集合与函数概念知识点总结

高中高一数学必修1各章知识点

第一章 集合与函数概念

一、集合有关概念

1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:

1. 元素的确定性; 2.元素的互异性; 3.元素的无序性

说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

(4)集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的表示:{ „ } 如{我校的篮球队员},{太平洋, 大西洋, 印度洋, 北冰洋}

1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

2.集合的表示方法:列举法与描述法和自然语言法。

注意啊:常用数集及其记法:

非负整数集(即自然数集)记作:N

正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R

关于“属于”的概念

集合的元素通常用小写的拉丁字母表示,如:a 是集合A 的元素,就说a 属于集合A 记作 a∈A ,相反,a 不属于集合A 记作 aÏA

列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。

①语言描述法:例:{不是直角三角形的三角形}

②数学式子描述法:例:不等式x-3>2的解集是{xÎR| x-3>2}或{x| x-3>2}

4、集合的分类:

1.有限集 含有有限个元素的集合

2.无限集 含有无限个元素的集合

3.空集 不含任何元素的集合 例:{x|x2=-5}

二、集合间的基本关系

1.“包含”关系—子集

注意: 有两种可能(1)A 是B 的一部分,;(2)A 与B 是同一集合。

反之: 集合A 不包含于集合B, 或集合B 不包含集合A, 记作A B或B A

2.“相等”关系(5≥5,且5≤5,则5=5)

实例:设 A={x|x2-1=0} B={-1,1} “元素相同”

用心 爱心 专心 1

结论:对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,同时, 集合B 的任何一个元素都是集合A 的元素,我们就说集合A 等于集合B ,即:A=B

① 任何一个集合是它本身的子集。AÍA

②真子集:如果AÍB,且A¹ B那就说集合A 是集合B 的真子集,记作A B(或B A)

③如果 AÍB, BÍC ,那么 AÍC

④ 如果AÍB 同时 BÍA 那么A=B

3. 不含任何元素的集合叫做空集,记为Φ

规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

三、集合的运算

1.交集的定义:一般地,由所有属于A 且属于B 的元素所组成的集合, 叫做A,B 的交集.

记作A∩B(读作”A交B”),即A∩B={x|x∈A ,且x ∈B}.

2、并集的定义:一般地,由所有属于集合A 或属于集合B 的元素所组成的集合,叫做A,B 的并集。记作:A ∪B(读作”A并B”),即A ∪B={x|x∈A ,或x ∈B}.

3、交集与并集的性质:A∩A = A, A∩φ= φ, A∩B = B∩A,A ∪A = A,

A ∪φ= A ,A∪B = B∪A.

4、全集与补集

(1)补集:设S 是一个集合,A 是S 的一个子集(即 ),由S 中所有不属于A 的元素组成的集合,叫做S 中子集A 的补集(或余集)

记作: CSA 即 CSA ={x | xÎS且 xÏA}

S

CsA

A

用心 爱心 专心 2

(2)全集:如果集合S 含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U 来表示。

(3)性质:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U

二、函数的有关概念

1.函数的概念:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A→B为从集合A 到集合B 的一个函数.记作: y=f(x),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.

注意:2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;3 函数的定义域、值域要写成集合或区间的形式.

定义域补充

能使函数式有意义的实数x 的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的. 那么,它的定义域是使各部分都有意义的x 的值组成的集合.

(6)指数为零底不可以等于零 (6)实际问题中的函数的定义域还要保证实际问题有意义.

(又注意:求出不等式组的解集即为函数的定义域。)

构成函数的三要素:定义域、对应关系和值域

再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)

(见课本21页相关例2)

值域补充

用心 爱心 专心 3

(1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域. (2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。

3. 函数图象知识归纳

(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A) 中的x 为横坐标,函数值y 为纵坐标的点P(x,y) 的集合C ,叫做函数 y=f(x),(x ∈A) 的图象.

C 上每一点的坐标(x,y) 均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x 、y 为坐标的点(x,y) ,均在C 上 . 即记为C={ P(x,y) | y= f(x) , x∈A }

图象C 一般的是一条光滑的连续曲线(或直线), 也可能是由与任意平行与Y 轴的直线最多只有一个交点的若干条曲线或离散点组成。

(2) 画法

A 、描点法:根据函数解析式和定义域,求出x,y 的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x, y),最后用平滑的曲线将这些点连接起来.

