土壤性质及生物化学因素与植物化感作用的相互影响_李秋玲

生态环境学报 2012, 21(12): 2031-2036 http://www.jeesci.com Ecology and Environmental Sciences E-mail: [email protected]

土壤性质及生物化学因素与植物化感作用的相互影响

李秋玲,肖辉林*

1

2

1. 太原大学外语师范学院,山西 太原 030002;2. 广东省生态环境与土壤研究所,广东 广州 510650

摘要:化感作用与植物环境因素密切相关,而土壤是陆地植物生长的基础环境。到目前为止,较全面地总结土壤性质及生物化学因素与植物化感作用相互影响的研究进展的综述还很少见。文章试图对之进行总结,为更深入地研究它们之间的关系提供参考依据。当前的研究进展显示,(1)土壤因子(土壤质地、有机无机物质和水分)影响土壤中化感物质的植物毒性。化感物质到达土壤后,通过微生物分解、表面吸附、聚合作用、pH 变化、离子交换、改变氧气浓度等各种机制,将发生许多变化,这些变化包括从降低植物毒性直至提高惰性次生代谢物的毒性。土壤的吸附、解吸和降解控制了化感物质的潜在生物有效性。化感物质要达到对植物有化感效应,它们必须长期持续地存在于土壤中,以致它们在溶液中累积到引起化感效应的较高水平。(2)土壤微生物活性决定了化感物质的活性,它们不仅钝化了植物毒素,而且还释放了新的有毒化合物。土壤微生物酶和菌根影响植物化感作用和土壤养分水平的相互关系,而化感物质也能改变土壤微生物区系的结构和活性。(3)植物次生代谢物由于它们对土壤硝化细菌的影响和以有机形态对氮的固定,而影响氮循环。微生物和各种物理、化学的降解过程,影响从植物和土壤中释放的化感物质的去向。土壤环境中化感物质的去向决定了自然环境中化感作用的表达。文章最后提出了化感作用的研究展望。

关键词:化感作用;化感物质;土壤性质;土壤微生物;生物化学;植物凋落物;土壤养分;植物毒性 中图分类号:Q945.79 文献标志码:A 文章编号:1674-5906(2012)12-2031-06

引用格式:李秋玲,肖辉林. 土壤性质及生物化学因素与植物化感作用的相互影响[J]. 生态环境学报, 2012, 21(12): 2031-2036. LI Qiuling, XIAO Huilin. The interactions of soil properties and biochemical factors with plant allelopathy[J]. Ecology and Environmental Sciences, 2012, 21(12): 2031-2036.

Rice [1]在他1984年出版的《化感作用》(Allelopathy )第2版中应用了Molisch 在1937年对化感作用的首次定义,即化感作用是植物(包括微生物)之间抑制和刺激的生物化学相互作用。1996年国际化感学会将化感作用的定义拓广为:“涉及由植物、藻类、细菌和真菌产生的次生代谢物影响农业和生物系统的生长与发展的任何过程”[2]。化感作用与植物环境因素密切相关。光、温度、水分、养分可以成为植物的胁迫因素,而化感物质的释放、杀虫剂的应用和天敌袭击(昆虫和病菌原体)也能危害植物。这些胁迫因素能

土增加化感物质的产生,增加化感干扰作用[3-10]。

壤是陆地植物生长的基础环境。化感物质通过影响土壤微生物活性而影响养分的有效性[4,7,12]。植物次生代谢物对土壤微生物有抑制作用,因此,通过影响土壤硝化细菌和氮的固定而影响氮的循环[13]。反之,土壤养分含量也影响植物的化感作用[1,7,13-16]。但到目前为止,尚未见到有较全面总结这些关系的研究进展的综述。本文试图总结土

壤性质及生物化学因素与植物化感作用的相互影响的研究进展,为更深入地研究它们之间的关系提供参考依据。

1 土壤物理和化学性质

土壤因子(土壤质地、有机无机物质和水分)影响土壤中化感物质的植物毒性[17]。化感物质到达土壤后,通过各种机制包括微生物分解、表面吸附、聚合作用、pH 变化、离子交换、改变氧气浓度等,将发生许多变化,从降低植物毒性直至

土壤中化感物提高惰性次生代谢物的毒性[7,17-20]。

质的含量将直接决定土壤中的植物毒性,它们的

浓度受到土壤因素(吸附、解吸和降解)的控制[17]。

梁晓兰等[21]的研究显示,花椒凋落物在分解过程中释放的酚酸类物质呈现出明显的毒性动态。且酚酸含量随分解时间的延长,呈显著降低的趋势。酚酸的动态释放以及凋落物的浸提液显著地改变了土壤的微生态环境和土壤化学性质。在花椒凋落物分解的一个月内,酚酸释放总量达到最大,对土壤的毒性也最大,抑制了土壤纤维素分

基金项目:国家自然科学基金项目(31070473;31270575);广东省科技计划项目(2002C60111;粤科财字[2005]98号) 作者简介:李秋玲(1982年生),女,主要从事生态学和日语教学研究。E-mail: [email protected] *通信作者:肖辉林,研究员,博士。E-mail: [email protected] 收稿日期:2012-09-12

2032 生态环境学报 第21卷第12期(2012年12月)

解菌的生长,降低了土壤铵态氮的含量,但随着凋落物的继续分解,其毒性慢慢降低,凋落物分解到2个月左右时,土壤有机磷和碳素的循环加速。

土壤的吸附-解吸控制了酚酸的潜在生物有效性,酚酸进入土壤时,将与土壤颗粒表面发生物理化学反应和/或结合进入有机质[22]。大部分水溶性有机物(总量的60%~70%)能被土壤吸附[23]。对香豆酸(p -coumaric )和阿魏酸(ferulic acids)的吸附与土壤黏粒含量有关,藜芦酸(veratric acid)

[24]

的吸附与几种土壤因素有关。一种标记研究显示了苯甲酸在土壤颗粒上的吸附,随着浓度的提高而增加[25]。相反,土壤特性与香草酸和对羟基苯甲酸的吸附没有一致的关系。酚酸要达到对植物有化感效应,它们必须长期持续地存在于土壤中,以致它们在溶液中累积到引起化感效应的较高水平[24]。

对3种老成土(Ultisols )和1种氧化土(Oxisol )施用柠檬酸和苹果酸0.1、1.0、10、100 mmol/L,随着有机酸浓度的提高,溶液中磷含量也提高,但与铁结合和与铝结合的磷含量则降低[26]。这个结果意味着在有大量铁结合的和大量铝结合的磷存在的土壤中,自然发生的分解物将提高土壤对植物磷的有效性。He 等[27]的研究显示了有机阴离子能影响可变电荷黏土矿物和土壤中磷酸盐的吸附和解吸。在华南土壤中,土壤非交换性钾的释放与有机酸浓度有关[28]。这些研究结果对农业和森林土壤的施肥有一定的意义。

即使缺乏微生物代谢,土壤将比实验室溶液更多地减轻化合物毒性;这种减轻毒性是由于降低了化合物在土壤中的扩散率和各种络合反应及吸附反应[29]。土壤减轻化学物质的毒性影响与实验室生物测定中的毒性相比,土壤减轻了化学物

Heisey and Delwiche[32]显示毛质的毒性影响[30-33]。

雄芯属茴香草Trichostema lanceolatum Benth. 的水和乙醚提取物,在皮氏培养皿(Petri dishes)的生物测定中有很强的毒性。但同样的叶子与土壤混合却很少有化感效应。几种因素包括:(1)土壤中较低的化学扩散率,(2)化学物质在土壤颗粒上的吸附,(3)进入土壤有机物和微孔隙的过程,(4)微生物酶效应,能使化学物质在土壤中降低生物有效性[34]。

具有化感作用的Pluchea lanceolata影响土壤性质和土壤中酚类物质的含量[6]。多酚物质可以广泛影响土壤性质和过程[35],因为它们在许多林地中控制了硝化率[36]。Northup 等[37]提出蕨类芒萁属植物产生的大量的多酚物质为竞争物种创造了不利的土壤条件,让蕨类植物在迅速累积有机

养分的土壤中持续保持优势。Northup 等[11]报道了分解粗糙松(Pinus muricata,加州沼松)凋落物的多酚浓度控制了释放的溶解有机态氮和矿化态氮的比例。多酚物质对植物-凋落物-土壤相互作用有多方面的影响:抑制了食腐质者的活性,形成腐殖质,延迟了氮的矿化,螯合养分进入一种非常缓慢的有机质矿化库[29]。矿化氮的固定可能是抑制的另一种潜在机制[37]。

Kalita [38]报道了一些草本植物对水稻土养分有效性的化感影响。土壤有效性氮和钾含量随着草本植物[(Ageratum conyzoides L. ,Borreria hispida (L.) K. Schum,Cynodon dactylon (L.) Pers. ,Cyperus rotundus L.)]残留量的增加而直线下降。然而,有效磷却随着草本植物残留率的增加而增加。

酸性土壤中低磷有效性对生态系统生产力可能是一种重要限制。由于磷与溶解态的铝、锰、铁发生沉淀,或磷酸盐在活性表面上的特定吸附,随着pH 的降低,磷“固定”将是一个更大的问题。酚酸对铝、锰、铁是强络合剂。它能降低它们的吸附容量,导致磷酸盐的更少吸附[37]。

