网络层常用协议

网络层常用协议

一.SDH

1.SDH简介

SDH(Synchronous Digital Hierarchy,同步数字系列)是一种将复接、线路传输及交换功能融为一体、并由统一网管系统操作的综合信息传送网络,是美国贝尔通信技术研究所提出来的同步光网络(SONET)。CCITT(现ITU-T)于1988年接受了SONET 概念并重新命名为SDH。 它可实现网络有效管理、实时业务监控、动态网络维护、不同厂商设备间的互通等多项功能,能大大提高网络资源利用率、降低管理及维护费用、实现灵活可靠和高效的网络运行与维护,因此是当今世界信息领域在传输技术方面的发展和应用的热点,受到人们的广泛重视。 SDH就是在这种背景下发展起来的。在各种宽带光纤接入网技术中,采用了SDH技术的接入网系统是应用最普遍的。SDH的诞生解决了由于入户媒质的带宽限制而跟不上骨干网和用户业务需求的发展,而产生了用户与核心网之间的接入"瓶颈"的问题,同时提高了传输网上大量带宽的利用率。

2.SDH的帧结构

SDH采用的信息结构等级称为同步传送模块STM-N,基本的模块为STM-1,四个STM-1同步复用构成STM-4,16个STM-1或四个 STM-4同步复用构成STM-16;SDH采用块状的帧结构来承载信息,每帧由纵向9行和横向 270×N列字节组成,每个字节含8bit,整个帧结构分成段开销(Section OverHead,SOH)区、STM-N净负荷区和管理单元指针(AU PTR)区三个区域,其中段开销区主要用于网络的运行、管理、维护及指配以保证信息能够正常灵活地传送,它又分为再生段开销(Rege nerator Section OverHead,RSOH)和复用段开销(Multiplex Section OverHead, MSOH);净负荷区用于存放真正用于信息业务的比特和少量的用于通道维护管理的通道开销字节;管理单元指针用来指示净负

荷区内的信息首字节在STM-N帧内的准确位置以便接收时能正确分离净负荷。

1)信息净负荷(payload)是在STM-N帧结构中存放将由STM-N传送的各种

用户信息码块的地方。

2)段开销(SOH)是为了保证信息净负荷正常传送所必须附加的网络运行、管理和维护(OAM)字节。

3)管理单元指针(AU-PTR)

管理单元指针位于STM-N帧中第4行的9×N列,共9×N个字节。SDH能够从高速信号中直接分/插出低速支路信号(例如2Mbit/s),这是因为低速支路信号在高速SDH信号帧中的位置有预见性,也就是有规律性。预见性的实现就在于SDH帧结构中指针开销字节功能。AU-PTR是用来指示信息净负荷的第一个字节在STM-N帧内的准确位置的指示符,以便接收端能根据这个位置指示符的值(指针值)准确分离信息净负荷。

3.SDH和PDH的比较

传统的数字通信制式是异步数字系列(PDH)。所谓异步是指各级比特率相对其标称值有一个规定容限的偏差,而且是不同源的。在数字通信发展初期,异步数字系列起到很大作用,使数字复用设备能先于数字交换设备得到开发。但在数字网技术迅速发展的今天,这种基于点对点的体制正暴露出一些固有的弱点。SDH的问世之所以被称为是通信传输体制上的重大变革,皆因其具有许多PDH所不及的优点。

1)SDH拥有全世界统一的网络节点接口(NNI),是真正的数字传输体制上的国际性标准。 长期以来,世界各国数字通信设备基本上都采用准同步数字系列(PDH),但由于PCM基群复用设备所采用的编码律及复用路数不同,故形成了两种不同的地区性数字体制标准:一种是俄罗斯和欧洲系列(中国亦采用此系列),以2Mbit/s为基础;另一种是北美和日本系列,以1.5sMbit/s为基础。由于这两种系列具有不同的比特率,因此,各个国家的设备只有通过光/电转换变成标准电接口才能互通,在光路上则无法实现互相调配。由于两大系列难以兼容,限制了联网应用的灵活性,增加了网络运营成本,故给国际间互通联网带来了困难,而且向更高群次发展在技术上也有更大难度。由于SDH有一套开放的标准化光接口,因而使现有准同步两大数字系列得以兼容,可以很方便地在光路上实现不同厂家新产品的互通,使信号传输、复用和交换过程得到简化,从而降低联网成本。

2)SDH拥有一套标准化的信息结构等级,称为同步传送模块(STM),并采用步复用方式,使得利用软件就可以从高速复用信号中一次分出(插入)低速支路信号,不仅简化了上下话路的业务,也使交叉连接得以方便实现。

3)SDH拥有丰富的开销比特(约占信号的5%),以用于网络的运行、维护和管理。 SDH具有自愈保护功能,可大大提高网络的通信质量和应付紧急的能力。SDH网结构有很强的适应性,现有的准同步数字体系、同步数字体系和宽带综合业务数字网(B-ISDN)均可进入其帧结构。

二.FDDI

1.简介

光纤分布数据接口(FDDI=fiber-distribute data interface)是目前成熟的LAN技术中传输速率最高的一种。这种传输速率高达100Mb/s的网络技术所依据的标准是ANSIX3T9.5。该网络具有定时令牌协议的特性,支持多种拓扑结构,传输媒体为光纤。

2.特点

使用光纤作为传输媒体具有多种优点:

1)较长的传输距离,相邻站间的最大长度可达2KM,最大站间距离为200KM

2)具有较大的带宽,FDDI的设计带宽为100Mb/s.

