多目标优化问题的研究概述
摘要: 本文在查阅相关资料的基础上对多目标优化问题进行了一般性描述,详细介绍了实际生活中存在的多目标优化问题以及解决多目标优化题的几种典型算法, 讨论了各个算法存在的优缺点。
关键词: 多目标优化; 进化算法; 粒子群算法; 蚁群算法; 模拟退火
生活中, 许多问题都是由相互冲突和影响的多个目标组成。人们会经常遇到使多个目标在给定区域同时尽可能最佳的优化问题, 也就是多目标优化问题。优化问题存在的优化目标超过一个并需要同时处理, 就成为多目标优化问题(multi-objective optimization-problem, MOP)。多目标优化问题在工程应用等现实生活中非常普遍并且处于非常重要的地位,这些实际问题通常非常复杂、困难,是主要研究领域之一。自20世纪60年代早期以来,多目标优化问题吸引了越来越多不同背景研究人员的注意力。因此,解决多目标优化问题具有非常重要的科研价值和实际意义。
实际中优化问题大多数是多目标优化问题,一般情况下,多目标优化问题的各个子目标之间是矛盾的,一个子目标的改善有可能会引起另一个或者另几个子目标的性能降低, 也就是要同时使多个子目标一起达到最优值是不可能的, 而只能在它们中间进行协调和折中处理, 使各个子目标都尽可能地达到最优化。其与单目标优化问题的本质区别在于,它的解并非唯一, 而是存在一组由众多Pareto最优解组成的最优解集合, 集合中的各个元素称为Pareto最优解或非劣最优解。
1 多目标优化问题的描述
多目标优化问题用文字描述为D个决策变量参数、N个目标函数、m+n个约束条件组成一个优化问题,决策变量与目标函数、约束条件是函数关系。在非劣解集中决策者只能根据具体问题要求选择令其满意的一个非劣解作为最终解。多目标优化问题的数学形式可以如下描述:
min y=f(x)=[f1(x),f2(x),…,fn(x)]
n=1,2,…,N
st
多目标优化问题的研究概述
摘要: 本文在查阅相关资料的基础上对多目标优化问题进行了一般性描述,详细介绍了实际生活中存在的多目标优化问题以及解决多目标优化题的几种典型算法, 讨论了各个算法存在的优缺点。
关键词: 多目标优化; 进化算法; 粒子群算法; 蚁群算法; 模拟退火
生活中, 许多问题都是由相互冲突和影响的多个目标组成。人们会经常遇到使多个目标在给定区域同时尽可能最佳的优化问题, 也就是多目标优化问题。优化问题存在的优化目标超过一个并需要同时处理, 就成为多目标优化问题(multi-objective optimization-problem, MOP)。多目标优化问题在工程应用等现实生活中非常普遍并且处于非常重要的地位,这些实际问题通常非常复杂、困难,是主要研究领域之一。自20世纪60年代早期以来,多目标优化问题吸引了越来越多不同背景研究人员的注意力。因此,解决多目标优化问题具有非常重要的科研价值和实际意义。
实际中优化问题大多数是多目标优化问题,一般情况下,多目标优化问题的各个子目标之间是矛盾的,一个子目标的改善有可能会引起另一个或者另几个子目标的性能降低, 也就是要同时使多个子目标一起达到最优值是不可能的, 而只能在它们中间进行协调和折中处理, 使各个子目标都尽可能地达到最优化。其与单目标优化问题的本质区别在于,它的解并非唯一, 而是存在一组由众多Pareto最优解组成的最优解集合, 集合中的各个元素称为Pareto最优解或非劣最优解。
1 多目标优化问题的描述
多目标优化问题用文字描述为D个决策变量参数、N个目标函数、m+n个约束条件组成一个优化问题,决策变量与目标函数、约束条件是函数关系。在非劣解集中决策者只能根据具体问题要求选择令其满意的一个非劣解作为最终解。多目标优化问题的数学形式可以如下描述:
min y=f(x)=[f1(x),f2(x),…,fn(x)]
n=1,2,…,N
st