2 土壤微生物

土壤中微生物活性决定了化感物质的活性,它们不仅钝化了植物毒素,而且释放了新的有毒化合物[39-40]。土壤中有机化合物的降解与生物活性有很强的关系[41]。因此,化感相互作用与土壤微生物有很强的关系[29,42]。例如,土壤化感物质的微生物和非微生物氧化、转换影响了Polygonella myriophylla (Small) Horton的化感效应[43]。化感作用通过影响豆科植物寄主、微共生体和结瘤过程本身,而对氮固定具有很大的影响。土壤与某些作物残留物的结合,草本植物与土壤

从黑核桃(Juglans nigra L.)的结合减少了结瘤[21]。

[44-45]

树释放出来的化合物胡桃醌juglone (5-hydroxy-1,4- naphthoquinone)通过抑制氮固定而直接或间接地抑制了欧洲桤木(Alnus glutinosa L.) 的生长[13]。

Schimel 等[46]发现Populus balsamifera (L.)释放的单宁酸和低分子质量的酚类物质,分别抑制和刺激了土壤呼吸。这样,单宁酸起到一般微生物抑制剂的作用,而酚类物质起到生长底物的作用。土壤溶液相中的酚酸能被微生物作为碳源而利用,以及被植物吸收。酚酸的微生物降解产物是有机和/或无机化合物[22]。土壤中的酚酸影响了微生物群落结构和活性[22,47-49]。

土壤微生物酶和菌根影响植物化感作用和土壤养分水平的相互关系。分离的土壤微生物能改

李秋玲等:土壤性质及生物化学因素与植物化感作用的相互影响 2033

变化感物质成为更顽强的和更少毒性的形态,这归咎于土壤中有机质部分[46]。菌根改变了植物叶的化学[50-51]。土壤中化感物质进行着各种生物化学和其他过程;苯并恶嗪酮代谢物和它们的衍生物在土壤中是动态的和有时间依赖性的[52]。

有些土壤微生物能通过改变化感物质的数量和种类来影响化感作用,而化感物质也同样能改变土壤微生物区系[53]。林瑞余等[54]研究证实了种植不同品种水稻能明显改变土壤微生物条件,增加土壤微生物总量,也改变了土壤微生的组成,但不同化感潜力的水稻对土壤微生物的影响也存在明显差异。在欧洲云杉(Picea abies (L.) Karst.)林中,植物产生的酚类物质抑制了土壤微生物的

Souto 等[55]发现土壤微生物利用酚类物质活性[55]。

作为碳源,酚类物质的加入刺激了氨化细菌的活性。在狭叶山月桂(kalmia angustifolia L.) 树林下的土壤,缺乏氮、磷、铁和锰元素[56]。地黄连作土壤中放线菌、真菌数量与对照相比均有上升,是由于根际微生物将地黄根系分泌物进行生物转化,

生成了导致地黄连作障碍的酚酸类化感物质[57-58]。

3 土壤中植物次生代谢物

植物次生代谢物由于它们对土壤硝化细菌的

影响和以有机形态对氮的固定,而抑制土壤微生物和影响氮循环[12]。有些树种的残留物可能含有化感物质,有抑制植物生长和共生氮固定微生物的潜力。例如,生长在用红槲栎(Quercus rubra L.)、糖槭(Acer saccharum Marsh.)、一球悬玲木(Platanus occidentalis L.)或黑核桃(Juglans nigra L. )树叶改良的土壤中的大豆(Glycine max (L.) Merr. )出现了暂时的氮素缺乏,直到产生了根瘤。由于氮的固定,非根瘤植物出现了严重的缺氮现象,生长受到抑制。生长在树叶残留物改良过的土壤中结瘤的大豆植物,更依赖于共生固氮,干物产量比对照的更低[59]。Paavolainen 等[60]研究了在皆伐林地中,欧洲云杉单萜混合物对土壤净硝化、净氮矿化和反硝化活性的影响,结果表明,由于矿化氮的固定,单萜物质对土壤硝化产生了间接的抑制作用。单萜物质改变了生态系统养分的循环速率,特别是氮循环、氮矿化和固定过程[10]。既然氨氧化的许多抑制因素也抑制了甲烷的氧化,单萜物质可能也改变了碳的循环过程。

植物凋落物、碎屑的利用或淋溶到土壤中的养分,改变了土壤的无机离子状态[7,61-68]。从一些植物释放出来的有机分子能影响矿化、菌根和养分动态,化感干扰可以引起养分缺乏等其他干扰机制。

从杉木(Cunninghamia lanceolate (Lamb.)

Hook. )林土壤中萃取的物质显著降低了土壤呼吸、土壤氮的净矿化率,化感作用调节了连栽人工林地的养分循环[69-70]。并且在土壤中积累的酚类物质(vanillic acid and p -hydroxybenzoic acid) 通过减少了杉木林养分吸收而抑制了幼苗生长,并因此

这种森林的“土导致连栽杉木林生产力的降低[71],

[72]

壤病”需要引起关注。这方面需要更多的研究,以维持林地的可持续利用。

化感作用对养分行为的影响可能有利于某些养分在土壤中的吸持[73]。Northup 等[11]报道了通过减少氮矿化以及与凋落物氮形成顽强的复合体,多酚物质转移了氮循环的主要途径,从矿化态到有机态,减少了生态系统的氮损失,通过菌根共生体将凋落物氮的潜在回归最大化。

Oliva 等[74]发现土壤施用芸香(Ruta graveolens L.)叶子,与对照土壤相比有较高含量的酚类物质和硝酸盐。大黄素和大黄素甲醚,两种与Polygonum sachalinense化感作用有关的蒽醌,影响土壤无机离子的有效性。Inderjit 和Nishimura [75]

发现与对照土壤相比,土壤施用大黄素和大黄素甲醚显著降低了Mn 2+的有效性,但提高Na +和K +的有效性。施用不同量的Verbesina encelioides (Cav.)根的淋溶液的土壤与对照土壤相比,它们的

这种现象可以NO 3-和NH 4+浓度没有显著差异[76]。

部分地由Northup 等[37]的实验所解释,它显示了随着较高的总酚和单宁酸浓度,较大比例的凋落物氮被释放出来,作为溶解有机氮,而不是作为矿化态氮(NH4+和NO 3-) 。氮素释放的这种模式在氮素严重缺乏的生态系统中组成一种保留机制。

植物体分解产物的性质和质量与土壤类型和土壤条件密切相关[77-78]。微生物和各种物理、化学的降解过程,影响从植物和土壤中释放的化感物质的去向[12,79-82]。土壤环境中化感物质的去向决定了自然环境中化感作用的表达[12,25]。

4 研究展望

土壤的理化性质、土壤微生物以及释放到土壤中的植物次生代谢物均能影响到植物的化感作用,并进而影响植物的生长。土壤性质及生物化学因素与植物化感作用的相互关系是相当复杂的,要弄清楚这些关系是相当困难的。但是,对这些关系的研究在生态学和农业、林业生产中又是非常重要的。因此,这方面的研究工作还必须加强。目前该方面研究的重点是应该把土壤理化性质与植物化感作用,土壤微生物与植物化感作用,生态系统养分循环与植物化感作用,结合起来。此外,田间的研究工作更能说明植物化感作用的实际过程和程度,因此,更应该值得重视。

2034 生态环境学报 第21卷第12期(2012年12月)

参考文献:

[1] RICE E L. Allelopathy. Second edition. Orlando, Florida, USA:

Academic Press, Inc., 1984.

[2] International Allelopathy Society. Constitution[EB/OL]. 1996

[2005- 11-17]. http://www.as.uca.es/bylaws.htm#CONSTI. [3] ANAYA A L. Allelopathy as a tool in the management of biotic

resources in agroecosystems[J]. Critical Reviews in Plant Sciences, 1999, 18: 697-739.

[4] BATISH D R, SINGH H P, PANDHER J K, et al. Allelopathic

interference of Parthenium hysterophorus residues in soil[J]. Allelopathy Journal, 2005, 15: 267-274.

[5] EINHELLIG F A. An lntegrated view of allelochemicals amid

multiple stresses[C]// INDERJIT, DAKSHINI K M M, FOY C L. Principles and Practices in Plant Ecology: Allelochemical Interactions. Boca Raton, Florida, USA: CRC Press, 1999: 479-494. [6] INDERJIT. Influence of Pluchea lanceolata (Asteraceae) on

selected soil properties[J]. American Journal of Botany, 1998, 85: 64-69.

[7] INDERJIT. Soil: Environmental effects on allelochemical activity[J].

Agronomy Journal, 2001, 93: 79-84.

[8] KONG C H, XU T, HU F, et al. Allelopathy under environmental

stress and its induced mechanism[J]. Acta Ecologica Sinica, 2000, 20: 849-854 (In Chinese).

[9] KONG C H, HU F. Plant Allelopathy and Its Application. Beijing,

China: Chinese Agricultural Press, 2001: 169-201. (In Chinese). [10] WEIH M, KARLSSON P S. The nitrogen economy of mountain

birch seedlings: implications for winter survival[J]. The Journal of Ecology, 1999, 87:211-219.

[11] NORTHUP R R, YU Z S, DAHLGREN R A, et al. Polyphenol

control of nitrogen release from pine litter[J]. Nature, 1995, 377: 227-229.

