择: VBR≥1.2USpeak

③当所用半导体过压保护器的击穿电压低于 100V 时,应在接地端串联一个击穿电 压大于 100V 的二端半导体过压保护器或玻璃放电管再接地,如下图所示。

④当传输线中有公共接地线(如图中虚线所示)时,采用“(1)不带差模保护” 的电路,可以对 1 线、2 线、……分别进行保护。

(2)带差模保护

38

九、单级信号防雷器 3、只用 TVS 管的保护电路

(1)不带差模保护

说明:

①可用于信号频率/传输速率较低、线路中可能有连续直流电压、浪涌电流较小的 场合。

②TVS 管的直流击穿电压应根据信号电压峰值,按下式选择:

VBRmin≥1.2USpeak

③当接地线较长、信号易受干扰时,可在 TVS1、TVS2(左图)或 TVS2、TVS3(右

图)之间加接击穿电压大于 100V 的 TVS 管或玻璃放电管再接地,如下图所示。

④当传输线中有公共接地线(如图中虚线所示)时,采用“(1)不带差模保护” 的电路,可以对 1 线、2 线、……分别进行保护。

39

九、单级信号防雷器 4、复合保护电路

①可用于信号频率/传输速率较高(≤10MHZ)的场合。整流桥若用快速恢复二极 管构成,传输信号频率/速率可达 20MHz 以上。

②当线路中有连续直流电压时,必须采用电路二。

③图中所标元件型号适用于信号幅度≤6V。信号幅度更大时,要更换整流桥中所

接元件型号(参照“两级信号保护电路”关于 TVS 管和半导体过压保护器选择的说明)。

④当接地线较长、信号易受干扰时,TVS1、TVS2 应选用击穿电压≥100V、且峰值 脉冲功率更大的 TVS 管,或采用电路三。

40

十、天馈防雷器 1、单级电路

说明:

①可以同时传送电源,保护效果较差,适用于天线不带放大器或虽然带放大器但耐 冲击能力较强的场合。

②同轴腔体和两端的接头是根据系统所用接头类型、传输信号频率范围专门设计加

工的。

③陶瓷气体放电管一般选用通流容量 20kA 的,直流击穿电压主要根据所传输的信 号功率大小选取,一般 50W 以下用 90V 的,传输功率越大,应选用直流击穿电压越高的

放电管。

④将放电管装入腔体后,用微波网络分析仪测试信号频率范围内的驻波系数、插入

损耗应满足要求。

⑤在户外使用时,腔体、接头、放电管安装孔都必须设计成防水的。

41

十、天馈防雷器 2、二级电路天馈防雷器

说明:

①保护效果好,残压低,可以同时传送电源,适用于天线带放大器或不带放大器的 场合。

②腔体和输入、输出接头是根据系统所用接头类型、传输信号频率范围专门设计加

工的。

③陶瓷气体放电管一般选用通流容量 20kA、直流击穿电压 90V 的。

④TVS 管一般用 1.5KE 系列的,击穿电压根据所传输的直流电压或交流电压峰值选

取(VBRmin≥1.2UDC 或 VBRmin≥1.2Up)。

⑤ C 是由紫铜片构成的平板电容器,平板间加聚四氟乙烯薄膜;L1、L3 是用漆包

紫铜线绕成的空心电感,L2 可用 100μH 左右的铁心电感。

⑥将元件装入腔体后,用微波网络分析仪测试信号频率范围内的驻波系数、插入损

耗应满足要求。

⑦在户外使用时,腔体、接头和盖板都必须设计成防水的。

42

十、天馈防雷器 3

说明:

①保护效果很好,残压低,可以同时传送电源,适用于天线带放大器或不带放大器 的场合。

②腔体和输入、输出接头是根据系统所用接头类型、传输信号频率范围专门设计加

工的。

③陶瓷气体放电管一般选用通流容量 20kA、直流击穿电压 90V 的。 ④压敏电阻 RV 一般选用 20D100K 型的。

⑤TVS 管一般用 1.5KE 系列的,击穿电压根据所传输的直流电压或交流电压峰值选

取(VBRmin≥1.2UDC 或 VBRmin≥1.2Up)。

⑥C 是由紫铜片构成的平板电容器,平板间加聚四氟乙烯薄膜;L1、L4 是用漆包紫

铜线绕成的空心电感,L2、L3 可用 100μH 左右的铁心电感。

⑦将元件装入腔体后,用微波网络分析仪测试信号频率范围内的驻波系数、插入损

耗应满足要求。

⑧在户外使用时,腔体、接头和盖板都必须设计成防水的。

43

十一、防静电保护器 电路一: 电路二:

电路三:

电路四:

被部件或电路

被 部件或电路

TVS

RV

说明:

① “电路一”响应时间最短,通流量较小,适用于不能接地的设备、部件或电路; ② “电路二”响应时间较短,通流量可大可小,适用于不能接地的设备、部件或 电路;

③ “电路三”响应时间很短,通流量较大,适用于可以接地的设备、部件或电路; ④ “电路四”响应时间较短,通流量较小,适用于可以接地的设备、部件或电路;