3)具有对电磁和射频干扰抑制能力,在传输过程中不受电磁和射频噪声的影响,也不影响其设备。

4)光纤可防止传输过程中被分接偷听,也杜绝了辐射波的窃听,因而是最安全的传输媒体。

3.应用

由光纤构成的FDDI,其基本结构为逆向双环。一个环为主环,另一个环为备用环。一个顺时针传送信息,另一个逆时针。当主环上的设备失效或光缆发生故障时,通过从主环向备用环的切换可继续维持FDDI的正常工作。这种故障容错能力是其它网络所没有的。

FDDI使用了比令牌环更复杂的方法访问网络。和令牌环一样,也需在环内传递一个令牌,而且允许令牌的持有者发送FDDI帧。和令牌环不同,FDDI网络可在环内传送几个帧。这可能是由于令牌持有者同时发出了多个帧,而非在等到第一个帧完成环内的一圈循环后再发出第二个帧。

令牌接受了传送数据帧的任务以后,FDDI令牌持有者可以立即释放令牌,把它传给环内的下一个站点,无需等待数据帧完成在环内的全部循环。这意味着,第一个站点发出的数据帧仍在环内循环的时候,下一个站点可以立即开始发送自己的数据。

FDDI用得最多的是用作校园环境的主干网。这种环境的特点是站点分布在多个建筑物中。FDDI也常常被划分在城域网MAN的范围

三.MSTP 1.简介:

MSTP(Multi-Service Transfer Platform)(基于SDH 的多业务传送平台)是指基于SDH 平台同时实现TDM、ATM、以太网等业务的接入、处理和传送,提供统一网管的多业务节点。

2.原理:

MSTP可以将传统的SDH复用器、数字交叉链接器(DXC)、WDM终端、网络二

层交换机和IP边缘路由器等多个独立的设备集成为一个网络设备,即基于SDH技术的多业务传送平台(MSTP),进行统一控制和管理。基于SDH的MSTP最适合作为网络边缘的融合节点支持混合型业务,特别是以TDM业务为主的混合业务。它不仅适合缺乏网络基础设施的新运营商,应用于局间或POP间,还适合于大企事业用户驻地。而且即便对于已敷设了大量SDH网的运营公司,以SDH为基础的多业务平台可以更有效地支持分组数据业务,有助于实现从电路交换网向分组网的过渡。所以,它将成为城域网近期的主流技术之一。

SDH必须从传送网转变为传送网和业务网一体化的多业务平台,即融合的多业务节点。MSTP的实现基础是充分利用SDH技术对传输业务数据流提供保护恢复能力和较小的延时性能,并对网络业务支撑层加以改造,以适应多业务应用,实现对二层、三层的数据智能支持。即将传送节点与各种业务节点融合在一起,构成业务层和传送层一体化的SDH业务节点,称为融合的网络节点或多业务节点,主要定位于网络边缘。

3.特点:

1)业务的带宽灵活配置,MSTP上提供的10/100/1000Mbit/s系列接口,通过VC的捆绑可以满足各种用户的需求;

2)可以根据业务的需要,工作在端口组方式和VLAN方式,其中VLAN方式可以分为接入模式和干线模式:

·端口组方式:单板上全部的系统和用户端口均在一个端口组内。这种方式只能应用于点对点对开的业务。换句话说,也就是任何一个用户端口和任何一个系统端口(因为只有一个方向,所以没有必要启动所有的系统端口,一个就足够了)被启用了,网线插在任何一个启用的用户端口上,那个用户口就享有了所有带宽,业务就可以开通。

·VLAN方式:分为接入模式和干线模式。 其中的接入模式,如果不设定VLAN ID,则端口处于端口组的工作方式下,单板上全部的系统和用户端口均在一个端口组内。如果设定了VLAN ID,需要设定“端口VLAN标记”。这是因为交换芯片会为收到的数据包增加VLAN ID,然后通过系统端口走光纤发到对端同样VLAN ID的端口上。比如某个用户口VLAN ID为2,则对应站点的用户端口的VLAN ID也应该设定为2。这种模式可以应用于多个方向的MSTP业务,这时每个方向的端口都要设置不同的VLAN ID。然后把该方向的用户端口和系统端口放置到一个虚拟网桥中。

3)可以工作在全双工、半双工和自适应模式下,具备MAC地址自学习功能;

4)QoS设置:QoS实际上限制端口的发送,原理是发送端口根据业务优先级上有许多发送队列,根据QoS的配置和一定的算法完成各类优先级业务的发送。因此,当一个端口可能发送来自多个来源的业务,而且总的流量可能超过发送端口的发送带宽时,可以设置端口的QoS能力,并相应地设置各种业务的优先级配置。当QoS不作配置时,带宽平均分配,多个来源的业务尽力传输。QoS的配置就是规定各端口在共享同一带宽时的优先级及所占用带宽的额度。

4.应用:

MSTP技术在现有城域传输网络中备受关注,得到了规模应用,并且即将作为业界的一项行业标准而发布。它的技术优势与其他技术相比在于:解决了SDH技术对于数据业务承载效率不高的问题;解决了ATM/IP 对于TDM业务承载效率

低、成本高的问题;解决了IP QoS不高的问题;解决了RPR技术组网限制问题,实现双重保护,提高业务安全系数;增强数据业务的网络概念,提高网络监测、维护能力;降低业务选型风险;实现降低投资、统一建网、按需建设的组网优势;适应全业务竞争需求,快速提供业务。 MSTP使传输网络由配套网络发展为具有独立运营价值的带宽运营网络,利用自身成熟的技术优势提供质高价廉的带宽资源,满足城域带宽需求。由于自身多业务的特性,利用B-ADM 设备构建的城域传输网可以根据用户的要求提供种类丰富的带宽服务内容,MSTP技术体制下的B-ADM设备在网络调度、设备等一些方面融入运营理念、智能特性,实现业务的方便、快捷的建立,从而进一步保证带宽运营的可实施性,满足市场对于城域传输网络的需求。

