锂离子电池对电解液量需求及电解液量对电池性能的影响

锂离子电池对电解液量需求及电解液量对电池性能的影响

2010年06月11日作者:杉杉科技技术支持中心来源:《化学与物理电源系统》第17期编辑:ser 1前言

通用的锂离子电池电解液由无机锂盐电解质和有机碳酸酯组成,作为锂离子迁移和电荷传递的介质,是锂离子电池不可或缺的重要组成部分,是锂离子电池获得高电压、高能量密度、高循环性能等优点的基础。电解液开发和设计过程中,可以通过提高电解液纯度、调节锂盐浓度和溶剂组成、使用功能添加剂来控制和改善电解液的杂质含量、导电率、粘度、温度窗口等理化性能。在电池设计过程中,不可忽略正负极材料与电解液的兼容性,针对不同的正负极体系选择恰当的电解液体系是电池获得优异性能的前提。选择了恰当的正负极与电解液体系,并不能保证电池具备高能量密度、长循环寿命和高安全性等优点,还要确定恰当的电解液量。本文考察了电解液量对锂离子电池容量、循环性能、安全性能的影响以及不同正极材料体系对电解液量的需求差异。

2实验方法

选取523450方型铝壳型号作为实验电芯型号,正极活性物质相应分别采用钴酸锂、镍钴锰酸锂、锰酸锂、磷酸铁锂,设计压实密度分别为3.9g/cm、3.45g/cm、2.8g/cm、2.3g/cm;负极采用人造石墨,设计压实密度为1.55g/cm,电解液体系为1MLiPF6/(EC/EMC/DEC/MPC/添加剂),密度为1.23g/cm。其中钴酸锂电芯1C倍率的标称容量为1000mAh,镍钴锰酸锂电芯1C倍率的标称容量800mAh,锰酸锂电芯1C倍率的标称容量为600mAh,磷酸铁锂电芯1C倍率的标称容量为600mAh。根据不同正极,按照工艺分别制成523450铝壳方型电芯100只。 333333

相应各取只未注液电芯,采用真密度仪测试封口前后的体积,计算电芯内部的空间体积,此体积乘以电解液的密度,即可得到电芯的最大注液量。根据电芯内部空间测试结果,制定注液梯度,进行对比实验。将剩余电芯平均分配后,按照注液梯度进行注液,再按正常工艺完成化成、封口等工序后称量电芯的重量,电芯老化后留待测试。

3结果与讨论

3.1不同类别电芯的电解液量需求

为评估523450型钴酸锂电芯、镍钴锰酸锂电芯、锰酸锂电芯、磷酸铁锂电芯的最大注液量,每种电池各取5只电芯,测得其卷芯厚度、内部空间体积的平均值如表1所示,并计算出不同类别电池的最大注液量。从中可见,因电芯型号相同,各类别电芯的卷芯实际厚度基本没有明显差别,但因不同类别正极活性物质的真密度以及正极极片的压实密度差异,造成各类别的内部空间体积存在明显差异。电解液作为锂离子迁移和电荷传递的介质,为确保活性物质得到充分应用,要求电芯卷芯各空隙区域充满电解液,因此电芯内部空间体积也可用于大致判断电芯对电解液的需求量。钴酸锂电芯的设计容量最高,因正极压实密度最高,其内部空间体积最小,说明其电解液需求最少,最大注液量只有3.15g;镍钴锰酸锂电芯、锰酸锂电芯和磷酸铁锂电芯因正极压实密度明显小于钴酸锂正极,极片内部空隙大,故电解量需求明显大于钴酸锂电芯。虽然锰酸锂电芯的正极压实密度是磷酸铁锂电芯的正极压实密度的1.17倍,但因锰酸锂的真密度是磷酸铁锂的1.30倍,故锰酸锂正极的空隙率略大于磷酸铁锂正极,电解液需求也略大。

表1不同类别电芯内部空间及最大注液量

3.2电解液量对电池性能的影响

为考察电解量对电池性能的影响,以镍钴锰酸锂电芯为例进行实验,根据最大电解液测试,设计的四个电解液量梯度分别为:2.50g,2.80g,3.10g和.3.40g。按照上述四个电解液量梯度进行注液,每个梯度23只电芯。