⑤ 所用器件的击穿电压(压敏电压)应低于被保护设备、部件或电路所能承受的 最高电压,但要高于电路最高工作电压,通流量根据可能感应的最大静电荷量折算成的 电流值选取。

防雷器基本电路设计图 目录

7

一、交流电源防雷器

8

(一)单相并联式防雷器(电路一~电路三) (二)三相并联式防雷器(电路一~电路三)

二、通信机房用直流电源防雷器

(一)并联式防雷器

1、正极接地(–48V)直流电源 9

2、负极接地(+24V)直流电源

3、正负对称(±110V)直流电源 11

(二)串联式防雷器

1、正极接地(–48V)直流电源

2、负极接地(+24V)直流电源

3、正负对称(±110V)直流电源 14

三、通用二级信号防雷器

(一)双绞线型信号电路

通用电路一~通用电路五 15~19

(二)同轴线型信号电路

(1)外导体接地电路(通用电路一~通用电路三) 20~22

(224

(三)提高传输频率/速率的方法

25

四、小功率电源变压器或开关电源保护电路(电路一~电路三)

26~28

五、通讯电子设备的保护电路(电路一~电路三)

29~31

六、直流电源与信号同传的保护电路

32

七、信号电路的双重二级保护方式

33

八、检测/控制电路的保护(接地、不接地)

34~35

九、单级信号防雷器

1、只用玻璃放电管的保护电路 36

2、只用半导体过压保护器的保护电路 37

3、只用 TVS 管的保护电路 38

4、复合单级保护电路 39

十、天馈防雷器

1、单级电路天馈防雷器 40

2、二级电路天馈防雷器

3、三级电路天馈防雷器 42

十一、防静电保护器

43

1

一、交流电源防雷器 (一)单相并联式防雷器

说明:

1、优点:电路简单,采用复合对称电路,共模、差模全保护, L、N 可以随便接。 缺点:压敏电阻 RV1 短路失效后易引起火灾。最好在每个压敏电阻上串联一个工频保险 丝以防压敏电阻短路起火。如果 L、N 线不可能接反,则可省去压敏电阻 RV2、RV3,将 放电管 G 的上端直接接到 N 线上,构成“1+1”电路。

2、压敏电阻的压敏电压值参照下表选取(选压敏电压高一点的更安全、耐用,故 障率低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏 600V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。

4、压敏电阻和气体放电管都必须按冲击 10 次以上的降额值计算通流容量(压敏电

阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。

2

一、交流电源防雷器 (一)单相并联式防雷器

说明:

1、优点:采用复合对称电路,共模、差模全保护, L、N 可以随便接,正常工作

时无漏电流,可延长器件使用寿命,由于陶瓷气体放电管失效模式大多为开路,不易引

起火灾。缺点:万一压敏电阻和陶瓷气体放电管都短路失效时还有可能起火。

2、压敏电阻的压敏电压值参照下表选取(选压敏电压高一点的更安全、耐用,故 障率低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏

600V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。

4、压敏电阻和气体放电管都必须按冲击 10 次以上的降额值计算通流容量(压敏电

阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。

3

一、交流电源防雷器 (一)单相并联式防雷器

电路三说明:

1、优点:采用复合对称电路,共模、差模全保护,L、N 可以随便接,安全,压敏 电阻短路失效后能与电路脱离,一般不会引起火灾。

2、压敏电阻的压敏电压值参照下表选取(选压敏电压高一点的更安全、耐用,故 障率低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏 电阻并联(应挑选压敏电压相近的并联,每个压敏电阻都要单独串联温度保险管,以延

℃℃ 合。最好再串联一个工频保险丝以防工频过电压瞬间击穿压敏电阻起火。

4、陶瓷气体放电管的通流容量根据要求的通流容量选择,直流击穿电压为 470V~ 600V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。

5、压敏电阻和气体放电管都必须按冲击 10 次以上的降额值计算通流容量(压敏电

阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。

4

一、交流电源防雷器 (二)三相并联式防雷器 电路一:最简单的电路

说明:

1、优点:采用“3+1”电路,电路简单,三相全保护。缺点:压敏电阻短路失效 后易引起火灾。最好在每个压敏电阻上串联一个工频保险丝以防压敏电阻短路起火。

2、压敏电阻的压敏电压值参照下表选取(选压敏电压高一点的更安全、耐用,故

障率低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏 电阻并联(如图所示为每相两个压敏电阻并联,应挑选压敏电压值相近的并联,以延长

600V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。

4、压敏电阻和气体放电管都必须按冲击 10 次以上的降额值计算通流容量(压敏电

阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。

5

一、交流电源防雷器 (二)三相并联式防雷器 电路二:较安全的电路

说明:

1、优点:采用“3+1”电路,三相全保护,正常工作时无漏电流,可延长器件使 用寿命,由于陶瓷气体放电管失效模式大多为开路,不易引起火灾。缺点:万一压敏电 阻和陶瓷气体放电管都短路失效时还有可能引起火灾。