四.ATM

1.ATM的简介

ATM(Asychronous Transfer Mode,异步转移模式)是一种能高速传递综合业务信息、效率高、控制灵活、新颖的信息传递模式,已被 ITU-T确定为传送和交换语音、图像、数据及多媒体信息的工具,受到人们的广泛重视,是今天信息交换的热门话题之一。ATM技术诞生有其必然性,随着信息化社会的到来,人们对通信的需求已远远超出传统电话及电报业务,数据通信、宽带通信需求日益增大,由于它们的带宽及业务量要求不同,传统通信手段已很难实现。例如,现有的网络都是为某种特定业务设计的,往往不适用其它业务:有线电视网不能传送电话业务,而电信网也不能传送电视信号。很显然这些网络技术对新业务的支持能力不够。人们希望将来最好只有一个网络存在,它不依赖于业务,可灵活、安全、经济、有效地利用所有资源,ATM技术就被视为实现的关键技术。

ATM系统是使用异步时分复用技术的快速分组交换方式,它将信息流分割成固定长度的ATM信元,能比较容易地实现各种信息流混合在一起的多媒体通信,能根据业务类型、传输速率等要求动态分配有效容量,对高速信息元传输频次高,对低速信息元传输频次低。因此ATM能采用单一的交换方式,支持从窄带话音、数据传输到HDTV等范围极广的各种业务。为了完成传送ATM信元的工作,一个典型的ATM交换机应有入线和出线处理、ATM交换单元和ATM控制三个基本部分,其中ATM交换单元是关键,它按照要求将入线上的ATM信元转送到需要的出线去,从而完成交换动作。控制单元对交换单元的动作进行控制;入线处理对输入的ATM信元进行处理,使之适合ATM交换单元的要求;出线处理对交换单元送出的信元进行处理,使之适合线路传输的要求。

2.ATM的历史

ATM实际上是一种快速的交换方式。对于计算机和终端之间的通信,交换是一个重要的问题。如果我们想使用任何遥远的计算机 ,若没有交换机,只能采用点对点的通信。为避免建立多条点对点的信道,就必须使计算机 和某种形式的交换设备相连。交换又称转接,这种交换通过某些交换中心将数据进行集中

和转送,可以大大节省通信线路。在当前的数据通信网中,有三种交换方式,那就是电路交换 、报文交换和分组交换。一个通信网的有效性、可靠性和经济性直接受网中所采用的交换方式的影响。

1)电路交换

在数据通信网发展初期,人们根据电话交换原理,发展了电路交换方式。当用户要发信息时由源交换机根据信息要到达的目的地址,把线路接到那个目的交换机。这个过程称为线路接续,是由所谓的联络信号经存储转发方式完成的,即根据用户号码或地址(被叫),经局间中继线传送给被叫交换局并转被叫用户。线路接通后,就形成了一条端对端的信息通路,在这条通路上双方即可进行通信。通信完毕,由通信双方的某 一方,向自己所属的交换机发出拆除线路的要求,交换机收到此信号后就将此线路拆除,以供别的用户呼叫使用。

由于电路交换的接续路径是采用物理连接的,在传输电路接续后,控制电路就与信息传输 无关,所以电路交换方式的主要优点是:

①信息传输延迟小,就给定的接续路由来说,传输延迟是固定不变的;

②信息编码方法、信息格式以及传输控制程序等都不受限制,即可向用户提供透明的通路 。

电路交换的主要缺点是电路接续时间长、线路利用率低,目前电路交换方式的数据通信网是 利用现有电话网实现的,所以数据终端的接续控制等信号要作到与电话网兼容。

2)分组交换

由数据终端设备A发出的数据信息,通过用户线送到交换机(节点机)a暂时存储,在交换机a内分成具有一定长度的分组 并在每一分组前边加上指明该分组发端地址、收端地址及分组序号 的分组标题。

交换机a为了把这分组转发给接收局交换机γ,就需要选择空闲路由。可以根据交换网的状 态给每个分组选择不同路由,一般不会出现仅仅因为某一路由过忙而不能转发的情况。

分组数据到达终点局的交换机γ后,再按照接收地址来分发。由于各分组数据是经过各自的 路 由转送来的,所以它们未必能按照A B C的先 后顺序到达。因此,交换机γ应按分组的序号重新排列,最后,通过用户线将数据送至数 据终端设备C。

3)ATM

ATM真正具有电路交换和分组交换的双重性:ATM面向连接,它需要在通信双方向建立连接,通信结束后再由信令拆除连接。但它摈弃了电路交换中采用的同步时分复用,改用异步时分复用,收发双方的时钟可以不同,可以更有效地利用带宽。

3.信元交换和帧交换的区别

帧交换是帧中继采用的交换技术,信元交换是ATM的交换技术,他们都属于快速分组交换技术,主要区别在:前者的帧长是可变的,后者的帧(信元)长是固定的。

1)帧交换技术

在帧中继网内,帧的长度是可变的,最大长度可达1000字节以上,每帧含有“数据链路连接标识符”,从源点DTE到终点DTE之间所有途径的结点根据此标识符指明信道。当FCS校验发现有错时,分组即被丢弃并由终点和源点设

备间负责检错重发。帧交换类似于路由器/桥接器,在工作站或网络区段之间传递以太网或令牌环网,只需要一个以太网或令牌环接口,帧交换器便可与任何网络设备连接( 如个人机、工作站、集线器等),无须再配置接口。帧交换器可以辨认每个终端站的地址,当收到信息以后,便会审查其终点MAC地址,然后把信息包前送至终站上拥有相同MAC地址的输出端口。该输出端口可直接与终端站连接,或连接多个用户的公共区段,或另一个与终端站连接的交换器。