[12] PELLISSIER F, GALLET C, SOUTO X C. Allelopathic interaction

in forest ecosystems[C]// REIGOSA M J, PEDROL N. Allelopathy: From Molecules to Ecosystems. Enfield, New Hampshire, USA: Science Publishers Inc., 2002: 257-269.

[13] HU F, KONG C H, CHEN X H, et al. Effects of different water, soil

fertility and light conditions on allelopathic traits of rice[J]. Chinese Journal of Applied Ecology, 2003, 14: 2265-2268 (In Chinese). [14] KONG C H, HU F, XU X H. Allelopathic potential and chemical

constituents of volatiles from Ageratum conyzoides under stress[J]. Journal of Chemical Ecology, 2002, 28: 1173-1182.

[15] MCKEY D. Phenolic content of vegetation in two African rain

forests: Ecological implications[J]. Science, 1978, 202: 61-64. [16] XU T, KONG C H. HU F. Allelopathy of Ageratum conyzoides: iii.

Allelopathic effects of volatile oil from Ageratum on plants under different nutrient levels[J]. Chinese Journal of Applied Ecology, 1999, 10: 748-750 (In Chinese).

[17] KOBAYASHI K. Factors affecting phytotoxic activity of

allelochemicals in soil[J]. Weed Biology and Management, 2004, 4: 1-7.

[18] AMBIKA S R, POORNIMA S, PALANIRAJ R, et al. Allelopathic

plants: 10. Lantana camara L[J]. Allelopathy Journal, 2003, 12: 147-162.

[19] HUANG P M, WANG M C, WANG M K. Catalytic transformation

of phenolic compounds in the soils[C]//INDERJIT, DAKSHINI K M M, Foy C L. Principles and Practices in Plant Ecology: Allelochemical Interactions. Boca Raton, Florida, USA: CRC Press, 1999: 287-306.

[20] MALLIK M A B. Allelopathy and nitrogen fixation in

legumes[C]//Narwal S S. Allelopathy Update: Basic and Applied Aspects. Enfield, NH, USA: Science Publishers, 1999, Volume 2: 177-200.

[21] 梁晓兰,潘开文,王进闯. 花椒凋落物分解过程中酚酸的释放动

态及其浸提液对土壤化学性质的影响. 生态学报,2008, 28(10): 4676-4684

[22] LI S T, ZHOU J M, WANG H Y, et al. Phenolic acids in

plant-soil-microbe system: A review. Pedosphere, 2002, 12: 1-14. [23] DING C P. Adsorption, oxidation and complexion of water-soluble

organic substances in soils[J]. Pedosphere, 1995, 5: 171-178. [24] CECCHI A M, KOSKINEN W C, CHENG H H, et al.

Sorption–desorption of phenolic acids as affected by soil properties[J]. Biology and Fertility of Soils, 2004, 39: 235-242. [25] INDERJIT, BHOWMIK P C. Sorption of benzoic acid onto soil

colloids and its implications for allelopathy studies[J]. Biology and Fertility of soils, 2004, 40: 345-348.

[26] HAN X G, JORDAN C F. Mobilization of phosphorus by naturally

occurring organic acids in Oxisols and Ultisols[J]. Pedosphere, 1995, 5: 289-303.

[27] HE Z L, YUAN K N, ZHU Z X. Effects of organic anions on

phosphate adsorption and desorption from variable-charge clay minerals and soil[J]. Pedosphere, 1992, 2: 1-11.

[28] ZHU Y G, LUO J X. Release of soil nonexchangeable K by organic

acids[J]. Pedosphere, 1993, 3: 269-276.

[29] SOUTO X C, PELLISSIER F. Feedback mechanism in the chemical

ecology of plants: role of soil microorganisms[C]//INDERJIT, MALLIK A U. Chemical Ecology of Plants: Allelopathy in Aquatic and Terrestrial Ecosystems. Basel, Switzerland: Birkhäuser Verlag, 2002: 89-97.

[30] DALTON B R, BLUM U, WEED S B. Differential sorption of

exogenously applied ferulic, p -coumaric phydroxybenzoic and vanillic acids in the soil[J]. Soil Science Society of America Journal, 1989, 53: 757-762.

[31] DE SCISCIOLO B, LEOPOLD D J, WALTON D J. Seasonal

patterns of juglone in soil beneath Juglans nigra (Black Walnut) and influence of J. nigra on understory vegetation[J]. Journal of Chemical Ecology, 1990, 16: 1111-1130.

[32] HEISEY R M, DELWICHE C C. Allelopathic effects of Trichostema

lanceolatum (Labiatae) in the California annual grassland[J]. Journal of Ecology, 1985, 73: 729-742.

[33] SPARLING G P, ORD B G, VAUGHAN D. Changes in microbial

biomass and activity in soil amended with phenolic acids[J]. Soil Biology and Biochemistry, 1981, 13: 455-460.

[34] SCHMIDT S K, LEY R E. Microbial competition and soil structure

limit the expression of allelochemicals in nature[C]//INDERJIT, DAKSHINI K M M, Foy C L. Principles and Practices in Plant Ecology: Allelochemical Interactions. Boca Raton, Florida, USA: CRC Press, 1999: 339-351.

[35] NICOLAI V. Phenolic and mineral content of leaves influences

decomposition in European forest communities[J]. Oecologia (Berlin), 1988, 75: 575-759.

[36] KILLHAM K. Nitrification in coniferous forest floors[J]. Plant and

Soil, 1990, 128: 31-44

[37] NORTHUP R R, DAHLGREN R A, AIDE T M, et al. Effect of plant

polyphenols on nutrient cycling and implications for community structure//INDERJIT, DAKSHINI K M M, FOY C L. Principles and Practices in Plant Ecology: Allelochemical Interactions. Boca Raton, Florida, USA: CRC Press, 1999: 369-380.

[38] KALITA D. Allelopathic effect of weeds on physico-chemical

李秋玲等:土壤性质及生物化学因素与植物化感作用的相互影响 2035

properties of rice and nutrient status of soil[J]. Ecology, Environment and Conservation, 2001, 7:79-85.

[39] INDERJIT. Soil microorganisms: an important determinant of

allelopathic activity[J]. Plant and Soil, 2005, 274: 227-236. [40] INDERJIT, DAKSHINI K M M. Control of bilberry vegetation by

steam treatment: Effects on seeded Scots pine and associated mycorrhizal fungi[J]. Forest Ecology and Management, 1995, 108: 275-285.

[41] WANG Z S, ZHANG S M, LIU D S. Kinetic modelling of

degradation of organic compounds in soils[J]. Pedosphere, 1997, 7: 119-126.

[42] MALLIK M A B, WILLIAMS R D. Allelopathic growth stimulation

of plants and microorganisms[J]. Allelopathy Journal, 2005, 16: 175-198.

[43] WEIDENHAMER J D, ROMEO J T. Allelochemicals of Polygonella

myriophylla : Chemistry and soil degradation[J]. Journal of Chemical Ecology, 2004, 30: 1067-1082.

[44] PONDER F Jr. Allelopathic interference of black walnut trees with

nitrogen-fixing plants in mixed plantings[C]// WALLER G R. Allelochemicals: Role in Agriculture and Forestry. Washington DC, USA: American Chemical Society, 1987: 195-204.

[45] Rietveld W J, Schlesinger R C, Kessler K J. Allelopathic effects of

black walnut on European black alder coplanted as a nurse species[J]. Journal of Chemical Ecology, 1983, 9: 1119-1133. [46] SCHIMEL J P, VAN CLEVE K, CATES R G, et al. Effects of balsam

poplar (Populus balsamifera) tannins and low molecular weight phenolics on microbial activity in taiga floodplain soil: implications for changes in N cycling during succession[J]. Canadian Journal of Botany, 1996, 74: 84-90.

[47] NI G Y, SONG L Y, ZHANG J L,et al. Effects of root extracts of

Mikania micrantha H.B.K. on soil microbial community[J]. Allelopathy Journal, 2006, 17: 247-254.

[48] SCHNITZER M, BARR M, HARTENSTEIN R. Kinetics and

characteristics of humic acids produced from simple phenols[J]. Soil Biology and Biochemistry, 1984, 16: 371-376

[49] WU F Z, WANG X Z. Effect of p-hydroxybenzoic and cinnamic

acids on soil fungi (Fusarium oxysporum f.sp. cucumerinum) growth and microbial population[J]. Allelopathy Journal, 2006, 18: 129-139.

[50] PERRY D A, CHOQUETTE C. Allelopathic effects on mycorrhizae.

[C]// WALLER G R. Allelochemicals: Role in Agriculture and Forestry. Washington DC, USA: American Chemical Society, 1987: 185-194.

[51] RUKHSANA B. Effects of arbuscular mycorrhizae (AM) and

effective microorganisms (EM) on various plants under allelopathic stress[J]. Allelopathy Journal, 2005, 16: 261-271.

[52] KROGH S S, MENSZ S J M, NIELSEN S T, et al. Fate of

benzoxazinone allelochemicals in soil after incorporation of wheat and rye sprouts[J]. Journal of Agricultural and Food Chemistry, 2006, 54: 1064-1074.

[53] MARSCHNER P, TIMONEN S. Interactions between plant species

and mycorrhizal colonization on the bacterial community composition in the rhizosphere[J]. Applied Soil Ecology, 2005, 28: 23-36.