2、压敏电阻的压敏电压值参照下表选取(选压敏电压高一点的更安全、耐用,故 障率低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏 电阻并联(如图所示为每相两个压敏电阻并联,应挑选压敏电压值相近的并联,以延长

3、陶瓷气体放电管的通流容量根据要求的通流容量选择,直流击穿电压为 470V~ 600V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。

4、压敏电阻和气体放电管都必须按冲击 10 次以上的降额值计算通流容量(压敏电

阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。

6

一、交流电源防雷器 (二)三相并联式防雷器 电路三:通用的安全保护电路

说明:

1、优点:采用“3+1”电路,三相全保护,安全,压敏电阻短路失效后能与电路 脱离,一般不会引起火灾。

2、压敏电阻的压敏电压值参照下表选取(选压敏电压高一点的更安全、耐用,故

障率低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏 电阻并联(如图所示为每相两个压敏电阻并联,应挑选压敏电压值相近的并联,每个压

敏电阻都要单独串联温度保险管,以延长使用寿命和确保安全)。 合。最好再串联一个工频保险丝以防工频过电压瞬间击穿压敏电阻起火。

4、陶瓷气体放电管的通流容量根据要求的通流容量选择,直流击穿电压为 470V~ 600V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。

5、压敏电阻和气体放电管都必须按冲击 10 次以上的降额值计算通流容量(压敏电

阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。

7

一、交流电源防雷器 (三)单相串联式防雷器 单相通用安全保护电路:

1、优点:采用两级复合对称电路,共模、差模全保护,残压低,L、N 可以随便接, 安全,压敏电阻短路失效后能与电路脱离,一般不会引起火灾。

2、压敏电阻的压敏电压值参照下表选取(选压敏电压高一点的更安全、耐用,故 障率低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏 电阻并联(如图所示第一级为 m 个压敏电阻并联,第二级为 n 个并联,应挑选压敏电压 ℃℃ 合。最好再串联一个工频保险丝以防工频过电压瞬间击穿压敏电阻起火。

4、陶瓷气体放电管的通流容量根据要求的通流容量选择,直流击穿电压为 470V~ 600V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。

5、压敏电阻和放电管都必须按冲击 10 次以上的降额值计算通流容量(压敏电阻为

一次冲击通流容量的三分之一左右,放电管为最大通流容量的一半左右)。

6、串联电感为空心电感,电感量应≥20μH,导线直径应按负载电流计算。

8

一、交流电源防雷器

(四)三相串联式防雷器 三相通用安全保护电路:

说明1、优点:采用两级“3+1”电路,三相全保护,残压低,安全,压敏电阻短路失 效后能与电路脱离,一般不会引起火灾。

2、压敏电阻的压敏电压值参照下表选取(选压敏电压高一点的更安全、耐用,故 障率低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏 电阻并联(如图所示第一级为 m 个压敏电阻并联,第二级为 n 个并联,应挑选压敏电压

℃℃ 合。最好再串联一个工频保险丝以防工频过电压瞬间击穿压敏电阻起火。

4、陶瓷气体放电管的通流容量根据要求的通流容量选择,直流击穿电压为 470V~ 600V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。

5、压敏电阻和放电管都必须按冲击 10 次以上的降额值计算通流容量(压敏电阻为

一次冲击通流容量的三分之一左右,放电管为最大通流容量的一半左右)。

6、串联电感为空心电感,电感量应≥20μH,导线直径应按负载电流计算。

9

二、通信机房用直流电源防雷器 (一)并联式直流电源防雷器

1

说明:

1、压敏电阻在图上所标型号中选取(选压敏电压高一点的更安全、耐用,故障率

低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏电阻 并联(应挑选压敏电压相近的并联,每个压敏电阻都要单独串联温度保险管,以延长使

用寿命和确保安全)。

2、温度保险管一般采用 130℃~135℃、10A/250V 的,应与压敏电阻有良好的热耦

合。最好再串联一个电流保险丝以防操作过电压瞬间击穿压敏电阻起火。

3、陶瓷气体放电管的通流容量根据要求的通流容量选择,直流击穿电压一般为 90V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。

4、压敏电阻和气体放电管都必须按冲击 10 次以上的降额值计算通流容量(压敏电

阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。

10

二、通信机房用直流电源防雷器 (一)并联式直流电源防雷器

2

说明:

1、压敏电阻在图上所标型号中选取(选压敏电压高一点的更安全、耐用,故障率

低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏电阻 并联(应挑选压敏电压相近的并联,每个压敏电阻都要单独串联温度保险管,以延长使

用寿命和确保安全)。

2、温度保险管一般采用 130℃~135℃、10A/250V 的,应与压敏电阻有良好的热耦

合。最好再串联一个电流保险丝以防操作过电压瞬间击穿压敏电阻起火。

3、陶瓷气体放电管的通流容量根据要求的通流容量选择,直流击穿电压一般为 90V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。