1)电解液量对电池容量的影响。

将上述四个电解液量梯度的电芯在化成、老化后,进行电压、内阻和容量测试,充电容量采用1C恒流恒压充电至4.2V,截止电流为0.05C进行测试;静置5分钟后,放电容量采用1C恒流放电至3.0V进行测试,再根据各电芯相应的正极活性物质重量,计算正极比容量。所得测试结果的平均值如表2所示。

表2不同电解液量的电池的电化学性能平均值

电解液量为2.50g梯度时,电池的内阻明显偏大,电池的容量和正极比容量明显低于其他三个电解液量梯度的电池,可见此梯度电解液量明显不够,导致电卷芯部分有效区域无电解液或电解液较少,浸润不充分,引起内阻偏大,容量发挥较低。而电解液量梯度在2.80g、3.10g、3.40g时,电芯的容量发挥相差不大,但略有容量随着电解液量增加而增高的趋势,电解液量的增加有利于充分利用活性物质的容量。由此说明,电池容量与电解液量有较大关系,电池容量随着电解液量的增加而长吭,但升高的超势随着电解液量的增加而趋缓,最后基本趋于恒定。

2)电解液量对电池循环性能的影响

对不同电解液量梯度的电池平行进行常温循环性能测试。以1C恒流恒压充电至4.2V,截止电流为0.05C,静置5分钟;然后1C恒流放电至3.0V,静置5分钟;再转入充电过程,如此循环350次。

循环测试结果可见,电解液量为2.50g时,电池的循环性能特别差,222次降到初始容量的80%。这是因为电解液量较少,电池内阻大,循环测试过程,电池的发热量越来越大,加速电池局部电解液的分解或挥发,是电池循环性能的恶化速度逐渐加快。电解液量为2.80g、3.10g、3.40g时,电池的循环性能相对较好,350次循环后,容量保持了依然大于85%。但是从100次循环后,2.80g电解液量的电池的循环性能逐渐差于其它两个电解液量梯度的电池,说明此电解液量在长期循环过程中也略显不足。电解液量为

3.40g的电池在前250次循环的容量保持率最高,但从160次循环起,容量衰减速度明显加快,在第285次循环后,容量保持率低于3.10g电解液量的电池。测试完毕发现此电池厚度膨胀比3.10g电解液量的电池明显,说明此电池是因为电解液过多导致电芯的副反应也相对增加,产气量较多,导致电芯的循环性能下降。由此可见电解液量对电池的循环性能影响非常明显,电解液过少或过多,都不利于电池的循环性能。

3)电解液量对电池抗过充电性能的影响

抗过充电测试方法:首先以0.2C将电池放电至3.0V,再以1A/10V恒流恒压过充24h。不同电解液量梯度的电池的抗过充电测试结果如表3所示。

表3不同电解液量的电池的抗过充电测试结果

从表3中可见,电解液量为2.50g和3.40g的电池在抗过充电测试中,或爆炸、或起火,而电解液量为2.80g和3.10g的电池则顺利通过测试。当电解液量过少时,在过充电过程中,恒流充电时电压高于4.6V时,电解液迅速分解产气,消耗殆尽,造成电池气胀,内阻急剧增大,电池温度急剧上升,隔膜融化,造成短路爆炸。而当电解液量过多时,过充电过程中,产生的气体量大,电池内部压力大,壳体破裂,引起电解液泄露。电解液温度较高时,遇到空气而着火。当电解液量适中时,过充过程中,不至于在大电流情况下电解液消耗殆尽引起短路,也不至于产气量过大,造成壳体破裂,电解液泄露起火。

4结论

1)不同正极材料体系对电解液量的需求互有差异,高压实密度的钴酸锂正极体系电池在同等大小的电芯中,容量最高,电解液需求量却最少;而低压实密度的锰酸锂和磷酸铁锂正极体系电池,容量较低,而电解液需求最大。

2)电池的内阻随着电解液量的增加而减少,容量随着电解液量的增加而增加。电解液量过少时,电池内阻大,容量低;当电解液量达到一定量,内阻和容量趋于稳定。

3)电解液量对电池的循环性能和抗过充电性能影响显著,电解液量过多或过少时,循环性能和安全性能都较差。

选自:中国锂电材料信息导报

电源门户网版权及免责声明:

1、凡本网注明“来源:电源门户网”的所有作品,版权均属于电源门户网,未经本网授权,任何单位及个人不得转载、摘编或以其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明“来源:电源门户网”。违反上述声明者,本网将追究其相关法律责任。