[54] 林瑞余, 戎红, 周军建, 等. 苗期化感水稻对根际土壤微生物群

落及其功能多样性的影响[J]. 2007,27(9):3644-3654. [55] SOUTO X C, PELLISSIER F, CHIAPUSIO G. Relationships

between phenolics and soil microorganisms in spruce forests: Significance for natural regeneration[J]. Journal of Chemical

Ecology, 2000, 26: 2025-2034.

[56] INDERJIT, MALLIK A U. Can Kalmia angustifolia interference to

black spruce (Picea mariana) be explained by allelopathy?[J]. Forest Ecology and Management 2002, 160: 75-84.

[57] 朱广军,王明道,吴宗伟,等. 地黄根区土壤潜在化感物质的

GC-MS 分析[J ]. 河南科学,2007,25(2):255-257. [58] 何江华,付香斌,马东明,等. 地黄块根膨大过程中土壤化感物

质含量及微生物数量变化研究[J], 河南科学,2008,28(11):1369-1373.

[59] HECKMAN J R, KLUCHINSKI D. Soybean nodulation and

nitrogen fixation on soil amended with plant residues[J]. Biology and Fertility of Soils, 1995, 20: 284-288.

[60] PAAVOLAINEN L, KITUNEN V, SMOLANDER A. Inhibition of

nitrification in forest soil by monoterpenes[J]. Plant and Soil, 1998, 205: 147-154.

[61] INDERJIT, Dakshini K M M. Allelopathic effect of Pluchea

lanceolata (Asteraceae) on characteristics of four soils and tomato and mustard growth[J]. American Journal of Botany, 1994, 81: 799-804.

[62] INDERJIT, FOY C L. Nature of the interference mechanism of

mugwort (Artemisia vulgaris)[J]. Weed Technology, 1999, 13: 176-182.

[63] INDERJIT, MALLIK A U. Effects of Ledum groenlandicum

amendments on soil characteristics and black spruce seedling growth[J]. Plant Ecology, 1997, 133: 29-36.

[64] MICHELSEN A, SCHMIDT I K, JONASSON S, et al. Inhibition of

growth, and effects on nutrient uptake of arctic graminoids by leaf extracts: Allelopathy or resource competition between plant and microbes?[J]. Oecologia 1995, 103: 407–418.

[65] NARWAL S S, PALANIRAJ R, SATI S C, et al. Allelopathic plants:

8. Parthenium hysterophorus L[J]. Allelopathy Journal, 2003, 11: 151-170.

[66] POLITYCKA B. Soil sickness and allelopathy[J]. Allelopathy

Journal, 2005, 16: 77-84.

[67] RICE E L. Allelopathy. New York, NY, USA: Academic Press, Inc.,

1974.

[68] SCHMIDT I K, MICHELSEN A, JONASSON S. Effects of labile

soil carbon on nutrient partitioning between an arctic graminoid and microbes[J]. Oecologia, 1997, 112: 557–565.

[69] ZHANG Q S. Effects of soil extracts from repeated woodland

plantation of Chinese-fir on microbial activities and soil nitrogen mineralization dynamics[J]. Plant and Soil, 1997, 191: 205-212. [70] ZHANG Q S, YU X. Allelopathy in replant problem in forest soil[J].

Allelopathy Journal, 2001, 8: 51-64.

[71] CHEN L C, WANG S L,YU X J. Effects of Phenolics on seedling

growth and 15N nitrate absorption of Cunninghamia lanceolata[J]. Allelopathy Journal, 2005, 15: 57-66.

[72] CABOUN V. Soil sickness in forestry trees[J]. Allelopathy Journal,

2005, 16: 199-208.

[73] CHAPIN F S. New cog in the nitrogen cycle[J]. Nature, 1995, 377:

199-200.

[74] OLIVA A, LAHOZ E, CONTILLO R, et al. Effects of Ruta

graveolens leaves on soil characteristics and on seed germination and early seedling growth of four crop species[J]. Annals of Applied Biology 2002, 141: 87-91.

[75] INDERJIT, NISHIMURA H. Effect of the anthraquinones emodin

and physcion on availability of selected soil inorganic ions[J]. Annals of Applied Biology, 1999, 135: 425-429.

[76] INDERJIT, ASAKAWA C, DAKSHINI K M M. Allelopathic

2036 生态环境学报 第21卷第12期(2012年12月)

potential of Verbesina encelioides root leachate in soil[J]. Canadian Journal of Botany, 1999, 77: 1419-1424.

[77] WU Y X. Study on water-soluble organic reducing substances: 3.

Electrochemical properties of decomposition products of rice straw and their interactions with variable charge soils[J]. Pedosphere, 1996, 6: 167-173.

[78] WU Y X, DING C P. Study on water-soluble organic reducing

substances: 2. Organic reducing substances produced from anaerobic decomposition of milk vetch (Astragalus sinicus L.) [J]. Pedosphere, 1992, 2: 355-362.

[79] FURUBAYASHI A, HIRADATE S, FUJII Y. Adsorption and

transformation reactions of L-DOPA in soils[J]. Soil Science and Plant Nutrition, 2005, 51: 819-825.

[80] KAMINSKY R. The determination and extraction of available soil

organic compounds[J]. Soil Science, 1980, 130: 118-123

[81] XUAN T D, TAWATA S, KHANH T D, et al. Decomposition of

allelopathic plants in soil[J]. Journal of agronomy and crop science, 2005, 191: 162-171.

[82] ZHANG L, ANGLE J S, DELORME T, et al. Degradation of

Alyssum murale biomass in soil[J]. International Journal of Phytoremediation, 2005, 7: 169-176.

The interactions of soil properties and biochemical factors with plant allelopathy

LI Qiuling1, XIAO Huilin2*

1. Foreign Language Teachers College, Taiyuan University, Taiyuan 030002, China;

2. Guangdong Institute of Ecology and Environmental and Soil Sciences, Guangzhou 510650, China

Abstract: Allelopathy is closely related to the environmental factors of plant and soil is the basic environment of terrestrial plant growth. Until now, there is less comprehensive review on the research progress in the interactions of soil properties and biochemical factors with plant allelopathy. This paper tries to summarize this aspect, in order to provide references for the deeper study of the relationships. The current studies appeared that, (1) soil factors (soil texture, organic and inorganic matter and moisture) affects the phytotoxic activity of allelochemicals in soil. Many changes may occur in allelochemicals after they reach soil, from inactivating their phytotoxicity to enhancing the toxicity of otherwise inactive secondary metabolites by various mechanisms including microbial breakdown, surface adsorption, polymerization, pH change, ion exchange, altered oxygen concentration etc. The soil adsorption, desorption and degradation control the potential bioavailability of allelochemicals. For allelochemicals to have allelopathic effects on plants, they have to persist in the soil for long periods, resulting in their buildup in solution to high levels to cause the allelopathic effects. (2) Microbial activity in soil determines the activity of allelopathic compounds, not only they inactivate the phytotoxins but also due to release of new toxic compounds. Soil microbial enzymes and mycorrhizae affects the relationship between the plant allelopathy and nutrient levels in soil,but allelopathic compounds in soils also affects the microbial community structure and activity. (3) Plant secondary metabolites influence the N cycle due to their effects on soil nitrifiers and immobilization of N in organic forms. The microbes and various physical and chemical degradation processes, influence the fate of allelochemicals released from plants in soil. The fate of allelochemicals in the soil environment determines the expression of allelopathy in natural environment. This paper finally put forward some suggestions on the researches of allelopathy.

Key words: allelopathy; allelochemical; soil property; soil microorganism; biochemistry; plant litter; soil nutrient; phytotoxicity

生态环境学报 2012, 21(12): 2031-2036 http://www.jeesci.com Ecology and Environmental Sciences E-mail: [email protected]

土壤性质及生物化学因素与植物化感作用的相互影响

李秋玲,肖辉林*

1

2

1. 太原大学外语师范学院,山西 太原 030002;2. 广东省生态环境与土壤研究所,广东 广州 510650

摘要:化感作用与植物环境因素密切相关,而土壤是陆地植物生长的基础环境。到目前为止,较全面地总结土壤性质及生物化学因素与植物化感作用相互影响的研究进展的综述还很少见。文章试图对之进行总结,为更深入地研究它们之间的关系提供参考依据。当前的研究进展显示,(1)土壤因子(土壤质地、有机无机物质和水分)影响土壤中化感物质的植物毒性。化感物质到达土壤后,通过微生物分解、表面吸附、聚合作用、pH 变化、离子交换、改变氧气浓度等各种机制,将发生许多变化,这些变化包括从降低植物毒性直至提高惰性次生代谢物的毒性。土壤的吸附、解吸和降解控制了化感物质的潜在生物有效性。化感物质要达到对植物有化感效应,它们必须长期持续地存在于土壤中,以致它们在溶液中累积到引起化感效应的较高水平。(2)土壤微生物活性决定了化感物质的活性,它们不仅钝化了植物毒素,而且还释放了新的有毒化合物。土壤微生物酶和菌根影响植物化感作用和土壤养分水平的相互关系,而化感物质也能改变土壤微生物区系的结构和活性。(3)植物次生代谢物由于它们对土壤硝化细菌的影响和以有机形态对氮的固定,而影响氮循环。微生物和各种物理、化学的降解过程,影响从植物和土壤中释放的化感物质的去向。土壤环境中化感物质的去向决定了自然环境中化感作用的表达。文章最后提出了化感作用的研究展望。

关键词:化感作用;化感物质;土壤性质;土壤微生物;生物化学;植物凋落物;土壤养分;植物毒性 中图分类号:Q945.79 文献标志码:A 文章编号:1674-5906(2012)12-2031-06

引用格式:李秋玲,肖辉林. 土壤性质及生物化学因素与植物化感作用的相互影响[J]. 生态环境学报, 2012, 21(12): 2031-2036. LI Qiuling, XIAO Huilin. The interactions of soil properties and biochemical factors with plant allelopathy[J]. Ecology and Environmental Sciences, 2012, 21(12): 2031-2036.