B 、图象变换法(请参考必修4三角函数)

常用变换方法有三种,即平移变换、伸缩变换和对称变换

(3)作用:

1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。提高解题的速度。

发现解题中的错误。

4.快去了解区间的概念

(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.

5.什么叫做映射

一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A B为从集合A 到集合B 的一个映射。记作“f:A B”

用心 爱心 专心 4

给定一个集合A 到B 的映射,如果a ∈A,b ∈B. 且元素a 和元素b 对应,那么,我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象

说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A 、B 及对应法则f 是确定的;②对应法则有“方向性”,即强调从集合A 到集合B 的对应,它与从B 到A 的对应关系一般是不同的;③对于映射f :A→B来说,则应满足:(Ⅰ)集合A 中的每一个元素,在集合B 中都有象,并且象是唯一的;(Ⅱ)集合A 中不同的元素,在集合B 中对应的象可以是同一个;(Ⅲ)不要求集合B 中的每一个元素在集合A 中都有原象。

常用的函数表示法及各自的优点:

1 函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;2 解析法:必须注明函数的定义域;3 图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;4 列表法:选取的自变量要有代表性,应能反映定义域的特征.

注意啊:解析法:便于算出函数值。列表法:便于查出函数值。图象法:便于量出函数值

补充一:分段函数 (参见课本P24-25)

在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必须把自变量代入相应的表达式。分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.

补充二:复合函数

如果y=f(u),(u∈M),u=g(x),(x∈A), 则 y=f[g(x)]=F(x),(x∈A) 称为f 、g 的复合函数。

例如: y=2sinX y=2cos(X2+1)

7.函数单调性

(1).增函数

设函数y=f(x)的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x1,x2,当x1

如果对于区间D 上的任意两个自变量的值x1,x2,当x1

用心 爱心 专心 5

注意:1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;

2 必须是对于区间D 内的任意两个自变量x1,x2;当x1

(2) 图象的特点

如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的) 单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.

(3).函数单调区间与单调性的判定方法

(A) 定义法:

1 任取x1,x2∈D ,且x1

(B)图象法(从图象上看升降)_

(C)复合函数的单调性

复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律如下:

函数

单调性

u=g(x)

y=f(u)

y=f[g(x)]

用心 爱心 专心 6

注意:1、函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集. 2、还记得我们在选修里学习简单易行的导数法判定单调性吗?

8.函数的奇偶性

(1)偶函数

一般地,对于函数f(x)的定义域内的任意一个x ,都有f(-x)=f(x),那么f(x)就叫做偶函数.

(2).奇函数

一般地,对于函数f(x)的定义域内的任意一个x ,都有f(-x)=—f(x),那么f(x)就叫做奇函数.

注意:1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性, 也可能既是奇函数又是偶函数。

2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称).

(3)具有奇偶性的函数的图象的特征

偶函数的图象关于y 轴对称;奇函数的图象关于原点对称.

总结:利用定义判断函数奇偶性的格式步骤:1 首先确定函数的定义域,并判断其定义域是否关于原点对称;2 确定f(-x) 与f(x)的关系;3 作出相应结论:若f(-x) = f(x) 或 f(-x) -f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x) +f(x) = 0,则f(x)是奇函数.

注意啊:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数. 若对称,(1)再根据定义判定; (2)有时判定f(-x)=±f(x)比较困难,可考虑根据是否有f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 .

9、函数的解析表达式

用心 爱心 专心 7

(1). 函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.

(2). 求函数的解析式的主要方法有:待定系数法、换元法、消参法等,如果已知函数解析式的构造时,可用待定系数法;已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出f(x)

10.函数最大(小)值(定义见课本p36页)

1 利用二次函数的性质(配方法)求函数的最大(小)值2 利用图象求函数的最大(小)值3 利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);

第二章 基本初等函数

一、指数函数

(一)指数与指数幂的运算

1.根式的概念:一般地,如果 ,那么 叫做 的 次方根(n th root ),其中 >1,且 ∈ *.

当 是奇数时,正数的 次方根是一个正数,负数的 次方根是一个负数.此时, 的 次方根用符号 表示.式子 叫做根式(radical ),这里 叫做根指数(radical exponent), 叫做被开方数(radicand ).