4、压敏电阻和气体放电管都必须按冲击 10 次以上的降额值计算通流容量(压敏电

阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。

11

二、通信机房用直流电源防雷器 (一)并联式直流电源防雷器

3

说明:

1、压敏电阻在图上所标型号中选取(选压敏电压高一点的更安全、耐用,故障率

低,但残压略高),根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏电阻 并联(应挑选压敏电压相近的并联,每个压敏电阻都要单独串联温度保险管,以延长使

用寿命和确保安全)。

2、温度保险管一般采用 130℃~135℃、10A/250V 的,应与压敏电阻有良好的热耦

合。最好再串联一个电流保险丝以防操作过电压瞬间击穿压敏电阻起火。

3、陶瓷气体放电管的通流容量根据要求的通流容量选择,直流击穿电压一般为 150V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。

4、压敏电阻和气体放电管都必须按冲击 10 次以上的降额值计算通流容量(压敏电

阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。

12

二、通信机房用直流电源防雷器 (二)串联式直流电源防雷器

1

说明:

1、压敏电阻在图上所标型号中选取(压敏电压高的更安全、耐用,故障率低,但 残压略高),根据通流容量要求选择外形尺寸和封装形式,要求通流容量 Im 大时,第一、 二级可以如图所示分别用m个、n个压敏电阻并联(应挑选压敏电压相近的并联,每个 压敏电阻都要单独串联温度保险管,以延长使用寿命和确保安全),按第一级 Im1≥Im, 第二级 Im2≥(0.2~0.3)Im 估算。

2、温度保险管一般采用 130℃~135℃、10A/250V 的,应与压敏电阻有良好的热耦 合。最好再串联一个电流保险丝以防操作过电压瞬间击穿压敏电阻起火。

3、第一个陶瓷气体放电管 G1 的通流容量根据要求的通流容量 Im 选择,第二个放 电管 G2 可以参照第二级 Im2 选择。

4、压敏电阻和放电管都必须按冲击 10 次以上的降额值计算通流容量(压敏电阻为 一次冲击通流容量的三分之一左右,放电管为最大通流容量的一半左右)。

5、串联电感为空心电感,电感量应≥20μH,导线直径应按负载电流计算。

13

二、通信机房用直流电源防雷器 (二)串联式直流电源防雷器 2

说明:

1、压敏电阻在图上所标型号中选取(压敏电压高的更安全、耐用,故障率低,但 残压略高),根据通流容量要求选择外形尺寸和封装形式,要求通流容量 Im 大时,第一、 二级可以如图所示分别用m个、n个压敏电阻并联(应挑选压敏电压相近的并联,每个 压敏电阻都要单独串联温度保险管,以延长使用寿命和确保安全),按第一级 Im1≥Im, 第二级 Im2≥(0.2~0.3)Im 估算。

2、温度保险管一般采用 130℃~135℃、10A/250V 的,应与压敏电阻有良好的热耦 合。最好再串联一个电流保险丝以防操作过电压瞬间击穿压敏电阻起火。

3、第一个陶瓷气体放电管 G1 的通流容量根据要求的通流容量 Im 选择,第二个放 电管 G2 可以参照第二级 Im2 选择。

4、压敏电阻和放电管都必须按冲击 10 次以上的降额值计算通流容量(压敏电阻为 一次冲击通流容量的三分之一左右,放电管为最大通流容量的一半左右)。

5、串联电感为空心电感,电感量应≥20μH,导线直径应按负载电流计算。

14

二、通信机房用直流电源防雷器 (二)串联式直流电源防雷器

3

说明:

1、压敏电阻在图上所标型号中选取(选压敏电压高一点的更安全、耐用,故障率 低,但残压略高),根据通流容量要求选择外形尺寸和封装形式,要求通流容量 Im 大时,

第一、二级可以如图所示分别用m个、n个压敏电阻并联(应挑选压敏电压相近的并联,

每个压敏电阻都要单独串联温度保险管,以延长使用寿命和确保安全),按第一级 Im1≥Im,第二级 Im2≥(0.2~0.3)Im 估算。

2、温度保险管一般采用 130℃~135℃、10A/250V 的,应与压敏电阻有良好的热耦 合。最好再串联一个电流保险丝以防操作过电压瞬间击穿压敏电阻起火。

3、陶瓷气体放电管的通流容量根据要求的通流容量选择

4、压敏电阻和气体放电管都必须按冲击 10 次以上的降额值计算通流容量(压敏电 阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。

5、串联电感为空心电感,电感量应≥20μH,导线直径应按负载电流计算。

15

三、通用两级信号防雷器 (一)双绞线型

通用电路一:

说明:

①R1、R2 可以用普通金属氧化膜电阻(2W-4.3~5.1Ω),也可以用冷态电阻相当 的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。

16

三、通用两级信号防雷器 (一)双绞线型

通用电路二:

说明:

①R1、R2 可以用普通金属氧化膜电阻(2W-4.3~5.1Ω),也可以用冷态电阻相当 的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。