2)ATM交换技术

ATM(即异步传输模式)交换称为信无交换, 它是在光纤大容量传输媒体的环境中分组交换技术的新发展。ATM中把数字化的语音、 数据及图像信息分成固定长度的若干段,称为信元,由用户信息字段和信元头组成,如图2。信元数据根据信源动作按需分配。同一个虚信道上的信元整体性由ATM层保持, 而源信号与信元号之间由适配层来控制。

ATM技术与帧交换之间主要有两大区别:第一,ATM交换由53字节组成的固定长度的信元,不同于帧中继技术交换长度不一的以太网和令牌环帧。第二,ATM 传送速度更高,可在155至622Mb/s之间,适合于B-ISDN的多种业务信号混合传输,而帧中继属于局域网与广域网的通信范围。

由于ATM所传送的信元长度固定,ATM交换速度比一般路由器快。因此,ATM 技术实现的通信网可支持语音、数据以及图像传送,提供专用高带宽以及可预测性能,适合企业局域网使用,并可直接支持多媒体计算机。

4.ATM的详细格式

异步传输模式(ATM)在 ATM 参考模式下由一个协议集组成,用来建立一个在固定 53 字节的数据包(信元)流上传输所有通信流量的机制。固定大小的包可以确保快速且容易地实现交换和多路复用。 ATM 是一种面向连接的技术,也就是说,两个网络系统要建立相互间的通信,需要通知中间介质服务需求和流量参数。

ATM 参考模式分为三层:ATM 适配层(AAL)、ATM 层和物理层。 AAL 连接更高层协议到 ATM 层,其主要负责上层与 ATM 层交换 ATM 信元。当从上层收到信息后, AAL 将数据分割成 ATM 信元;当从 ATM 层收到信息后, AAL 必须重新组合数据形成一个上层能够辨识的格式,上述过程即称之为分段与重组(SAR)。不同的 AAL 用于支持在 ATM 网络上使用的不同的流量或服务类型。

ATM 层主要负责将信元从 AAL 转发给物理层便于传输和将信元从物理层转发给 AAL 便于其在终端系统的使用。 ATM 层能够决定进来的信元应该被转发至哪里;重新设置相应的连接标识符并且转发信元给下一个链接、缓冲信元以及处理各种流量管理功能,如信元丢失优先权标记、拥塞标注和通用流控制访问。此外 ATM 层还负责监控传输率和服从服务约定(流量策略)。

ATM 的物理层定义了位定时及其它特征,将数据编码并解码为适当的电波或光波形式,用于在特定物理媒体上传输和接收。此外它还提供了帧适配功能,包括信元描绘、信头错误校验(HEC)的生成和处理、性能监控以及不同传输格式的负载率匹配。物理层通常使用的介质有 SONET 、DS3 、光纤、双绞线等。

协议结构 ATM 信元格式:

GFC or VPI VPI

VPI VCI

HEADER VCI

VCI/td> PT(3 Bit) CLP

HEC

IE Cell Payload(48 Bytes)

∙ Header ― (5字节)通用流控制 VPI/VCI 和其它控制头。

∙ IE — (48字节)信元有效载荷。

问题和回答:

1.既然光纤有如此的优点,为何光纤没有在各种领域普及? 答:光纤虽然传输性能较好,但是它的机械强度却很差,容易折断,而且光纤光缆的弯曲半径不能太小,造成了普及性的困难。

2.传输时,每个帧结构的大小是多一些好呢,还是少一些好呢? 答:要视具体情况而定,如果要求传输速率不高而对正确率的要求比较高,那么帧结构的是小一点比较好,这样能提高正确率。如果对速率的要求比较高,那么帧结构大一些好,因为帧结构大了,帧头帧尾的数据相对少一些,提高了速率。

网络层常用协议

一.SDH

1.SDH简介

SDH(Synchronous Digital Hierarchy,同步数字系列)是一种将复接、线路传输及交换功能融为一体、并由统一网管系统操作的综合信息传送网络,是美国贝尔通信技术研究所提出来的同步光网络(SONET)。CCITT(现ITU-T)于1988年接受了SONET 概念并重新命名为SDH。 它可实现网络有效管理、实时业务监控、动态网络维护、不同厂商设备间的互通等多项功能,能大大提高网络资源利用率、降低管理及维护费用、实现灵活可靠和高效的网络运行与维护,因此是当今世界信息领域在传输技术方面的发展和应用的热点,受到人们的广泛重视。 SDH就是在这种背景下发展起来的。在各种宽带光纤接入网技术中,采用了SDH技术的接入网系统是应用最普遍的。SDH的诞生解决了由于入户媒质的带宽限制而跟不上骨干网和用户业务需求的发展,而产生了用户与核心网之间的接入"瓶颈"的问题,同时提高了传输网上大量带宽的利用率。

2.SDH的帧结构

SDH采用的信息结构等级称为同步传送模块STM-N,基本的模块为STM-1,四个STM-1同步复用构成STM-4,16个STM-1或四个 STM-4同步复用构成STM-16;SDH采用块状的帧结构来承载信息,每帧由纵向9行和横向 270×N列字节组成,每个字节含8bit,整个帧结构分成段开销(Section OverHead,SOH)区、STM-N净负荷区和管理单元指针(AU PTR)区三个区域,其中段开销区主要用于网络的运行、管理、维护及指配以保证信息能够正常灵活地传送,它又分为再生段开销(Rege nerator Section OverHead,RSOH)和复用段开销(Multiplex Section OverHead, MSOH);净负荷区用于存放真正用于信息业务的比特和少量的用于通道维护管理的通道开销字节;管理单元指针用来指示净负