当 是偶数时,正数的 次方根有两个,这两个数互为相反数.此时,正数 的正的 次方根用符号 表示,负的 次方根用符号- 表示.正的 次方根与负的 次方根可以合并成± ( >0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作 。

注意:当 是奇数时, ,当 是偶数时,

2.分数指数幂

正数的分数指数幂的意义,规定:

0的正分数指数幂等于0,0的负分数指数幂没有意义

用心 爱心 专心 8

指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.

3.实数指数幂的运算性质

(1) · ;

(2) ;

(3) .

(二)指数函数及其性质

1、指数函数的概念:一般地,函数 叫做指数函数(exponential ),其中x 是自变量,函数的定义域为R .

注意:指数函数的底数的取值范围,底数不能是负数、零和1.

2、指数函数的图象和性质

a>1

0

图象特征

函数性质

向x 、y 轴正负方向无限延伸

函数的定义域为R

图象关于原点和y 轴不对称

非奇非偶函数

函数图象都在x 轴上方

函数的值域为R+

用心 爱心 专心 9

函数图象都过定点(0,1)

自左向右看,

图象逐渐上升

自左向右看,

图象逐渐下降

增函数

减函数

在第一象限内的图象纵坐标都大于1

在第一象限内的图象纵坐标都小于1

在第二象限内的图象纵坐标都小于1

在第二象限内的图象纵坐标都大于1

图象上升趋势是越来越陡

图象上升趋势是越来越缓

函数值开始增长较慢,到了某一值后增长速度极快;

函数值开始减小极快,到了某一值后减小速度较慢;

注意:利用函数的单调性,结合图象还可以看出:

(1)在[a,b]上, 值域是 或 ;

(2)若 ,则 ; 取遍所有正数当且仅当 ;

(3)对于指数函数 ,总有 ;

(4)当 时,若 ,则 ;

二、对数函数

(一)对数

1.对数的概念:一般地,如果 ,那么数 叫做以 为底 的对数,记作:数, — 对数式)

用心 爱心 专心 — 底数,— 真10 (

说明:1 注意底数的限制 ,且 ;

2 ;

3 注意对数的书写格式.

两个重要对数:

1 常用对数:以10为底的对数 ;

2 自然对数:以无理数 为底的对数的对数 .

对数式与指数式的互化

对数式

对数底数 ← → 幂底数

对数

真数

(二)对数的运算性质

如果 ,且 , , ,那么:

1 · + ;

2 - ;

3 .

注意:换底公式

( ,且 ; ,且 ; ).

利用换底公式推导下面的结论(1) ;(2) .

(二)对数函数

用心 爱心 专心指数式 ← → 指数 ← → 幂 11

1、对数函数的概念:函数 ,且 叫做对数函数,其中 是自变量,函数的定义域是(0,+∞).

注意:1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。

如: , 都不是对数函数,而只能称其为对数型函数.

2 对数函数对底数的限制: ,且 .

2、对数函数的性质:

a>1

0

图象特征

函数性质

函数图象都在y 轴右侧

函数的定义域为(0,+∞)

图象关于原点和y 轴不对称

非奇非偶函数

向y 轴正负方向无限延伸

函数的值域为R

函数图象都过定点(1,0)

自左向右看,

图象逐渐上升

自左向右看,

用心 爱心专心 12

图象逐渐下降

增函数

减函数

第一象限的图象纵坐标都大于0

第一象限的图象纵坐标都大于0

第二象限的图象纵坐标都小于0

第二象限的图象纵坐标都小于0

(三)幂函数

1、幂函数定义:一般地,形如 的函数称为幂函数,其中 为常数.

2、幂函数性质归纳.

(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1);

(2) 时,幂函数的图象通过原点,并且在区间 上是增函数.特别地,当 时,幂函数的图象下凸;当 时,幂函数的图象上凸;

(3) 时,幂函数的图象在区间 上是减函数.在第一象限内,当 从右边趋向原点时,图象在 轴右方无限地逼近 轴正半轴,当 趋于 时,图象在 轴上方无限地逼近 轴正半轴.

第三章 函数的应用

一、方程的根与函数的零点

1、函数零点的概念:对于函数 ,把使 成立的实数 叫做函数 的零点。

2、函数零点的意义:函数 的零点就是方程 实数根,亦即函数 的图象与 轴交点的横坐标。即:

方程 有实数根 函数 的图象与 轴有交点 函数 有零点.