没有连续直流电压。

③本电路只适用于冲击电流不大于玻璃放电管最大脉冲放电电流的场合,且电路中

17

三、通用两级信号防雷器 (一)双绞线型

说明:

①R1、R2 可以用普通金属氧化膜电阻(2W-4.3~5.6Ω),也可以用冷态电阻相当 的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。

②陶瓷气体放电管和半导体过压保护器的直流击穿电压根据信号电压幅度选择,

见下表:

③本电路只适用于电路中没有连续直流电压的场合。

18

三、通用二级信号防雷器 (一)双绞线型

说明:

①R1、R2 可以用普通金属氧化膜电阻(2W-4.3~5.6Ω),也可以用冷态电阻相当 的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。

②陶瓷气体放电管和半导体过电压保护器的直流击穿电压根据信号电压幅度选

③使用电压低的半导体过电压保护器时,必须如图所示在接地端串联玻璃放电管; 当使用电压高于 100V 的半导体过电压保护器时可以不串联玻璃放电管。

④本电路只适用于电路中没有连续直流电压的场合。

19

三、通用两级信号防雷器 (一)双绞线型

通用电路五:

说明:

①R1、R2 可以用普通金属氧化膜电阻(2W-4.3~5.1Ω),也可以用冷态电阻相当 的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。

②陶瓷气体放电管和 TVS 管的直流击穿电压根据信号电压幅度选择,见下表: ③本电路适用于传输高频/高速信号(最高频率可达 20MHZ)。

20

三、通用两级信号防雷器 (二)同轴线型

(1)外导体接地电路:

通用电路一:

说明:

①R1、R2 可以用普通金属氧化膜电阻(2W-4.3~5.1Ω),也可以用冷态电阻相当 的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。

③电路带宽很宽,可以传输 20MHZ 以下的高频信号。 ④输入、输出接头应分别与原系统的接头类型相配。

21

三、通用两级信号防雷器 (二)同轴线型

(1)外导体接地电路:

通用电路二:

说明:

①R1、R2 可以用普通金属氧化膜电阻(2W-4.3~5.6Ω),也可以用冷态电阻相当 的正温度系数热敏电阻(自恢复保险丝:LP60-010/030,LB180(U))。

②陶瓷气体放电管和半导体过压保护器的直流击穿电压根据信号电压幅度选择,

见下表:

③本电路只适用于电路中没有连续直流电压的场合。 ④输入、输出接头应分别与原系统的接头类型相配。

22

三、通用两级信号防雷器 (二)同轴线型

(1)外导体接地电路:

通用电路三:

说明:

①本电路只适用于信号频率/速率较低,且电路中没有连续直流电压的场合。 ②R 可以用普通金属氧化膜电阻(2W-4.3~5.6Ω),也可以用冷态电阻相当的正温 度系数热敏电阻(自恢复保险丝:LP60-010/030,LB180(U))。

③玻璃放电管和半导体过电压保护器的直流击穿电压根据信号电压幅度选择,见

④输入、输出接头应分别与原系统的接头类型相配。

三、通用两级信号防雷器

(二)同轴线型 (2)外导体不接地电路:

通用电路一:

23

说明:

①电路带宽很宽,可以传输 20MHZ 以下的高频信号。

②陶瓷气体放电管和 TVS1 的直流击穿电压根据信号电压幅度选择,见下表: ③R1、R2 可以用普通金属氧化膜电阻(2W-4.3~5.1Ω),也可以用冷态电阻相当 的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。

④输入、输出接头应分别与原系统的接头类型相配。

24

三、通用两级信号防雷器 (二)同轴线型

(2)外导体不接地电路:

通用电路二:

说明:

①R1、R2 可以用普通金属氧化膜电阻(2W-4.3~5.1Ω),也可以用冷态电阻相当 的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。

②玻璃放电管和半导体过压保护器的直流击穿电压根据信号电压幅度选择,见下

表:

③本电路只适用于信号频率/速率较低的场合。 ④输入、输出接头应分别与原系统的接头类型相配。

25

三、通用两级信号防雷器 (三)提高传输频率/速率的方法

1、采用低电容 TVS 管或半导体过压保护器

传输频率/速率≥10MHz,Cj≤60pF; 传输频率/速率≥100MHz,Cj≤20pF。

2、将 所示):

26

四、小功率电源变压器或开关电源保护电路(以两组输出为例)

说明:

①自恢复保险丝 PTC 根据输入电流和最高工作环境温度选择,压敏电阻 RV1 的通

流容量根据输入浪涌电流大小选择(一个不够时,可用几个并联,参照“一、交流电源

防雷器” ),压敏电压应在 470~620V 之间选取(电压很不稳定的地方应选更高的)。

② RV2、RV3 根据 U1、U2 的数值选择压敏电压值,外形大小根据输出线长度选择, 不带长引线时用 5D 或 7D,用长引线输出时,应选用通流容量更大的压敏电阻(引线越 长,通流容量要越大)。