荷区内的信息首字节在STM-N帧内的准确位置以便接收时能正确分离净负荷。

1)信息净负荷(payload)是在STM-N帧结构中存放将由STM-N传送的各种

用户信息码块的地方。

2)段开销(SOH)是为了保证信息净负荷正常传送所必须附加的网络运行、管理和维护(OAM)字节。

3)管理单元指针(AU-PTR)

管理单元指针位于STM-N帧中第4行的9×N列,共9×N个字节。SDH能够从高速信号中直接分/插出低速支路信号(例如2Mbit/s),这是因为低速支路信号在高速SDH信号帧中的位置有预见性,也就是有规律性。预见性的实现就在于SDH帧结构中指针开销字节功能。AU-PTR是用来指示信息净负荷的第一个字节在STM-N帧内的准确位置的指示符,以便接收端能根据这个位置指示符的值(指针值)准确分离信息净负荷。

3.SDH和PDH的比较

传统的数字通信制式是异步数字系列(PDH)。所谓异步是指各级比特率相对其标称值有一个规定容限的偏差,而且是不同源的。在数字通信发展初期,异步数字系列起到很大作用,使数字复用设备能先于数字交换设备得到开发。但在数字网技术迅速发展的今天,这种基于点对点的体制正暴露出一些固有的弱点。SDH的问世之所以被称为是通信传输体制上的重大变革,皆因其具有许多PDH所不及的优点。

1)SDH拥有全世界统一的网络节点接口(NNI),是真正的数字传输体制上的国际性标准。 长期以来,世界各国数字通信设备基本上都采用准同步数字系列(PDH),但由于PCM基群复用设备所采用的编码律及复用路数不同,故形成了两种不同的地区性数字体制标准:一种是俄罗斯和欧洲系列(中国亦采用此系列),以2Mbit/s为基础;另一种是北美和日本系列,以1.5sMbit/s为基础。由于这两种系列具有不同的比特率,因此,各个国家的设备只有通过光/电转换变成标准电接口才能互通,在光路上则无法实现互相调配。由于两大系列难以兼容,限制了联网应用的灵活性,增加了网络运营成本,故给国际间互通联网带来了困难,而且向更高群次发展在技术上也有更大难度。由于SDH有一套开放的标准化光接口,因而使现有准同步两大数字系列得以兼容,可以很方便地在光路上实现不同厂家新产品的互通,使信号传输、复用和交换过程得到简化,从而降低联网成本。

2)SDH拥有一套标准化的信息结构等级,称为同步传送模块(STM),并采用步复用方式,使得利用软件就可以从高速复用信号中一次分出(插入)低速支路信号,不仅简化了上下话路的业务,也使交叉连接得以方便实现。

3)SDH拥有丰富的开销比特(约占信号的5%),以用于网络的运行、维护和管理。 SDH具有自愈保护功能,可大大提高网络的通信质量和应付紧急的能力。SDH网结构有很强的适应性,现有的准同步数字体系、同步数字体系和宽带综合业务数字网(B-ISDN)均可进入其帧结构。

二.FDDI

1.简介

光纤分布数据接口(FDDI=fiber-distribute data interface)是目前成熟的LAN技术中传输速率最高的一种。这种传输速率高达100Mb/s的网络技术所依据的标准是ANSIX3T9.5。该网络具有定时令牌协议的特性,支持多种拓扑结构,传输媒体为光纤。

2.特点

使用光纤作为传输媒体具有多种优点:

1)较长的传输距离,相邻站间的最大长度可达2KM,最大站间距离为200KM

2)具有较大的带宽,FDDI的设计带宽为100Mb/s.

3)具有对电磁和射频干扰抑制能力,在传输过程中不受电磁和射频噪声的影响,也不影响其设备。

4)光纤可防止传输过程中被分接偷听,也杜绝了辐射波的窃听,因而是最安全的传输媒体。

3.应用

由光纤构成的FDDI,其基本结构为逆向双环。一个环为主环,另一个环为备用环。一个顺时针传送信息,另一个逆时针。当主环上的设备失效或光缆发生故障时,通过从主环向备用环的切换可继续维持FDDI的正常工作。这种故障容错能力是其它网络所没有的。

FDDI使用了比令牌环更复杂的方法访问网络。和令牌环一样,也需在环内传递一个令牌,而且允许令牌的持有者发送FDDI帧。和令牌环不同,FDDI网络可在环内传送几个帧。这可能是由于令牌持有者同时发出了多个帧,而非在等到第一个帧完成环内的一圈循环后再发出第二个帧。

令牌接受了传送数据帧的任务以后,FDDI令牌持有者可以立即释放令牌,把它传给环内的下一个站点,无需等待数据帧完成在环内的全部循环。这意味着,第一个站点发出的数据帧仍在环内循环的时候,下一个站点可以立即开始发送自己的数据。

FDDI用得最多的是用作校园环境的主干网。这种环境的特点是站点分布在多个建筑物中。FDDI也常常被划分在城域网MAN的范围

三.MSTP 1.简介:

MSTP(Multi-Service Transfer Platform)(基于SDH 的多业务传送平台)是指基于SDH 平台同时实现TDM、ATM、以太网等业务的接入、处理和传送,提供统一网管的多业务节点。

2.原理:

MSTP可以将传统的SDH复用器、数字交叉链接器(DXC)、WDM终端、网络二

层交换机和IP边缘路由器等多个独立的设备集成为一个网络设备,即基于SDH技术的多业务传送平台(MSTP),进行统一控制和管理。基于SDH的MSTP最适合作为网络边缘的融合节点支持混合型业务,特别是以TDM业务为主的混合业务。它不仅适合缺乏网络基础设施的新运营商,应用于局间或POP间,还适合于大企事业用户驻地。而且即便对于已敷设了大量SDH网的运营公司,以SDH为基础的多业务平台可以更有效地支持分组数据业务,有助于实现从电路交换网向分组网的过渡。所以,它将成为城域网近期的主流技术之一。