用心 爱心 专心 13

3、函数零点的求法:

求函数 的零点:

1 (代数法)求方程 的实数根;

2 (几何法)对于不能用求根公式的方程,可以将它与函数 的图象联系起来,并利用函数的性质找出零点.

4、二次函数的零点:

二次函数 .

1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点.

2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点.

3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点.

用心 爱心 专心 14

高中高一数学必修1各章知识点

第一章 集合与函数概念

一、集合有关概念

1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:

1. 元素的确定性; 2.元素的互异性; 3.元素的无序性

说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

(4)集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的表示:{ „ } 如{我校的篮球队员},{太平洋, 大西洋, 印度洋, 北冰洋}

1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

2.集合的表示方法:列举法与描述法和自然语言法。

注意啊:常用数集及其记法:

非负整数集(即自然数集)记作:N

正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R

关于“属于”的概念

集合的元素通常用小写的拉丁字母表示,如:a 是集合A 的元素,就说a 属于集合A 记作 a∈A ,相反,a 不属于集合A 记作 aÏA

列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。

①语言描述法:例:{不是直角三角形的三角形}

②数学式子描述法:例:不等式x-3>2的解集是{xÎR| x-3>2}或{x| x-3>2}

4、集合的分类:

1.有限集 含有有限个元素的集合

2.无限集 含有无限个元素的集合

3.空集 不含任何元素的集合 例:{x|x2=-5}

二、集合间的基本关系

1.“包含”关系—子集

注意: 有两种可能(1)A 是B 的一部分,;(2)A 与B 是同一集合。

反之: 集合A 不包含于集合B, 或集合B 不包含集合A, 记作A B或B A

2.“相等”关系(5≥5,且5≤5,则5=5)

实例:设 A={x|x2-1=0} B={-1,1} “元素相同”

用心 爱心 专心 1

结论:对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,同时, 集合B 的任何一个元素都是集合A 的元素,我们就说集合A 等于集合B ,即:A=B

① 任何一个集合是它本身的子集。AÍA

②真子集:如果AÍB,且A¹ B那就说集合A 是集合B 的真子集,记作A B(或B A)

③如果 AÍB, BÍC ,那么 AÍC

④ 如果AÍB 同时 BÍA 那么A=B

3. 不含任何元素的集合叫做空集,记为Φ

规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

三、集合的运算

1.交集的定义:一般地,由所有属于A 且属于B 的元素所组成的集合, 叫做A,B 的交集.

记作A∩B(读作”A交B”),即A∩B={x|x∈A ,且x ∈B}.

2、并集的定义:一般地,由所有属于集合A 或属于集合B 的元素所组成的集合,叫做A,B 的并集。记作:A ∪B(读作”A并B”),即A ∪B={x|x∈A ,或x ∈B}.

3、交集与并集的性质:A∩A = A, A∩φ= φ, A∩B = B∩A,A ∪A = A,

A ∪φ= A ,A∪B = B∪A.

4、全集与补集

(1)补集:设S 是一个集合,A 是S 的一个子集(即 ),由S 中所有不属于A 的元素组成的集合,叫做S 中子集A 的补集(或余集)

记作: CSA 即 CSA ={x | xÎS且 xÏA}

S

CsA

A

用心 爱心 专心 2

(2)全集:如果集合S 含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U 来表示。

(3)性质:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U

二、函数的有关概念

1.函数的概念:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A→B为从集合A 到集合B 的一个函数.记作: y=f(x),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.

注意:2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;3 函数的定义域、值域要写成集合或区间的形式.

定义域补充

能使函数式有意义的实数x 的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的. 那么,它的定义域是使各部分都有意义的x 的值组成的集合.

(6)指数为零底不可以等于零 (6)实际问题中的函数的定义域还要保证实际问题有意义.

(又注意:求出不等式组的解集即为函数的定义域。)

构成函数的三要素:定义域、对应关系和值域

再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)

(见课本21页相关例2)

值域补充

用心 爱心 专心 3

(1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域. (2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。

3. 函数图象知识归纳

(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A) 中的x 为横坐标,函数值y 为纵坐标的点P(x,y) 的集合C ,叫做函数 y=f(x),(x ∈A) 的图象.