③陶瓷气体放电管一般用直流击穿电压 470V 的,通流容量根据输入浪涌电流大小 选择。

27

四、小功率电源变压器或开关电源保护电路(以两组输出为例) 电路二:

①自恢复保险丝输入

LBR×××PTC根据输入电流和最高工作环境温度选择,压敏电阻

RV1 的通

流容量根据输入浪涌电流大小选择(一个不够时,可用几个并联,参照“一、交流电源 防雷器” ),压敏电压应在 470~620V 之间选取(电压很不稳定的地方应选更高的)。

② TVS1、TVS2 一般用 1.5KE 系列的(浪涌电流很小的地方也可用 P6KE 系列的), 根据 U1、U2 的最大峰值电压选择击穿电压值(VBRmin≥1.2Up)。

③陶瓷气体放电管一般用直流击穿电压保护接地470V 的,通流容量根据输入浪涌电流大小 选择。

④本电路只适用于输出端不带长引线、浪涌电流较小的地方使用(例如在同一块 电路板或相邻电路板上)。

PE

28

四、小功率电源变压器或开关电源保护电路(以两组输出为例)

说明:

①自恢复保险丝 PTC 根据输入电流和最高工作环境温度选择,压敏电阻 RV1 的通

流容量根据输入浪涌电流大小选择(一个不够时,可用几个并联,参照“一、交流电源

防雷器” ),压敏电压应在 470~620V 之间选取(电压很不稳定的地方应选更高的)。

② RV2、RV3 根据 U1、U2 的数值选择压敏电压值,外形大小根据输出线长度选 择,不带长引线时用 5D 或 7D,用长引线输出时,应选用通流容量更大的压敏电阻(引 线越长,通流容量要越大)。输出电流较大时,要在线上串联自恢复保险丝 PTC2、PTC3 (根据输出电流和最高环境温度选择)。

③陶瓷气体放电管一般用直流击穿电压 470V 的,通流容量根据输入浪涌电流大小 选择。

五、通讯电子设备的保护电路

电路一:

29

说明:

①本电路适用于架空线引入或其它浪涌电流较大的场合。

②陶瓷气体放电管的最大放电电流一般选 10kA 或 5kA,直流击穿电压根据信号电 压幅度选择,见下表:

③TVS 管用 P6KE220CA 型。如果传输线上没有振铃信号,则可用 P6KE68CA 型。 ④R1、R2 可以用普通金属氧化膜电阻(4.3~5.6Ω),也可以用冷态电阻相当的正 温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。

五、通讯电子设备的保护电路

电路二:

30

说明:

①在埋地电缆引入或其它浪涌电流较小的场合使用。 ②BLSA1、BLSA2 用 YA-301 型或 YS-301 型玻璃放电管。

③TVS 管用 P6KE220CA 型。如果传输线上没有振铃信号,TVS 管可用 P6KE68CA 型。 ④R1、R2 可以用普通金属氧化膜电阻(3.6~5.1Ω),也可以用冷态电阻相当的正 温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。

31

五、通讯电子设备的保护电路 电路三:

(2)没有振铃信号:

说明:

①在埋地电缆引入或其它浪涌电流较小的场合使用。

②R1、R2 可以用普通金属氧化膜电阻(3.6~5.1Ω),也可以用冷态电阻相当的正 温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。

③使用电压低(≤100V)的半导体过压保护器时,必须如图所示在接地端串联玻璃

放电管(BLSA3);当使用电压高于 100V 的半导体过压保护器时可以不串联玻璃放电管。

32

六、直流电源与信号同传 1、110V 不接地电源与信号同传:

2、+24V 负极接地电源与信号同传

33

七、信号电路的二级双重保护方式

说明:

图中所标元件型号适用于信号幅度≤6V,整流桥中所接的 P0080 可以用 P6KE7.5A 型 TVS 管代替(负端朝左)。其它信号幅度时,要更换元件型号。

34

八、检测/控制电路的保护

例如:水、电、煤气抄表系统,门禁、对讲、报警系统,这类系统一 般采用低频(脉冲)信号或直流(交流)开关信号。这类系统又分为不接 地系统和接地系统两大类。

(1

说明:

①R1、R2 可以用普通金属氧化膜电阻(4.3~5.1Ω),也可以用冷态电阻相当的正 温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。

②陶瓷气体放电管和 TVS 管的直流击穿电压根据信号电压幅度选择,见下表: ③电路中没有连续直流电压时,TVS 管可以用击穿电压相当的半导体过压保护器代 替。当浪涌电流较小时,陶瓷气体放电管可以用击穿电压相当的玻璃放电管代替。

35

八、检测/控制电路的保护

例如:水、电、煤气抄表系统,门禁、对讲、报警系统,这类系统一 般采用低频(脉冲)信号或直流(交流)开关信号。这类系统又分为不接 地系统和接地系统两大类。

(2)接地系统保护电路:

说明:

①R 可以用普通金属氧化膜电阻(4.3~5.1Ω),也可以用冷态电阻相当的正温度 系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。