SDH必须从传送网转变为传送网和业务网一体化的多业务平台,即融合的多业务节点。MSTP的实现基础是充分利用SDH技术对传输业务数据流提供保护恢复能力和较小的延时性能,并对网络业务支撑层加以改造,以适应多业务应用,实现对二层、三层的数据智能支持。即将传送节点与各种业务节点融合在一起,构成业务层和传送层一体化的SDH业务节点,称为融合的网络节点或多业务节点,主要定位于网络边缘。

3.特点:

1)业务的带宽灵活配置,MSTP上提供的10/100/1000Mbit/s系列接口,通过VC的捆绑可以满足各种用户的需求;

2)可以根据业务的需要,工作在端口组方式和VLAN方式,其中VLAN方式可以分为接入模式和干线模式:

·端口组方式:单板上全部的系统和用户端口均在一个端口组内。这种方式只能应用于点对点对开的业务。换句话说,也就是任何一个用户端口和任何一个系统端口(因为只有一个方向,所以没有必要启动所有的系统端口,一个就足够了)被启用了,网线插在任何一个启用的用户端口上,那个用户口就享有了所有带宽,业务就可以开通。

·VLAN方式:分为接入模式和干线模式。 其中的接入模式,如果不设定VLAN ID,则端口处于端口组的工作方式下,单板上全部的系统和用户端口均在一个端口组内。如果设定了VLAN ID,需要设定“端口VLAN标记”。这是因为交换芯片会为收到的数据包增加VLAN ID,然后通过系统端口走光纤发到对端同样VLAN ID的端口上。比如某个用户口VLAN ID为2,则对应站点的用户端口的VLAN ID也应该设定为2。这种模式可以应用于多个方向的MSTP业务,这时每个方向的端口都要设置不同的VLAN ID。然后把该方向的用户端口和系统端口放置到一个虚拟网桥中。

3)可以工作在全双工、半双工和自适应模式下,具备MAC地址自学习功能;

4)QoS设置:QoS实际上限制端口的发送,原理是发送端口根据业务优先级上有许多发送队列,根据QoS的配置和一定的算法完成各类优先级业务的发送。因此,当一个端口可能发送来自多个来源的业务,而且总的流量可能超过发送端口的发送带宽时,可以设置端口的QoS能力,并相应地设置各种业务的优先级配置。当QoS不作配置时,带宽平均分配,多个来源的业务尽力传输。QoS的配置就是规定各端口在共享同一带宽时的优先级及所占用带宽的额度。

4.应用:

MSTP技术在现有城域传输网络中备受关注,得到了规模应用,并且即将作为业界的一项行业标准而发布。它的技术优势与其他技术相比在于:解决了SDH技术对于数据业务承载效率不高的问题;解决了ATM/IP 对于TDM业务承载效率

低、成本高的问题;解决了IP QoS不高的问题;解决了RPR技术组网限制问题,实现双重保护,提高业务安全系数;增强数据业务的网络概念,提高网络监测、维护能力;降低业务选型风险;实现降低投资、统一建网、按需建设的组网优势;适应全业务竞争需求,快速提供业务。 MSTP使传输网络由配套网络发展为具有独立运营价值的带宽运营网络,利用自身成熟的技术优势提供质高价廉的带宽资源,满足城域带宽需求。由于自身多业务的特性,利用B-ADM 设备构建的城域传输网可以根据用户的要求提供种类丰富的带宽服务内容,MSTP技术体制下的B-ADM设备在网络调度、设备等一些方面融入运营理念、智能特性,实现业务的方便、快捷的建立,从而进一步保证带宽运营的可实施性,满足市场对于城域传输网络的需求。

四.ATM

1.ATM的简介

ATM(Asychronous Transfer Mode,异步转移模式)是一种能高速传递综合业务信息、效率高、控制灵活、新颖的信息传递模式,已被 ITU-T确定为传送和交换语音、图像、数据及多媒体信息的工具,受到人们的广泛重视,是今天信息交换的热门话题之一。ATM技术诞生有其必然性,随着信息化社会的到来,人们对通信的需求已远远超出传统电话及电报业务,数据通信、宽带通信需求日益增大,由于它们的带宽及业务量要求不同,传统通信手段已很难实现。例如,现有的网络都是为某种特定业务设计的,往往不适用其它业务:有线电视网不能传送电话业务,而电信网也不能传送电视信号。很显然这些网络技术对新业务的支持能力不够。人们希望将来最好只有一个网络存在,它不依赖于业务,可灵活、安全、经济、有效地利用所有资源,ATM技术就被视为实现的关键技术。

ATM系统是使用异步时分复用技术的快速分组交换方式,它将信息流分割成固定长度的ATM信元,能比较容易地实现各种信息流混合在一起的多媒体通信,能根据业务类型、传输速率等要求动态分配有效容量,对高速信息元传输频次高,对低速信息元传输频次低。因此ATM能采用单一的交换方式,支持从窄带话音、数据传输到HDTV等范围极广的各种业务。为了完成传送ATM信元的工作,一个典型的ATM交换机应有入线和出线处理、ATM交换单元和ATM控制三个基本部分,其中ATM交换单元是关键,它按照要求将入线上的ATM信元转送到需要的出线去,从而完成交换动作。控制单元对交换单元的动作进行控制;入线处理对输入的ATM信元进行处理,使之适合ATM交换单元的要求;出线处理对交换单元送出的信元进行处理,使之适合线路传输的要求。

2.ATM的历史

ATM实际上是一种快速的交换方式。对于计算机和终端之间的通信,交换是一个重要的问题。如果我们想使用任何遥远的计算机 ,若没有交换机,只能采用点对点的通信。为避免建立多条点对点的信道,就必须使计算机 和某种形式的交换设备相连。交换又称转接,这种交换通过某些交换中心将数据进行集中