C 上每一点的坐标(x,y) 均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x 、y 为坐标的点(x,y) ,均在C 上 . 即记为C={ P(x,y) | y= f(x) , x∈A }

图象C 一般的是一条光滑的连续曲线(或直线), 也可能是由与任意平行与Y 轴的直线最多只有一个交点的若干条曲线或离散点组成。

(2) 画法

A 、描点法:根据函数解析式和定义域,求出x,y 的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x, y),最后用平滑的曲线将这些点连接起来.

B 、图象变换法(请参考必修4三角函数)

常用变换方法有三种,即平移变换、伸缩变换和对称变换

(3)作用:

1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。提高解题的速度。

发现解题中的错误。

4.快去了解区间的概念

(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.

5.什么叫做映射

一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A B为从集合A 到集合B 的一个映射。记作“f:A B”

用心 爱心 专心 4

给定一个集合A 到B 的映射,如果a ∈A,b ∈B. 且元素a 和元素b 对应,那么,我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象

说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A 、B 及对应法则f 是确定的;②对应法则有“方向性”,即强调从集合A 到集合B 的对应,它与从B 到A 的对应关系一般是不同的;③对于映射f :A→B来说,则应满足:(Ⅰ)集合A 中的每一个元素,在集合B 中都有象,并且象是唯一的;(Ⅱ)集合A 中不同的元素,在集合B 中对应的象可以是同一个;(Ⅲ)不要求集合B 中的每一个元素在集合A 中都有原象。

常用的函数表示法及各自的优点:

1 函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;2 解析法:必须注明函数的定义域;3 图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;4 列表法:选取的自变量要有代表性,应能反映定义域的特征.

注意啊:解析法:便于算出函数值。列表法:便于查出函数值。图象法:便于量出函数值

补充一:分段函数 (参见课本P24-25)

在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必须把自变量代入相应的表达式。分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.

补充二:复合函数

如果y=f(u),(u∈M),u=g(x),(x∈A), 则 y=f[g(x)]=F(x),(x∈A) 称为f 、g 的复合函数。

例如: y=2sinX y=2cos(X2+1)

7.函数单调性

(1).增函数

设函数y=f(x)的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x1,x2,当x1

如果对于区间D 上的任意两个自变量的值x1,x2,当x1

用心 爱心 专心 5

注意:1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;

2 必须是对于区间D 内的任意两个自变量x1,x2;当x1

(2) 图象的特点

如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的) 单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.

(3).函数单调区间与单调性的判定方法

(A) 定义法:

1 任取x1,x2∈D ,且x1

(B)图象法(从图象上看升降)_

(C)复合函数的单调性

复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律如下:

函数

单调性

u=g(x)

y=f(u)

y=f[g(x)]

用心 爱心 专心 6

注意:1、函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集. 2、还记得我们在选修里学习简单易行的导数法判定单调性吗?

8.函数的奇偶性

(1)偶函数

一般地,对于函数f(x)的定义域内的任意一个x ,都有f(-x)=f(x),那么f(x)就叫做偶函数.

(2).奇函数

一般地,对于函数f(x)的定义域内的任意一个x ,都有f(-x)=—f(x),那么f(x)就叫做奇函数.

注意:1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性, 也可能既是奇函数又是偶函数。

2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称).

(3)具有奇偶性的函数的图象的特征

偶函数的图象关于y 轴对称;奇函数的图象关于原点对称.

总结:利用定义判断函数奇偶性的格式步骤:1 首先确定函数的定义域,并判断其定义域是否关于原点对称;2 确定f(-x) 与f(x)的关系;3 作出相应结论:若f(-x) = f(x) 或 f(-x) -f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x) +f(x) = 0,则f(x)是奇函数.

注意啊:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数. 若对称,(1)再根据定义判定; (2)有时判定f(-x)=±f(x)比较困难,可考虑根据是否有f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 .

9、函数的解析表达式

用心 爱心 专心 7

(1). 函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.

(2). 求函数的解析式的主要方法有:待定系数法、换元法、消参法等,如果已知函数解析式的构造时,可用待定系数法;已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出f(x)

10.函数最大(小)值(定义见课本p36页)

1 利用二次函数的性质(配方法)求函数的最大(小)值2 利用图象求函数的最大(小)值3 利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);

第二章 基本初等函数

一、指数函数

(一)指数与指数幂的运算

1.根式的概念:一般地,如果 ,那么 叫做 的 次方根(n th root ),其中 >1,且 ∈ *.