③电路中没有连续直流电压时,TVS 管可以用击穿电压相当的半导体过压保护器代 替。当浪涌电流较小时,陶瓷气体放电管可以用击穿电压相当的玻璃放电管代替。

36

九、单级信号防雷器 1

说明:

①可用于信号频率/传输速率很高,但没有连续直流电压的场合。 ②玻璃放电管的直流击穿电压应根据信号电压峰值,按下式选择:

VBRmin≥1.2USpeak

③既可以对不接地的双线传输线进行保护,也可以在有公共接地线的传输系统中 (如图中虚线所示)对需要保护的线进行独立保护。

37

九、单级信号防雷器

2、只用半导体过压保护器的保护电路 (1)不带差模保护

(2)带差模保护

说明:

①可用于信号频率/传输速率较低,且没有连续直流电压的场合。 ②半导体过压保护器的击穿电压应根据信号峰值电压,按下式选择: VBR≥1.2USpeak

③当所用半导体过压保护器的击穿电压低于 100V 时,应在接地端串联一个击穿电 压大于 100V 的二端半导体过压保护器或玻璃放电管再接地,如下图所示。

④当传输线中有公共接地线(如图中虚线所示)时,采用“(1)不带差模保护” 的电路,可以对 1 线、2 线、……分别进行保护。

(2)带差模保护

38

九、单级信号防雷器 3、只用 TVS 管的保护电路

(1)不带差模保护

说明:

①可用于信号频率/传输速率较低、线路中可能有连续直流电压、浪涌电流较小的 场合。

②TVS 管的直流击穿电压应根据信号电压峰值,按下式选择:

VBRmin≥1.2USpeak

③当接地线较长、信号易受干扰时,可在 TVS1、TVS2(左图)或 TVS2、TVS3(右

图)之间加接击穿电压大于 100V 的 TVS 管或玻璃放电管再接地,如下图所示。

④当传输线中有公共接地线(如图中虚线所示)时,采用“(1)不带差模保护” 的电路,可以对 1 线、2 线、……分别进行保护。

39

九、单级信号防雷器 4、复合保护电路

①可用于信号频率/传输速率较高(≤10MHZ)的场合。整流桥若用快速恢复二极 管构成,传输信号频率/速率可达 20MHz 以上。

②当线路中有连续直流电压时,必须采用电路二。

③图中所标元件型号适用于信号幅度≤6V。信号幅度更大时,要更换整流桥中所

接元件型号(参照“两级信号保护电路”关于 TVS 管和半导体过压保护器选择的说明)。

④当接地线较长、信号易受干扰时,TVS1、TVS2 应选用击穿电压≥100V、且峰值 脉冲功率更大的 TVS 管,或采用电路三。

40

十、天馈防雷器 1、单级电路

说明:

①可以同时传送电源,保护效果较差,适用于天线不带放大器或虽然带放大器但耐 冲击能力较强的场合。

②同轴腔体和两端的接头是根据系统所用接头类型、传输信号频率范围专门设计加

工的。

③陶瓷气体放电管一般选用通流容量 20kA 的,直流击穿电压主要根据所传输的信 号功率大小选取,一般 50W 以下用 90V 的,传输功率越大,应选用直流击穿电压越高的

放电管。

④将放电管装入腔体后,用微波网络分析仪测试信号频率范围内的驻波系数、插入

损耗应满足要求。

⑤在户外使用时,腔体、接头、放电管安装孔都必须设计成防水的。

41

十、天馈防雷器 2、二级电路天馈防雷器

说明:

①保护效果好,残压低,可以同时传送电源,适用于天线带放大器或不带放大器的 场合。

②腔体和输入、输出接头是根据系统所用接头类型、传输信号频率范围专门设计加

工的。

③陶瓷气体放电管一般选用通流容量 20kA、直流击穿电压 90V 的。

④TVS 管一般用 1.5KE 系列的,击穿电压根据所传输的直流电压或交流电压峰值选

取(VBRmin≥1.2UDC 或 VBRmin≥1.2Up)。

⑤ C 是由紫铜片构成的平板电容器,平板间加聚四氟乙烯薄膜;L1、L3 是用漆包

紫铜线绕成的空心电感,L2 可用 100μH 左右的铁心电感。

⑥将元件装入腔体后,用微波网络分析仪测试信号频率范围内的驻波系数、插入损

耗应满足要求。

⑦在户外使用时,腔体、接头和盖板都必须设计成防水的。

42

十、天馈防雷器 3

说明:

①保护效果很好,残压低,可以同时传送电源,适用于天线带放大器或不带放大器 的场合。

②腔体和输入、输出接头是根据系统所用接头类型、传输信号频率范围专门设计加

工的。

③陶瓷气体放电管一般选用通流容量 20kA、直流击穿电压 90V 的。 ④压敏电阻 RV 一般选用 20D100K 型的。

⑤TVS 管一般用 1.5KE 系列的,击穿电压根据所传输的直流电压或交流电压峰值选

取(VBRmin≥1.2UDC 或 VBRmin≥1.2Up)。

⑥C 是由紫铜片构成的平板电容器,平板间加聚四氟乙烯薄膜;L1、L4 是用漆包紫

铜线绕成的空心电感,L2、L3 可用 100μH 左右的铁心电感。

⑦将元件装入腔体后,用微波网络分析仪测试信号频率范围内的驻波系数、插入损

耗应满足要求。

⑧在户外使用时,腔体、接头和盖板都必须设计成防水的。

43

十一、防静电保护器 电路一: 电路二:

电路三:

电路四:

被部件或电路

被 部件或电路

TVS

RV

说明:

① “电路一”响应时间最短,通流量较小,适用于不能接地的设备、部件或电路; ② “电路二”响应时间较短,通流量可大可小,适用于不能接地的设备、部件或 电路;

③ “电路三”响应时间很短,通流量较大,适用于可以接地的设备、部件或电路; ④ “电路四”响应时间较短,通流量较小,适用于可以接地的设备、部件或电路;

⑤ 所用器件的击穿电压(压敏电压)应低于被保护设备、部件或电路所能承受的 最高电压,但要高于电路最高工作电压,通流量根据可能感应的最大静电荷量折算成的 电流值选取。


相关内容

  • 仪表及控制系统接地
  • 仪表及控制系统接地 叶向东 摘要:结合仪表及控制系统接地的工作原理,根据有关规范,讨论了接地工程的设计方法和一些实际问题. 关键词:仪表及控制系统:接地:接地连接:接地规范 仪表及控制系统接地不是一个新的论题,很多问题早有结论,也有正确的设计方法.但在部分工程技术人员中,仍存在一些模糊概念和疑虑.接 ...

  • 电磁兼容设计与测试
  • :针对当前严峻的电磁环境,分析了电磁干扰的来源,通过产品开发流程的分解,融入电磁兼容设计,从原理图设计.PCB 设计.元器件选型.系统布线.系统接地等方面逐步分析,总结概括电磁兼容设计要点,最后,介绍了电磁兼容测试的相关内容. 当前,日益恶化的电磁环境,使我们逐渐关注设备的工作环境,日益关注电磁环境 ...

  • 配三.配四差异对照表
  • 配三.配四差异对照表 配四 1负荷计算及无功功率补偿 1.1概述 1 1 概述 P001 1.1.1基本概念 配三 1.1.2计算负荷的分类及其用途11.1.3负荷曲线和计算参数21.1.4负荷计算法的选择1.2设备功率的确定 4 3 设备功率的确定 P001 1.1.5本章适用范围和使用说明41. ...

  • 华为设备硬件安装要求
  • 深圳市华为技术服务有限公司 通信设备硬件安装要求 2005年2 月 目 录 前 言 第一章 机柜机箱安装 第二章 信号电缆布放 第三章 终端天线等安装 第四章 电源.接地 第五章 设备安装环境 第六章 通信工程防护技术 附件1:安全生产口诀 附件2:硬件质量标准口诀 2 1 4 8 12 15 22 ...

  • 电力职业技能鉴定查询
  • 目录 基本信息 内容简介 同名图书 基本信息 简介 基本信息 内容简介 同名图书 基本信息 简介 展开百分网基本信息 出版社: 中国水利水电出版社; 第1版 (20xx年4月1日) 平装: 386页 开本: 16开 ISBN: 7508413946 条形码: 9787508413945 产品尺寸及重 ...

  • 制药工程学课程教学大纲
  • <制药工程学>课程教学大纲 课程编号:02033 英文名称:Pharmaceutical engineering 一.课程说明 1. 课程类别 专业课程 2. 适应专业及课程性质 制药工程专业.制药工程专业(基地班) 选修 3. 课程目的 制药工程学是制药工程专业的主干专业课程,也是我校 ...

  • 安装施工员(电气)考试大纲(2013年修订)
  • 湖南省建筑业企业专业技术管理人员岗位资格考试 安装施工员(电气方向)<专业基础知识>.<岗位知识>和<专 业实务>科目考试大纲(2013年修订) <专业基础知识> 一.建筑强电安装基础 (一)电工基础知识 1.欧姆定律和基尔霍夫定律 2.正弦交流电三要 ...

  • 维修电工初级工
  • 维修电工初级工技能培训课程教学大纲 (适用于维修电工岗前培训) 一.课程的性质和任务 为贯彻落实<中共XX 市委XX 市人民政府关于贯彻的实施意见>的文件精神,促进农村劳动力技能培训及转移就业工作.为此,在本工种职业标准的基础上,结合学员的实际情况,特制订本教学大纲. 本大纲制订的主要依 ...

  • 注册电气工程师供配电基础考试的报考条件
  • 注册电气工程师 供配电基础考试的报考条件 基础类.专业类考试大纲 注册电气工程师有两个方向,供配电和发输变电 凡中华人民共和国公民,遵守国家法律.法规,恪守职业道德,并具备相应专业教育和职业实践条件者,均可申请参加考试. 考试分为基础考试和专业考试.参加基础考试合格并按规定完成职业实践年限者,方能报 ...