和转送,可以大大节省通信线路。在当前的数据通信网中,有三种交换方式,那就是电路交换 、报文交换和分组交换。一个通信网的有效性、可靠性和经济性直接受网中所采用的交换方式的影响。

1)电路交换

在数据通信网发展初期,人们根据电话交换原理,发展了电路交换方式。当用户要发信息时由源交换机根据信息要到达的目的地址,把线路接到那个目的交换机。这个过程称为线路接续,是由所谓的联络信号经存储转发方式完成的,即根据用户号码或地址(被叫),经局间中继线传送给被叫交换局并转被叫用户。线路接通后,就形成了一条端对端的信息通路,在这条通路上双方即可进行通信。通信完毕,由通信双方的某 一方,向自己所属的交换机发出拆除线路的要求,交换机收到此信号后就将此线路拆除,以供别的用户呼叫使用。

由于电路交换的接续路径是采用物理连接的,在传输电路接续后,控制电路就与信息传输 无关,所以电路交换方式的主要优点是:

①信息传输延迟小,就给定的接续路由来说,传输延迟是固定不变的;

②信息编码方法、信息格式以及传输控制程序等都不受限制,即可向用户提供透明的通路 。

电路交换的主要缺点是电路接续时间长、线路利用率低,目前电路交换方式的数据通信网是 利用现有电话网实现的,所以数据终端的接续控制等信号要作到与电话网兼容。

2)分组交换

由数据终端设备A发出的数据信息,通过用户线送到交换机(节点机)a暂时存储,在交换机a内分成具有一定长度的分组 并在每一分组前边加上指明该分组发端地址、收端地址及分组序号 的分组标题。

交换机a为了把这分组转发给接收局交换机γ,就需要选择空闲路由。可以根据交换网的状 态给每个分组选择不同路由,一般不会出现仅仅因为某一路由过忙而不能转发的情况。

分组数据到达终点局的交换机γ后,再按照接收地址来分发。由于各分组数据是经过各自的 路 由转送来的,所以它们未必能按照A B C的先 后顺序到达。因此,交换机γ应按分组的序号重新排列,最后,通过用户线将数据送至数 据终端设备C。

3)ATM

ATM真正具有电路交换和分组交换的双重性:ATM面向连接,它需要在通信双方向建立连接,通信结束后再由信令拆除连接。但它摈弃了电路交换中采用的同步时分复用,改用异步时分复用,收发双方的时钟可以不同,可以更有效地利用带宽。

3.信元交换和帧交换的区别

帧交换是帧中继采用的交换技术,信元交换是ATM的交换技术,他们都属于快速分组交换技术,主要区别在:前者的帧长是可变的,后者的帧(信元)长是固定的。

1)帧交换技术

在帧中继网内,帧的长度是可变的,最大长度可达1000字节以上,每帧含有“数据链路连接标识符”,从源点DTE到终点DTE之间所有途径的结点根据此标识符指明信道。当FCS校验发现有错时,分组即被丢弃并由终点和源点设

备间负责检错重发。帧交换类似于路由器/桥接器,在工作站或网络区段之间传递以太网或令牌环网,只需要一个以太网或令牌环接口,帧交换器便可与任何网络设备连接( 如个人机、工作站、集线器等),无须再配置接口。帧交换器可以辨认每个终端站的地址,当收到信息以后,便会审查其终点MAC地址,然后把信息包前送至终站上拥有相同MAC地址的输出端口。该输出端口可直接与终端站连接,或连接多个用户的公共区段,或另一个与终端站连接的交换器。

2)ATM交换技术

ATM(即异步传输模式)交换称为信无交换, 它是在光纤大容量传输媒体的环境中分组交换技术的新发展。ATM中把数字化的语音、 数据及图像信息分成固定长度的若干段,称为信元,由用户信息字段和信元头组成,如图2。信元数据根据信源动作按需分配。同一个虚信道上的信元整体性由ATM层保持, 而源信号与信元号之间由适配层来控制。

ATM技术与帧交换之间主要有两大区别:第一,ATM交换由53字节组成的固定长度的信元,不同于帧中继技术交换长度不一的以太网和令牌环帧。第二,ATM 传送速度更高,可在155至622Mb/s之间,适合于B-ISDN的多种业务信号混合传输,而帧中继属于局域网与广域网的通信范围。

由于ATM所传送的信元长度固定,ATM交换速度比一般路由器快。因此,ATM 技术实现的通信网可支持语音、数据以及图像传送,提供专用高带宽以及可预测性能,适合企业局域网使用,并可直接支持多媒体计算机。

4.ATM的详细格式

异步传输模式(ATM)在 ATM 参考模式下由一个协议集组成,用来建立一个在固定 53 字节的数据包(信元)流上传输所有通信流量的机制。固定大小的包可以确保快速且容易地实现交换和多路复用。 ATM 是一种面向连接的技术,也就是说,两个网络系统要建立相互间的通信,需要通知中间介质服务需求和流量参数。

ATM 参考模式分为三层:ATM 适配层(AAL)、ATM 层和物理层。 AAL 连接更高层协议到 ATM 层,其主要负责上层与 ATM 层交换 ATM 信元。当从上层收到信息后, AAL 将数据分割成 ATM 信元;当从 ATM 层收到信息后, AAL 必须重新组合数据形成一个上层能够辨识的格式,上述过程即称之为分段与重组(SAR)。不同的 AAL 用于支持在 ATM 网络上使用的不同的流量或服务类型。