当 是奇数时,正数的 次方根是一个正数,负数的 次方根是一个负数.此时, 的 次方根用符号 表示.式子 叫做根式(radical ),这里 叫做根指数(radical exponent), 叫做被开方数(radicand ).

当 是偶数时,正数的 次方根有两个,这两个数互为相反数.此时,正数 的正的 次方根用符号 表示,负的 次方根用符号- 表示.正的 次方根与负的 次方根可以合并成± ( >0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作 。

注意:当 是奇数时, ,当 是偶数时,

2.分数指数幂

正数的分数指数幂的意义,规定:

0的正分数指数幂等于0,0的负分数指数幂没有意义

用心 爱心 专心 8

指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.

3.实数指数幂的运算性质

(1) · ;

(2) ;

(3) .

(二)指数函数及其性质

1、指数函数的概念:一般地,函数 叫做指数函数(exponential ),其中x 是自变量,函数的定义域为R .

注意:指数函数的底数的取值范围,底数不能是负数、零和1.

2、指数函数的图象和性质

a>1

0

图象特征

函数性质

向x 、y 轴正负方向无限延伸

函数的定义域为R

图象关于原点和y 轴不对称

非奇非偶函数

函数图象都在x 轴上方

函数的值域为R+

用心 爱心 专心 9

函数图象都过定点(0,1)

自左向右看,

图象逐渐上升

自左向右看,

图象逐渐下降

增函数

减函数

在第一象限内的图象纵坐标都大于1

在第一象限内的图象纵坐标都小于1

在第二象限内的图象纵坐标都小于1

在第二象限内的图象纵坐标都大于1

图象上升趋势是越来越陡

图象上升趋势是越来越缓

函数值开始增长较慢,到了某一值后增长速度极快;

函数值开始减小极快,到了某一值后减小速度较慢;

注意:利用函数的单调性,结合图象还可以看出:

(1)在[a,b]上, 值域是 或 ;

(2)若 ,则 ; 取遍所有正数当且仅当 ;

(3)对于指数函数 ,总有 ;

(4)当 时,若 ,则 ;

二、对数函数

(一)对数

1.对数的概念:一般地,如果 ,那么数 叫做以 为底 的对数,记作:数, — 对数式)

用心 爱心 专心 — 底数,— 真10 (

说明:1 注意底数的限制 ,且 ;

2 ;

3 注意对数的书写格式.

两个重要对数:

1 常用对数:以10为底的对数 ;

2 自然对数:以无理数 为底的对数的对数 .

对数式与指数式的互化

对数式

对数底数 ← → 幂底数

对数

真数

(二)对数的运算性质

如果 ,且 , , ,那么:

1 · + ;

2 - ;

3 .

注意:换底公式

( ,且 ; ,且 ; ).

利用换底公式推导下面的结论(1) ;(2) .

(二)对数函数

用心 爱心 专心指数式 ← → 指数 ← → 幂 11

1、对数函数的概念:函数 ,且 叫做对数函数,其中 是自变量,函数的定义域是(0,+∞).

注意:1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。

如: , 都不是对数函数,而只能称其为对数型函数.

2 对数函数对底数的限制: ,且 .

2、对数函数的性质:

a>1

0

图象特征

函数性质

函数图象都在y 轴右侧

函数的定义域为(0,+∞)

图象关于原点和y 轴不对称

非奇非偶函数

向y 轴正负方向无限延伸

函数的值域为R

函数图象都过定点(1,0)

自左向右看,

图象逐渐上升

自左向右看,

用心 爱心专心 12

图象逐渐下降

增函数

减函数

第一象限的图象纵坐标都大于0

第一象限的图象纵坐标都大于0

第二象限的图象纵坐标都小于0

第二象限的图象纵坐标都小于0

(三)幂函数

1、幂函数定义:一般地,形如 的函数称为幂函数,其中 为常数.

2、幂函数性质归纳.

(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1);

(2) 时,幂函数的图象通过原点,并且在区间 上是增函数.特别地,当 时,幂函数的图象下凸;当 时,幂函数的图象上凸;

(3) 时,幂函数的图象在区间 上是减函数.在第一象限内,当 从右边趋向原点时,图象在 轴右方无限地逼近 轴正半轴,当 趋于 时,图象在 轴上方无限地逼近 轴正半轴.