Rice [1]在他1984年出版的《化感作用》(Allelopathy )第2版中应用了Molisch 在1937年对化感作用的首次定义,即化感作用是植物(包括微生物)之间抑制和刺激的生物化学相互作用。1996年国际化感学会将化感作用的定义拓广为:“涉及由植物、藻类、细菌和真菌产生的次生代谢物影响农业和生物系统的生长与发展的任何过程”[2]。化感作用与植物环境因素密切相关。光、温度、水分、养分可以成为植物的胁迫因素,而化感物质的释放、杀虫剂的应用和天敌袭击(昆虫和病菌原体)也能危害植物。这些胁迫因素能

土增加化感物质的产生,增加化感干扰作用[3-10]。

壤是陆地植物生长的基础环境。化感物质通过影响土壤微生物活性而影响养分的有效性[4,7,12]。植物次生代谢物对土壤微生物有抑制作用,因此,通过影响土壤硝化细菌和氮的固定而影响氮的循环[13]。反之,土壤养分含量也影响植物的化感作用[1,7,13-16]。但到目前为止,尚未见到有较全面总结这些关系的研究进展的综述。本文试图总结土

壤性质及生物化学因素与植物化感作用的相互影响的研究进展,为更深入地研究它们之间的关系提供参考依据。

1 土壤物理和化学性质

土壤因子(土壤质地、有机无机物质和水分)影响土壤中化感物质的植物毒性[17]。化感物质到达土壤后,通过各种机制包括微生物分解、表面吸附、聚合作用、pH 变化、离子交换、改变氧气浓度等,将发生许多变化,从降低植物毒性直至

土壤中化感物提高惰性次生代谢物的毒性[7,17-20]。

质的含量将直接决定土壤中的植物毒性,它们的

浓度受到土壤因素(吸附、解吸和降解)的控制[17]。

梁晓兰等[21]的研究显示,花椒凋落物在分解过程中释放的酚酸类物质呈现出明显的毒性动态。且酚酸含量随分解时间的延长,呈显著降低的趋势。酚酸的动态释放以及凋落物的浸提液显著地改变了土壤的微生态环境和土壤化学性质。在花椒凋落物分解的一个月内,酚酸释放总量达到最大,对土壤的毒性也最大,抑制了土壤纤维素分

基金项目:国家自然科学基金项目(31070473;31270575);广东省科技计划项目(2002C60111;粤科财字[2005]98号) 作者简介:李秋玲(1982年生),女,主要从事生态学和日语教学研究。E-mail: [email protected] *通信作者:肖辉林,研究员,博士。E-mail: [email protected] 收稿日期:2012-09-12

2032 生态环境学报 第21卷第12期(2012年12月)

解菌的生长,降低了土壤铵态氮的含量,但随着凋落物的继续分解,其毒性慢慢降低,凋落物分解到2个月左右时,土壤有机磷和碳素的循环加速。

土壤的吸附-解吸控制了酚酸的潜在生物有效性,酚酸进入土壤时,将与土壤颗粒表面发生物理化学反应和/或结合进入有机质[22]。大部分水溶性有机物(总量的60%~70%)能被土壤吸附[23]。对香豆酸(p -coumaric )和阿魏酸(ferulic acids)的吸附与土壤黏粒含量有关,藜芦酸(veratric acid)

[24]

的吸附与几种土壤因素有关。一种标记研究显示了苯甲酸在土壤颗粒上的吸附,随着浓度的提高而增加[25]。相反,土壤特性与香草酸和对羟基苯甲酸的吸附没有一致的关系。酚酸要达到对植物有化感效应,它们必须长期持续地存在于土壤中,以致它们在溶液中累积到引起化感效应的较高水平[24]。

对3种老成土(Ultisols )和1种氧化土(Oxisol )施用柠檬酸和苹果酸0.1、1.0、10、100 mmol/L,随着有机酸浓度的提高,溶液中磷含量也提高,但与铁结合和与铝结合的磷含量则降低[26]。这个结果意味着在有大量铁结合的和大量铝结合的磷存在的土壤中,自然发生的分解物将提高土壤对植物磷的有效性。He 等[27]的研究显示了有机阴离子能影响可变电荷黏土矿物和土壤中磷酸盐的吸附和解吸。在华南土壤中,土壤非交换性钾的释放与有机酸浓度有关[28]。这些研究结果对农业和森林土壤的施肥有一定的意义。

即使缺乏微生物代谢,土壤将比实验室溶液更多地减轻化合物毒性;这种减轻毒性是由于降低了化合物在土壤中的扩散率和各种络合反应及吸附反应[29]。土壤减轻化学物质的毒性影响与实验室生物测定中的毒性相比,土壤减轻了化学物

Heisey and Delwiche[32]显示毛质的毒性影响[30-33]。

雄芯属茴香草Trichostema lanceolatum Benth. 的水和乙醚提取物,在皮氏培养皿(Petri dishes)的生物测定中有很强的毒性。但同样的叶子与土壤混合却很少有化感效应。几种因素包括:(1)土壤中较低的化学扩散率,(2)化学物质在土壤颗粒上的吸附,(3)进入土壤有机物和微孔隙的过程,(4)微生物酶效应,能使化学物质在土壤中降低生物有效性[34]。

具有化感作用的Pluchea lanceolata影响土壤性质和土壤中酚类物质的含量[6]。多酚物质可以广泛影响土壤性质和过程[35],因为它们在许多林地中控制了硝化率[36]。Northup 等[37]提出蕨类芒萁属植物产生的大量的多酚物质为竞争物种创造了不利的土壤条件,让蕨类植物在迅速累积有机

养分的土壤中持续保持优势。Northup 等[11]报道了分解粗糙松(Pinus muricata,加州沼松)凋落物的多酚浓度控制了释放的溶解有机态氮和矿化态氮的比例。多酚物质对植物-凋落物-土壤相互作用有多方面的影响:抑制了食腐质者的活性,形成腐殖质,延迟了氮的矿化,螯合养分进入一种非常缓慢的有机质矿化库[29]。矿化氮的固定可能是抑制的另一种潜在机制[37]。

Kalita [38]报道了一些草本植物对水稻土养分有效性的化感影响。土壤有效性氮和钾含量随着草本植物[(Ageratum conyzoides L. ,Borreria hispida (L.) K. Schum,Cynodon dactylon (L.) Pers. ,Cyperus rotundus L.)]残留量的增加而直线下降。然而,有效磷却随着草本植物残留率的增加而增加。

酸性土壤中低磷有效性对生态系统生产力可能是一种重要限制。由于磷与溶解态的铝、锰、铁发生沉淀,或磷酸盐在活性表面上的特定吸附,随着pH 的降低,磷“固定”将是一个更大的问题。酚酸对铝、锰、铁是强络合剂。它能降低它们的吸附容量,导致磷酸盐的更少吸附[37]。

2 土壤微生物

土壤中微生物活性决定了化感物质的活性,它们不仅钝化了植物毒素,而且释放了新的有毒化合物[39-40]。土壤中有机化合物的降解与生物活性有很强的关系[41]。因此,化感相互作用与土壤微生物有很强的关系[29,42]。例如,土壤化感物质的微生物和非微生物氧化、转换影响了Polygonella myriophylla (Small) Horton的化感效应[43]。化感作用通过影响豆科植物寄主、微共生体和结瘤过程本身,而对氮固定具有很大的影响。土壤与某些作物残留物的结合,草本植物与土壤

从黑核桃(Juglans nigra L.)的结合减少了结瘤[21]。

[44-45]

树释放出来的化合物胡桃醌juglone (5-hydroxy-1,4- naphthoquinone)通过抑制氮固定而直接或间接地抑制了欧洲桤木(Alnus glutinosa L.) 的生长[13]。

Schimel 等[46]发现Populus balsamifera (L.)释放的单宁酸和低分子质量的酚类物质,分别抑制和刺激了土壤呼吸。这样,单宁酸起到一般微生物抑制剂的作用,而酚类物质起到生长底物的作用。土壤溶液相中的酚酸能被微生物作为碳源而利用,以及被植物吸收。酚酸的微生物降解产物是有机和/或无机化合物[22]。土壤中的酚酸影响了微生物群落结构和活性[22,47-49]。

土壤微生物酶和菌根影响植物化感作用和土壤养分水平的相互关系。分离的土壤微生物能改

李秋玲等:土壤性质及生物化学因素与植物化感作用的相互影响 2033

变化感物质成为更顽强的和更少毒性的形态,这归咎于土壤中有机质部分[46]。菌根改变了植物叶的化学[50-51]。土壤中化感物质进行着各种生物化学和其他过程;苯并恶嗪酮代谢物和它们的衍生物在土壤中是动态的和有时间依赖性的[52]。