ATM 层主要负责将信元从 AAL 转发给物理层便于传输和将信元从物理层转发给 AAL 便于其在终端系统的使用。 ATM 层能够决定进来的信元应该被转发至哪里;重新设置相应的连接标识符并且转发信元给下一个链接、缓冲信元以及处理各种流量管理功能,如信元丢失优先权标记、拥塞标注和通用流控制访问。此外 ATM 层还负责监控传输率和服从服务约定(流量策略)。

ATM 的物理层定义了位定时及其它特征,将数据编码并解码为适当的电波或光波形式,用于在特定物理媒体上传输和接收。此外它还提供了帧适配功能,包括信元描绘、信头错误校验(HEC)的生成和处理、性能监控以及不同传输格式的负载率匹配。物理层通常使用的介质有 SONET 、DS3 、光纤、双绞线等。

协议结构 ATM 信元格式:

GFC or VPI VPI

VPI VCI

HEADER VCI

VCI/td> PT(3 Bit) CLP

HEC

IE Cell Payload(48 Bytes)

∙ Header ― (5字节)通用流控制 VPI/VCI 和其它控制头。

∙ IE — (48字节)信元有效载荷。

问题和回答:

1.既然光纤有如此的优点,为何光纤没有在各种领域普及? 答:光纤虽然传输性能较好,但是它的机械强度却很差,容易折断,而且光纤光缆的弯曲半径不能太小,造成了普及性的困难。

2.传输时,每个帧结构的大小是多一些好呢,还是少一些好呢? 答:要视具体情况而定,如果要求传输速率不高而对正确率的要求比较高,那么帧结构的是小一点比较好,这样能提高正确率。如果对速率的要求比较高,那么帧结构大一些好,因为帧结构大了,帧头帧尾的数据相对少一些,提高了速率。


相关内容

  • 网络协议和常用网络协议概述
  • 网络协议(Protocol)是一种特殊的软件,是计算机网络实现其功能的最基本机制.网络协议的本质是规则,即各种硬件和软件必须遵循的共同守则.网络协议并不是一套单独的软件,它融合于其他所有的软件系统中,因此可以说,协议在网络中无所不在.网络协议遍及OSI 通信模型的各个层次,从我们非常熟悉的TCP/I ...

  • 华为认证考试重点
  • 1.一个完整的数据通信系统由报文.发送方.接收方.介质和协议五个部分组 成. 2.单工(键盘.显示器) .半双工(对讲机) .全双工(电话网络) 3.常见的网络拓扑结构:总线.星型.树型.环型和网型. 4.局域网的特点:距离短.延迟小.数据速率高.传输可靠. 5.局域网的常用网络设备:线缆.网卡.集 ...

  • 常用网络协议的层次归属
  • ftp,smtp,http,telnet,tftp 在OSI的第7层 应用层 tcp udp 在OSI的4层 传输层 ip,ICMP,IGRP,EIGRP,OSPF,ARP 在OSI的 3层 网络层 STP,VTP在OSI的 2层 数据链路层 OSI七层模型 ISO国际标准组织所定义的开放系统互连七 ...

  • 网络安全基础--网络攻防.协议与安全
  • 网络安全基础 --网络攻防.协议与安全 Douglas Jacobson 仰礼友 赵红宇 译 电子工业出版社 2011-09-21 2011-07-26: 第一部分 网络概念与威胁入门 第1章 网络体系结构 1988:首次出现针对网络上的计算机的攻击 推动网络的创新与增长的因素是网络的简单易用与互连 ...

  • 上海市高等学校计算机等级考试3W
  • 上海市高等学校计算机等级考试(三级) <计算机系统与网络技术>考试大纲 (2009年修订) 一.考试性质 上海市高等学校计算机等级考试是上海市教育委员会组织的全市高校统一的教学考试,是检测和评价高校计算机应用基础知识教学水平和教学质量重要依据之一.该项考试旨在规范和加强上海高校非计算机专 ...

  • 国家电网公司信息运维人员技术资格考试大纲
  • 附件2 国家电网公司信息运维人员 技术资格考试大纲 信息网络管理 一.考试范围 主要针对信息网(包括信息内网,信息外网),按照电网安全运行以及<国家电网公司信息网骨干网运行管理暂行规定>的要求,对路由器.交换机等硬件设备.网络链路.网管系统的维护及网络运行状态.网络性能的监控等. 二.技 ...

  • 网络安全常用名词详解
  • ------------------------------------------------------------------------------------------- 安防快线:www.sec520.com :原创动画多,精品软件更新快 论坛地址:bbs.sec520.com : 分 ...

  • S40dxx计算机网络的详细介绍及网络入门
  • S40dxx 计算机网络的详细介绍及网络入门 计算机网络设备有哪些?各有什么用途? 网络设备及部件是连接到网络中的物理实体.网络设备的种类繁多,且与日俱增.基本的网络设备有:计算机(无论其为个人电脑或服务器).集线器.交换机.网桥.路由器.网关.网络接口卡(NIC ).无线接入点(WAP ).打印机 ...

  • 培 训 大 纲
  • 中国电信2007年度 宽带业务维护服务技能竞赛 培 训 大 纲 集团公司竞赛办公室 二〇〇七年五月 前 言 <中国电信2007年度宽带业务维护服务技能竞赛培训大纲>由基础类培训大纲.终端类培训大纲.接入类培训大纲.IP 城域骨干网培训大纲和IP 长途网培训大纲等五部分组成,每部分包括课程 ...

  • 移动自组织网络 提纲--李云
  • 书名:无线自组织网络技术 作者:李云,陈前斌,唐宏 单位:重庆邮电大学 提纲: 第1章 移动自组织网概述 1.1 概述 1.2 移动自组织网络的发展历史 1.3 移动自组织网络的体系结构 1.4 移动自组织网络的特点 1.5 移动自组织网络的应用 参考文献 第2章 移动自组织网络的MAC 协议 2. ...