2、凡本网注明“来源:XXX(非电源门户网)”的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。

3、如因作品内容、版权和其它问题需要同本网联系的,请于转载之日起30日内进行。

锂离子电池对电解液量需求及电解液量对电池性能的影响

2010年06月11日作者:杉杉科技技术支持中心来源:《化学与物理电源系统》第17期编辑:ser 1前言

通用的锂离子电池电解液由无机锂盐电解质和有机碳酸酯组成,作为锂离子迁移和电荷传递的介质,是锂离子电池不可或缺的重要组成部分,是锂离子电池获得高电压、高能量密度、高循环性能等优点的基础。电解液开发和设计过程中,可以通过提高电解液纯度、调节锂盐浓度和溶剂组成、使用功能添加剂来控制和改善电解液的杂质含量、导电率、粘度、温度窗口等理化性能。在电池设计过程中,不可忽略正负极材料与电解液的兼容性,针对不同的正负极体系选择恰当的电解液体系是电池获得优异性能的前提。选择了恰当的正负极与电解液体系,并不能保证电池具备高能量密度、长循环寿命和高安全性等优点,还要确定恰当的电解液量。本文考察了电解液量对锂离子电池容量、循环性能、安全性能的影响以及不同正极材料体系对电解液量的需求差异。

2实验方法

选取523450方型铝壳型号作为实验电芯型号,正极活性物质相应分别采用钴酸锂、镍钴锰酸锂、锰酸锂、磷酸铁锂,设计压实密度分别为3.9g/cm、3.45g/cm、2.8g/cm、2.3g/cm;负极采用人造石墨,设计压实密度为1.55g/cm,电解液体系为1MLiPF6/(EC/EMC/DEC/MPC/添加剂),密度为1.23g/cm。其中钴酸锂电芯1C倍率的标称容量为1000mAh,镍钴锰酸锂电芯1C倍率的标称容量800mAh,锰酸锂电芯1C倍率的标称容量为600mAh,磷酸铁锂电芯1C倍率的标称容量为600mAh。根据不同正极,按照工艺分别制成523450铝壳方型电芯100只。 333333

相应各取只未注液电芯,采用真密度仪测试封口前后的体积,计算电芯内部的空间体积,此体积乘以电解液的密度,即可得到电芯的最大注液量。根据电芯内部空间测试结果,制定注液梯度,进行对比实验。将剩余电芯平均分配后,按照注液梯度进行注液,再按正常工艺完成化成、封口等工序后称量电芯的重量,电芯老化后留待测试。

3结果与讨论

3.1不同类别电芯的电解液量需求

为评估523450型钴酸锂电芯、镍钴锰酸锂电芯、锰酸锂电芯、磷酸铁锂电芯的最大注液量,每种电池各取5只电芯,测得其卷芯厚度、内部空间体积的平均值如表1所示,并计算出不同类别电池的最大注液量。从中可见,因电芯型号相同,各类别电芯的卷芯实际厚度基本没有明显差别,但因不同类别正极活性物质的真密度以及正极极片的压实密度差异,造成各类别的内部空间体积存在明显差异。电解液作为锂离子迁移和电荷传递的介质,为确保活性物质得到充分应用,要求电芯卷芯各空隙区域充满电解液,因此电芯内部空间体积也可用于大致判断电芯对电解液的需求量。钴酸锂电芯的设计容量最高,因正极压实密度最高,其内部空间体积最小,说明其电解液需求最少,最大注液量只有3.15g;镍钴锰酸锂电芯、锰酸锂电芯和磷酸铁锂电芯因正极压实密度明显小于钴酸锂正极,极片内部空隙大,故电解量需求明显大于钴酸锂电芯。虽然锰酸锂电芯的正极压实密度是磷酸铁锂电芯的正极压实密度的1.17倍,但因锰酸锂的真密度是磷酸铁锂的1.30倍,故锰酸锂正极的空隙率略大于磷酸铁锂正极,电解液需求也略大。

表1不同类别电芯内部空间及最大注液量

3.2电解液量对电池性能的影响

为考察电解量对电池性能的影响,以镍钴锰酸锂电芯为例进行实验,根据最大电解液测试,设计的四个电解液量梯度分别为:2.50g,2.80g,3.10g和.3.40g。按照上述四个电解液量梯度进行注液,每个梯度23只电芯。