有些土壤微生物能通过改变化感物质的数量和种类来影响化感作用,而化感物质也同样能改变土壤微生物区系[53]。林瑞余等[54]研究证实了种植不同品种水稻能明显改变土壤微生物条件,增加土壤微生物总量,也改变了土壤微生的组成,但不同化感潜力的水稻对土壤微生物的影响也存在明显差异。在欧洲云杉(Picea abies (L.) Karst.)林中,植物产生的酚类物质抑制了土壤微生物的

Souto 等[55]发现土壤微生物利用酚类物质活性[55]。

作为碳源,酚类物质的加入刺激了氨化细菌的活性。在狭叶山月桂(kalmia angustifolia L.) 树林下的土壤,缺乏氮、磷、铁和锰元素[56]。地黄连作土壤中放线菌、真菌数量与对照相比均有上升,是由于根际微生物将地黄根系分泌物进行生物转化,

生成了导致地黄连作障碍的酚酸类化感物质[57-58]。

3 土壤中植物次生代谢物

植物次生代谢物由于它们对土壤硝化细菌的

影响和以有机形态对氮的固定,而抑制土壤微生物和影响氮循环[12]。有些树种的残留物可能含有化感物质,有抑制植物生长和共生氮固定微生物的潜力。例如,生长在用红槲栎(Quercus rubra L.)、糖槭(Acer saccharum Marsh.)、一球悬玲木(Platanus occidentalis L.)或黑核桃(Juglans nigra L. )树叶改良的土壤中的大豆(Glycine max (L.) Merr. )出现了暂时的氮素缺乏,直到产生了根瘤。由于氮的固定,非根瘤植物出现了严重的缺氮现象,生长受到抑制。生长在树叶残留物改良过的土壤中结瘤的大豆植物,更依赖于共生固氮,干物产量比对照的更低[59]。Paavolainen 等[60]研究了在皆伐林地中,欧洲云杉单萜混合物对土壤净硝化、净氮矿化和反硝化活性的影响,结果表明,由于矿化氮的固定,单萜物质对土壤硝化产生了间接的抑制作用。单萜物质改变了生态系统养分的循环速率,特别是氮循环、氮矿化和固定过程[10]。既然氨氧化的许多抑制因素也抑制了甲烷的氧化,单萜物质可能也改变了碳的循环过程。

植物凋落物、碎屑的利用或淋溶到土壤中的养分,改变了土壤的无机离子状态[7,61-68]。从一些植物释放出来的有机分子能影响矿化、菌根和养分动态,化感干扰可以引起养分缺乏等其他干扰机制。

从杉木(Cunninghamia lanceolate (Lamb.)

Hook. )林土壤中萃取的物质显著降低了土壤呼吸、土壤氮的净矿化率,化感作用调节了连栽人工林地的养分循环[69-70]。并且在土壤中积累的酚类物质(vanillic acid and p -hydroxybenzoic acid) 通过减少了杉木林养分吸收而抑制了幼苗生长,并因此

这种森林的“土导致连栽杉木林生产力的降低[71],

[72]

壤病”需要引起关注。这方面需要更多的研究,以维持林地的可持续利用。

化感作用对养分行为的影响可能有利于某些养分在土壤中的吸持[73]。Northup 等[11]报道了通过减少氮矿化以及与凋落物氮形成顽强的复合体,多酚物质转移了氮循环的主要途径,从矿化态到有机态,减少了生态系统的氮损失,通过菌根共生体将凋落物氮的潜在回归最大化。

Oliva 等[74]发现土壤施用芸香(Ruta graveolens L.)叶子,与对照土壤相比有较高含量的酚类物质和硝酸盐。大黄素和大黄素甲醚,两种与Polygonum sachalinense化感作用有关的蒽醌,影响土壤无机离子的有效性。Inderjit 和Nishimura [75]

发现与对照土壤相比,土壤施用大黄素和大黄素甲醚显著降低了Mn 2+的有效性,但提高Na +和K +的有效性。施用不同量的Verbesina encelioides (Cav.)根的淋溶液的土壤与对照土壤相比,它们的

这种现象可以NO 3-和NH 4+浓度没有显著差异[76]。

部分地由Northup 等[37]的实验所解释,它显示了随着较高的总酚和单宁酸浓度,较大比例的凋落物氮被释放出来,作为溶解有机氮,而不是作为矿化态氮(NH4+和NO 3-) 。氮素释放的这种模式在氮素严重缺乏的生态系统中组成一种保留机制。

植物体分解产物的性质和质量与土壤类型和土壤条件密切相关[77-78]。微生物和各种物理、化学的降解过程,影响从植物和土壤中释放的化感物质的去向[12,79-82]。土壤环境中化感物质的去向决定了自然环境中化感作用的表达[12,25]。

4 研究展望

土壤的理化性质、土壤微生物以及释放到土壤中的植物次生代谢物均能影响到植物的化感作用,并进而影响植物的生长。土壤性质及生物化学因素与植物化感作用的相互关系是相当复杂的,要弄清楚这些关系是相当困难的。但是,对这些关系的研究在生态学和农业、林业生产中又是非常重要的。因此,这方面的研究工作还必须加强。目前该方面研究的重点是应该把土壤理化性质与植物化感作用,土壤微生物与植物化感作用,生态系统养分循环与植物化感作用,结合起来。此外,田间的研究工作更能说明植物化感作用的实际过程和程度,因此,更应该值得重视。

2034 生态环境学报 第21卷第12期(2012年12月)

参考文献:

[1] RICE E L. Allelopathy. Second edition. Orlando, Florida, USA:

Academic Press, Inc., 1984.

[2] International Allelopathy Society. Constitution[EB/OL]. 1996

[2005- 11-17]. http://www.as.uca.es/bylaws.htm#CONSTI. [3] ANAYA A L. Allelopathy as a tool in the management of biotic

resources in agroecosystems[J]. Critical Reviews in Plant Sciences, 1999, 18: 697-739.

[4] BATISH D R, SINGH H P, PANDHER J K, et al. Allelopathic

interference of Parthenium hysterophorus residues in soil[J]. Allelopathy Journal, 2005, 15: 267-274.

[5] EINHELLIG F A. An lntegrated view of allelochemicals amid

multiple stresses[C]// INDERJIT, DAKSHINI K M M, FOY C L. Principles and Practices in Plant Ecology: Allelochemical Interactions. Boca Raton, Florida, USA: CRC Press, 1999: 479-494. [6] INDERJIT. Influence of Pluchea lanceolata (Asteraceae) on

selected soil properties[J]. American Journal of Botany, 1998, 85: 64-69.

[7] INDERJIT. Soil: Environmental effects on allelochemical activity[J].

Agronomy Journal, 2001, 93: 79-84.

[8] KONG C H, XU T, HU F, et al. Allelopathy under environmental

stress and its induced mechanism[J]. Acta Ecologica Sinica, 2000, 20: 849-854 (In Chinese).

[9] KONG C H, HU F. Plant Allelopathy and Its Application. Beijing,

China: Chinese Agricultural Press, 2001: 169-201. (In Chinese). [10] WEIH M, KARLSSON P S. The nitrogen economy of mountain

birch seedlings: implications for winter survival[J]. The Journal of Ecology, 1999, 87:211-219.

[11] NORTHUP R R, YU Z S, DAHLGREN R A, et al. Polyphenol

control of nitrogen release from pine litter[J]. Nature, 1995, 377: 227-229.

[12] PELLISSIER F, GALLET C, SOUTO X C. Allelopathic interaction

in forest ecosystems[C]// REIGOSA M J, PEDROL N. Allelopathy: From Molecules to Ecosystems. Enfield, New Hampshire, USA: Science Publishers Inc., 2002: 257-269.

[13] HU F, KONG C H, CHEN X H, et al. Effects of different water, soil

fertility and light conditions on allelopathic traits of rice[J]. Chinese Journal of Applied Ecology, 2003, 14: 2265-2268 (In Chinese). [14] KONG C H, HU F, XU X H. Allelopathic potential and chemical

constituents of volatiles from Ageratum conyzoides under stress[J]. Journal of Chemical Ecology, 2002, 28: 1173-1182.

[15] MCKEY D. Phenolic content of vegetation in two African rain

forests: Ecological implications[J]. Science, 1978, 202: 61-64. [16] XU T, KONG C H. HU F. Allelopathy of Ageratum conyzoides: iii.

Allelopathic effects of volatile oil from Ageratum on plants under different nutrient levels[J]. Chinese Journal of Applied Ecology, 1999, 10: 748-750 (In Chinese).

[17] KOBAYASHI K. Factors affecting phytotoxic activity of

allelochemicals in soil[J]. Weed Biology and Management, 2004, 4: 1-7.

[18] AMBIKA S R, POORNIMA S, PALANIRAJ R, et al. Allelopathic

plants: 10. Lantana camara L[J]. Allelopathy Journal, 2003, 12: 147-162.

[19] HUANG P M, WANG M C, WANG M K. Catalytic transformation

of phenolic compounds in the soils[C]//INDERJIT, DAKSHINI K M M, Foy C L. Principles and Practices in Plant Ecology: Allelochemical Interactions. Boca Raton, Florida, USA: CRC Press, 1999: 287-306.

[20] MALLIK M A B. Allelopathy and nitrogen fixation in

legumes[C]//Narwal S S. Allelopathy Update: Basic and Applied Aspects. Enfield, NH, USA: Science Publishers, 1999, Volume 2: 177-200.