第三章 函数的应用

一、方程的根与函数的零点

1、函数零点的概念:对于函数 ,把使 成立的实数 叫做函数 的零点。

2、函数零点的意义:函数 的零点就是方程 实数根,亦即函数 的图象与 轴交点的横坐标。即:

方程 有实数根 函数 的图象与 轴有交点 函数 有零点.

用心 爱心 专心 13

3、函数零点的求法:

求函数 的零点:

1 (代数法)求方程 的实数根;

2 (几何法)对于不能用求根公式的方程,可以将它与函数 的图象联系起来,并利用函数的性质找出零点.

4、二次函数的零点:

二次函数 .

1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点.

2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点.

3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点.

用心 爱心 专心 14


相关内容

  • 高中高一数学必修1各章知识点总结
  • 高中高一数学必修1各章知识点总结 第一章 集合与函数概念 一.集合有关概念 1.集合的含义:某些指定的对象集在一起就成为一个集合, 其中每一个对象叫元素. 2.集合的中元素的三个特性: 1. 元素的确定性: 2. 元素的互异性: 3. 元素的无序性 说明:(1)对于一个给定的集合, 集合中的元素是确 ...

  • 高中高一数学必修1 集合知识点总结 普陀补习班
  • 高中高一数学必修1 各章知识点总结 第一章 集合与函数概念 一.集合有关概念 1.集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素. 2.集合的中元素的三个特性: 1. 元素的确定性;2. 元素的互异性;3. 元素的无序性 说明:(1)对于一个给定的集合,集合中的元素是确定的, ...

  • 函数的概念说课稿
  • 函 数 的 概 念 山东沂源二中 石玉台 2011-09-26 各位专家.评委: 大家好! 我说课的内容是数学人教版普通高中新课程标准实验教科书必修1函数第一课时.我将从内容和内容解析.目标和目标解析.教学问题诊断分析.教法与学法.教学过程设计.目标检测设计.教学设计及预测说明及板书设计等八个方面来 ...

  • 最新人教版高一数学必修1:知识点总结整理
  • 高一数学必修一各章知识点总结整理 第一章 集合与函数概念 一.集合有关概念 1. 集合的含义 2. 集合的中元素的三个特性: (1) 元素的确定性如:世界上最高的山 (2) 元素的互异性如:由HAPPY 的字母组成的集合{H,A,P,Y} (3) 元素的无序性: 如:{a,b,c}和{a,c,b}是 ...

  • 高一数学必修一各章知识点总结(免费)
  • 高一数学必修1各章知识点总结 第一章 集合与函数概念 一.集合有关概念 1. 集合的含义 2. 集合的中元素的三个特性: (1) 元素的确定性如:世界上最高的山 (2) 元素的互异性如:由HAPPY 的字母组成的集合{H,A,P,Y} (3) 元素的无序性: 如:{a,b,c}和{a,c,b}是表示 ...

  • 高中数学必修一集合与函数概念知识点总结及练习题
  • 高中数学必修一集合与函数概念知识点总结 1.元素与集合 (1)元素与集合的定义: 一般地,把 统称为元素,把一些元素组成的 叫做集合(简称为集) . (2)集合中元素的性质: ①确定性:即给定的集合,它的元素是 . ②互异性:即给定集合的元素是 . ③无序性. (3)集合相等: 只要构成两个集合的元 ...

  • 2014高一上学期数学教学计划
  • 2014年秋学期高一数学教学计划 寿县迎河中学 龙如山 一. 指导思想: (1)随着素质教育的深入展开,<新课程标准>提出了"教育要面向世界,面向未来,面向现代化"和"教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德.智.体等方面全面发展的社会 ...

  • 高中数学优秀教研案例
  • 2- 课题:用二分法求方程的近似解 3- 函数的单调性(21) 4- <函数的概念>教学案例设计(26) 5- <几何概型及均匀随机数第一节>教学设计(32) 6- 对数函数及其性质(第1课时)(37) 7- 直线.圆的位置关系(42) 2.1.2 系统抽样 尤溪一中 姜志茂 ...

  • 函数概念教学设计
  • 函数的概念 一.教材分析 函数是数学中最重要的概念之一,且贯穿在中学数学的始终,只有对概念作到深刻理解,才能正确灵活地加以应用.本课中学生对函数概念理解的程度会直接影响数学其它知识的学习,结合教学课程标准与学生的认知水平,函数的第一课应以函数概念的理解为中心进行教学. 二.学情分析 从学生知识层面看 ...