[21] 梁晓兰,潘开文,王进闯. 花椒凋落物分解过程中酚酸的释放动

态及其浸提液对土壤化学性质的影响. 生态学报,2008, 28(10): 4676-4684

[22] LI S T, ZHOU J M, WANG H Y, et al. Phenolic acids in

plant-soil-microbe system: A review. Pedosphere, 2002, 12: 1-14. [23] DING C P. Adsorption, oxidation and complexion of water-soluble

organic substances in soils[J]. Pedosphere, 1995, 5: 171-178. [24] CECCHI A M, KOSKINEN W C, CHENG H H, et al.

Sorption–desorption of phenolic acids as affected by soil properties[J]. Biology and Fertility of Soils, 2004, 39: 235-242. [25] INDERJIT, BHOWMIK P C. Sorption of benzoic acid onto soil

colloids and its implications for allelopathy studies[J]. Biology and Fertility of soils, 2004, 40: 345-348.

[26] HAN X G, JORDAN C F. Mobilization of phosphorus by naturally

occurring organic acids in Oxisols and Ultisols[J]. Pedosphere, 1995, 5: 289-303.

[27] HE Z L, YUAN K N, ZHU Z X. Effects of organic anions on

phosphate adsorption and desorption from variable-charge clay minerals and soil[J]. Pedosphere, 1992, 2: 1-11.

[28] ZHU Y G, LUO J X. Release of soil nonexchangeable K by organic

acids[J]. Pedosphere, 1993, 3: 269-276.

[29] SOUTO X C, PELLISSIER F. Feedback mechanism in the chemical

ecology of plants: role of soil microorganisms[C]//INDERJIT, MALLIK A U. Chemical Ecology of Plants: Allelopathy in Aquatic and Terrestrial Ecosystems. Basel, Switzerland: Birkhäuser Verlag, 2002: 89-97.

[30] DALTON B R, BLUM U, WEED S B. Differential sorption of

exogenously applied ferulic, p -coumaric phydroxybenzoic and vanillic acids in the soil[J]. Soil Science Society of America Journal, 1989, 53: 757-762.

[31] DE SCISCIOLO B, LEOPOLD D J, WALTON D J. Seasonal

patterns of juglone in soil beneath Juglans nigra (Black Walnut) and influence of J. nigra on understory vegetation[J]. Journal of Chemical Ecology, 1990, 16: 1111-1130.

[32] HEISEY R M, DELWICHE C C. Allelopathic effects of Trichostema

lanceolatum (Labiatae) in the California annual grassland[J]. Journal of Ecology, 1985, 73: 729-742.

[33] SPARLING G P, ORD B G, VAUGHAN D. Changes in microbial

biomass and activity in soil amended with phenolic acids[J]. Soil Biology and Biochemistry, 1981, 13: 455-460.

[34] SCHMIDT S K, LEY R E. Microbial competition and soil structure

limit the expression of allelochemicals in nature[C]//INDERJIT, DAKSHINI K M M, Foy C L. Principles and Practices in Plant Ecology: Allelochemical Interactions. Boca Raton, Florida, USA: CRC Press, 1999: 339-351.

[35] NICOLAI V. Phenolic and mineral content of leaves influences

decomposition in European forest communities[J]. Oecologia (Berlin), 1988, 75: 575-759.

[36] KILLHAM K. Nitrification in coniferous forest floors[J]. Plant and

Soil, 1990, 128: 31-44

[37] NORTHUP R R, DAHLGREN R A, AIDE T M, et al. Effect of plant

polyphenols on nutrient cycling and implications for community structure//INDERJIT, DAKSHINI K M M, FOY C L. Principles and Practices in Plant Ecology: Allelochemical Interactions. Boca Raton, Florida, USA: CRC Press, 1999: 369-380.

[38] KALITA D. Allelopathic effect of weeds on physico-chemical

李秋玲等:土壤性质及生物化学因素与植物化感作用的相互影响 2035

properties of rice and nutrient status of soil[J]. Ecology, Environment and Conservation, 2001, 7:79-85.

[39] INDERJIT. Soil microorganisms: an important determinant of

allelopathic activity[J]. Plant and Soil, 2005, 274: 227-236. [40] INDERJIT, DAKSHINI K M M. Control of bilberry vegetation by

steam treatment: Effects on seeded Scots pine and associated mycorrhizal fungi[J]. Forest Ecology and Management, 1995, 108: 275-285.

[41] WANG Z S, ZHANG S M, LIU D S. Kinetic modelling of

degradation of organic compounds in soils[J]. Pedosphere, 1997, 7: 119-126.

[42] MALLIK M A B, WILLIAMS R D. Allelopathic growth stimulation

of plants and microorganisms[J]. Allelopathy Journal, 2005, 16: 175-198.

[43] WEIDENHAMER J D, ROMEO J T. Allelochemicals of Polygonella

myriophylla : Chemistry and soil degradation[J]. Journal of Chemical Ecology, 2004, 30: 1067-1082.

[44] PONDER F Jr. Allelopathic interference of black walnut trees with

nitrogen-fixing plants in mixed plantings[C]// WALLER G R. Allelochemicals: Role in Agriculture and Forestry. Washington DC, USA: American Chemical Society, 1987: 195-204.

[45] Rietveld W J, Schlesinger R C, Kessler K J. Allelopathic effects of

black walnut on European black alder coplanted as a nurse species[J]. Journal of Chemical Ecology, 1983, 9: 1119-1133. [46] SCHIMEL J P, VAN CLEVE K, CATES R G, et al. Effects of balsam

poplar (Populus balsamifera) tannins and low molecular weight phenolics on microbial activity in taiga floodplain soil: implications for changes in N cycling during succession[J]. Canadian Journal of Botany, 1996, 74: 84-90.

[47] NI G Y, SONG L Y, ZHANG J L,et al. Effects of root extracts of

Mikania micrantha H.B.K. on soil microbial community[J]. Allelopathy Journal, 2006, 17: 247-254.

[48] SCHNITZER M, BARR M, HARTENSTEIN R. Kinetics and

characteristics of humic acids produced from simple phenols[J]. Soil Biology and Biochemistry, 1984, 16: 371-376

[49] WU F Z, WANG X Z. Effect of p-hydroxybenzoic and cinnamic

acids on soil fungi (Fusarium oxysporum f.sp. cucumerinum) growth and microbial population[J]. Allelopathy Journal, 2006, 18: 129-139.

[50] PERRY D A, CHOQUETTE C. Allelopathic effects on mycorrhizae.

[C]// WALLER G R. Allelochemicals: Role in Agriculture and Forestry. Washington DC, USA: American Chemical Society, 1987: 185-194.

[51] RUKHSANA B. Effects of arbuscular mycorrhizae (AM) and

effective microorganisms (EM) on various plants under allelopathic stress[J]. Allelopathy Journal, 2005, 16: 261-271.

[52] KROGH S S, MENSZ S J M, NIELSEN S T, et al. Fate of

benzoxazinone allelochemicals in soil after incorporation of wheat and rye sprouts[J]. Journal of Agricultural and Food Chemistry, 2006, 54: 1064-1074.

[53] MARSCHNER P, TIMONEN S. Interactions between plant species

and mycorrhizal colonization on the bacterial community composition in the rhizosphere[J]. Applied Soil Ecology, 2005, 28: 23-36.

[54] 林瑞余, 戎红, 周军建, 等. 苗期化感水稻对根际土壤微生物群

落及其功能多样性的影响[J]. 2007,27(9):3644-3654. [55] SOUTO X C, PELLISSIER F, CHIAPUSIO G. Relationships

between phenolics and soil microorganisms in spruce forests: Significance for natural regeneration[J]. Journal of Chemical

Ecology, 2000, 26: 2025-2034.

[56] INDERJIT, MALLIK A U. Can Kalmia angustifolia interference to

black spruce (Picea mariana) be explained by allelopathy?[J]. Forest Ecology and Management 2002, 160: 75-84.

[57] 朱广军,王明道,吴宗伟,等. 地黄根区土壤潜在化感物质的

GC-MS 分析[J ]. 河南科学,2007,25(2):255-257. [58] 何江华,付香斌,马东明,等. 地黄块根膨大过程中土壤化感物

质含量及微生物数量变化研究[J], 河南科学,2008,28(11):1369-1373.

[59] HECKMAN J R, KLUCHINSKI D. Soybean nodulation and

nitrogen fixation on soil amended with plant residues[J]. Biology and Fertility of Soils, 1995, 20: 284-288.

[60] PAAVOLAINEN L, KITUNEN V, SMOLANDER A. Inhibition of

nitrification in forest soil by monoterpenes[J]. Plant and Soil, 1998, 205: 147-154.

[61] INDERJIT, Dakshini K M M. Allelopathic effect of Pluchea

lanceolata (Asteraceae) on characteristics of four soils and tomato and mustard growth[J]. American Journal of Botany, 1994, 81: 799-804.

[62] INDERJIT, FOY C L. Nature of the interference mechanism of

mugwort (Artemisia vulgaris)[J]. Weed Technology, 1999, 13: 176-182.

[63] INDERJIT, MALLIK A U. Effects of Ledum groenlandicum

amendments on soil characteristics and black spruce seedling growth[J]. Plant Ecology, 1997, 133: 29-36.

[64] MICHELSEN A, SCHMIDT I K, JONASSON S, et al. Inhibition of

growth, and effects on nutrient uptake of arctic graminoids by leaf extracts: Allelopathy or resource competition between plant and microbes?[J]. Oecologia 1995, 103: 407–418.

[65] NARWAL S S, PALANIRAJ R, SATI S C, et al. Allelopathic plants:

8. Parthenium hysterophorus L[J]. Allelopathy Journal, 2003, 11: 151-170.

[66] POLITYCKA B. Soil sickness and allelopathy[J]. Allelopathy

Journal, 2005, 16: 77-84.

[67] RICE E L. Allelopathy. New York, NY, USA: Academic Press, Inc.,

1974.

[68] SCHMIDT I K, MICHELSEN A, JONASSON S. Effects of labile

soil carbon on nutrient partitioning between an arctic graminoid and microbes[J]. Oecologia, 1997, 112: 557–565.

[69] ZHANG Q S. Effects of soil extracts from repeated woodland

plantation of Chinese-fir on microbial activities and soil nitrogen mineralization dynamics[J]. Plant and Soil, 1997, 191: 205-212. [70] ZHANG Q S, YU X. Allelopathy in replant problem in forest soil[J].

Allelopathy Journal, 2001, 8: 51-64.

[71] CHEN L C, WANG S L,YU X J. Effects of Phenolics on seedling

growth and 15N nitrate absorption of Cunninghamia lanceolata[J]. Allelopathy Journal, 2005, 15: 57-66.

[72] CABOUN V. Soil sickness in forestry trees[J]. Allelopathy Journal,

2005, 16: 199-208.

[73] CHAPIN F S. New cog in the nitrogen cycle[J]. Nature, 1995, 377:

199-200.

[74] OLIVA A, LAHOZ E, CONTILLO R, et al. Effects of Ruta

graveolens leaves on soil characteristics and on seed germination and early seedling growth of four crop species[J]. Annals of Applied Biology 2002, 141: 87-91.

[75] INDERJIT, NISHIMURA H. Effect of the anthraquinones emodin

and physcion on availability of selected soil inorganic ions[J]. Annals of Applied Biology, 1999, 135: 425-429.

[76] INDERJIT, ASAKAWA C, DAKSHINI K M M. Allelopathic

2036 生态环境学报 第21卷第12期(2012年12月)

potential of Verbesina encelioides root leachate in soil[J]. Canadian Journal of Botany, 1999, 77: 1419-1424.

[77] WU Y X. Study on water-soluble organic reducing substances: 3.

Electrochemical properties of decomposition products of rice straw and their interactions with variable charge soils[J]. Pedosphere, 1996, 6: 167-173.

[78] WU Y X, DING C P. Study on water-soluble organic reducing

substances: 2. Organic reducing substances produced from anaerobic decomposition of milk vetch (Astragalus sinicus L.) [J]. Pedosphere, 1992, 2: 355-362.

[79] FURUBAYASHI A, HIRADATE S, FUJII Y. Adsorption and

transformation reactions of L-DOPA in soils[J]. Soil Science and Plant Nutrition, 2005, 51: 819-825.

[80] KAMINSKY R. The determination and extraction of available soil

organic compounds[J]. Soil Science, 1980, 130: 118-123

[81] XUAN T D, TAWATA S, KHANH T D, et al. Decomposition of

allelopathic plants in soil[J]. Journal of agronomy and crop science, 2005, 191: 162-171.

[82] ZHANG L, ANGLE J S, DELORME T, et al. Degradation of

Alyssum murale biomass in soil[J]. International Journal of Phytoremediation, 2005, 7: 169-176.

The interactions of soil properties and biochemical factors with plant allelopathy

LI Qiuling1, XIAO Huilin2*

1. Foreign Language Teachers College, Taiyuan University, Taiyuan 030002, China;

2. Guangdong Institute of Ecology and Environmental and Soil Sciences, Guangzhou 510650, China

Abstract: Allelopathy is closely related to the environmental factors of plant and soil is the basic environment of terrestrial plant growth. Until now, there is less comprehensive review on the research progress in the interactions of soil properties and biochemical factors with plant allelopathy. This paper tries to summarize this aspect, in order to provide references for the deeper study of the relationships. The current studies appeared that, (1) soil factors (soil texture, organic and inorganic matter and moisture) affects the phytotoxic activity of allelochemicals in soil. Many changes may occur in allelochemicals after they reach soil, from inactivating their phytotoxicity to enhancing the toxicity of otherwise inactive secondary metabolites by various mechanisms including microbial breakdown, surface adsorption, polymerization, pH change, ion exchange, altered oxygen concentration etc. The soil adsorption, desorption and degradation control the potential bioavailability of allelochemicals. For allelochemicals to have allelopathic effects on plants, they have to persist in the soil for long periods, resulting in their buildup in solution to high levels to cause the allelopathic effects. (2) Microbial activity in soil determines the activity of allelopathic compounds, not only they inactivate the phytotoxins but also due to release of new toxic compounds. Soil microbial enzymes and mycorrhizae affects the relationship between the plant allelopathy and nutrient levels in soil,but allelopathic compounds in soils also affects the microbial community structure and activity. (3) Plant secondary metabolites influence the N cycle due to their effects on soil nitrifiers and immobilization of N in organic forms. The microbes and various physical and chemical degradation processes, influence the fate of allelochemicals released from plants in soil. The fate of allelochemicals in the soil environment determines the expression of allelopathy in natural environment. This paper finally put forward some suggestions on the researches of allelopathy.

Key words: allelopathy; allelochemical; soil property; soil microorganism; biochemistry; plant litter; soil nutrient; phytotoxicity


相关内容

  • 自然地理名词解释
  • 第四章:海洋和陆地水 水分循环:由水分蒸发为水汽,再凝结为降水,重新回到地表面的循环往复过程叫水分循环,由蒸发.水汽输送.降水和径流四个环节来实现的.降水量蒸发量和径流量是水循环的三个重要环节. 水圈:地球上除了存在各种矿物中的化合水.结合水以及深部岩石所封存的水分以外,海洋.江河.湖泊.地下水.大 ...

  • [土壤地理学]复习资料
  • <土壤地理学>复习资料 一 土壤是地球陆地表面具有肥力能够生长植物的疏松层,是独立的历史自然体. 其特征:有生物活性.孔隙结构. 其功能:有肥力及生产性能,缓冲与净化功能. 土壤剖面是指从地面垂直向下至母质的土壤纵断面. 土壤圈是地球表层系统的组成部分,它处于地球表层不同圈层界面及其相互 ...

  • 土壤地理学
  • 绪论 土壤是地球陆地表面能够生长绿色植物的疏松层,具备植物着生条件和肥力特征. 其本质特征和基本属性: 其功能:有肥力及产性能, 缓冲与净化功能 最小土体足以调表某一种土壤的大部分特征,这就称为单个土体. 两个以上的单个土体组成的群体,称为聚合土体,又称土壤个体或土壤实体等. .液相(土壤水分和土壤 ...

  • 林业基础知识68
  • <345林业基础知识综合>入学考试大纲 第一部分 土壤学 第一章 绪论 1. 土壤:地球陆地表面,具有肥力特征的能够生长植物的疏松表层 土壤学:土壤学是以地球表面能够生长绿色植物的疏松层为对象,研究其中的物质运动规律及其与环境间关系的科学,是农业科学的基础学科之一. 土壤肥力:土壤能够稳 ...

  • 生态学名词解释
  • 名词解释 1. 环境 是指某一特定生物个体或生物群体周围的空间,以及直接或间接影响该 生物或生物群体生存的一切事物的总和. 2. 生态因子 是指环境中对生物生长.发育.生殖.行为和分布有直接或间接影 响的环境要素. 3. 限制因子 在诸多生态因子中,限制生物的生长.发育.生殖.活动以及分布 等的关键 ...

  • 植物地理学
  • 植物与土壤地理学 一. 名词解释 1. 成土母质:指陈铺于地球陆地表面的松散土状物质,或为就地风化形成的残积物,或为各类型的搬运沉积物. 2. 剖面:指从土表向下至母质的垂直切面或纵断面.包括土壤形成过程中所产生的发生层次及母质层次,即ABC 层. 3. 土体(单个土体):土壤这个空间连续体在地球表 ...

  • 西南大学考研自然地理名词解释
  • 自然地理学重要名词解释汇总 地理环境:地理环境可分为自然环境.经济环境和社会文化环境三类.三种地理环境在地域上和结构上相互重叠.相互联系,从而构成统一整体的地理环境. 自然环境:自然环境由地球表层中的无机和有机的.静态和动态的自然界各种物质和能量组成,具有地理结构特征并受自然规律控制.根据其受人类社 ...

  • 生物地理期末复习资料
  • 复习思考题 一.名词解释 1.环境:是指某一特定生物体或生物群体周围一切事物的总和,包括空间及直接或间接影响该生物体或生 物群体生存的各种因素. 2.生态因子:环境是由许多因子组成,在环境因子中给予生物影响的因子称为生态因子. 3.生物多样性:是所有生物种类.种内遗传变异和它们与环境形成的生态复合体 ...

  • 个体生态学
  • 摘自:个体生态学http://jw.nju.edu.cn/stx/content/chapter2/lesson1/ch2a1.htm 2. 个体生态学 个体生态学是以生物的个体及其栖息环境为研究对象,研究有关环境因子对生物个体的影响,以及生物个体在的形态.生理.生化和行为方面的生态适应机制,阐明生 ...