1)电解液量对电池容量的影响。

将上述四个电解液量梯度的电芯在化成、老化后,进行电压、内阻和容量测试,充电容量采用1C恒流恒压充电至4.2V,截止电流为0.05C进行测试;静置5分钟后,放电容量采用1C恒流放电至3.0V进行测试,再根据各电芯相应的正极活性物质重量,计算正极比容量。所得测试结果的平均值如表2所示。

表2不同电解液量的电池的电化学性能平均值

电解液量为2.50g梯度时,电池的内阻明显偏大,电池的容量和正极比容量明显低于其他三个电解液量梯度的电池,可见此梯度电解液量明显不够,导致电卷芯部分有效区域无电解液或电解液较少,浸润不充分,引起内阻偏大,容量发挥较低。而电解液量梯度在2.80g、3.10g、3.40g时,电芯的容量发挥相差不大,但略有容量随着电解液量增加而增高的趋势,电解液量的增加有利于充分利用活性物质的容量。由此说明,电池容量与电解液量有较大关系,电池容量随着电解液量的增加而长吭,但升高的超势随着电解液量的增加而趋缓,最后基本趋于恒定。

2)电解液量对电池循环性能的影响

对不同电解液量梯度的电池平行进行常温循环性能测试。以1C恒流恒压充电至4.2V,截止电流为0.05C,静置5分钟;然后1C恒流放电至3.0V,静置5分钟;再转入充电过程,如此循环350次。

循环测试结果可见,电解液量为2.50g时,电池的循环性能特别差,222次降到初始容量的80%。这是因为电解液量较少,电池内阻大,循环测试过程,电池的发热量越来越大,加速电池局部电解液的分解或挥发,是电池循环性能的恶化速度逐渐加快。电解液量为2.80g、3.10g、3.40g时,电池的循环性能相对较好,350次循环后,容量保持了依然大于85%。但是从100次循环后,2.80g电解液量的电池的循环性能逐渐差于其它两个电解液量梯度的电池,说明此电解液量在长期循环过程中也略显不足。电解液量为

3.40g的电池在前250次循环的容量保持率最高,但从160次循环起,容量衰减速度明显加快,在第285次循环后,容量保持率低于3.10g电解液量的电池。测试完毕发现此电池厚度膨胀比3.10g电解液量的电池明显,说明此电池是因为电解液过多导致电芯的副反应也相对增加,产气量较多,导致电芯的循环性能下降。由此可见电解液量对电池的循环性能影响非常明显,电解液过少或过多,都不利于电池的循环性能。

3)电解液量对电池抗过充电性能的影响

抗过充电测试方法:首先以0.2C将电池放电至3.0V,再以1A/10V恒流恒压过充24h。不同电解液量梯度的电池的抗过充电测试结果如表3所示。

表3不同电解液量的电池的抗过充电测试结果

从表3中可见,电解液量为2.50g和3.40g的电池在抗过充电测试中,或爆炸、或起火,而电解液量为2.80g和3.10g的电池则顺利通过测试。当电解液量过少时,在过充电过程中,恒流充电时电压高于4.6V时,电解液迅速分解产气,消耗殆尽,造成电池气胀,内阻急剧增大,电池温度急剧上升,隔膜融化,造成短路爆炸。而当电解液量过多时,过充电过程中,产生的气体量大,电池内部压力大,壳体破裂,引起电解液泄露。电解液温度较高时,遇到空气而着火。当电解液量适中时,过充过程中,不至于在大电流情况下电解液消耗殆尽引起短路,也不至于产气量过大,造成壳体破裂,电解液泄露起火。

4结论

1)不同正极材料体系对电解液量的需求互有差异,高压实密度的钴酸锂正极体系电池在同等大小的电芯中,容量最高,电解液需求量却最少;而低压实密度的锰酸锂和磷酸铁锂正极体系电池,容量较低,而电解液需求最大。

2)电池的内阻随着电解液量的增加而减少,容量随着电解液量的增加而增加。电解液量过少时,电池内阻大,容量低;当电解液量达到一定量,内阻和容量趋于稳定。

3)电解液量对电池的循环性能和抗过充电性能影响显著,电解液量过多或过少时,循环性能和安全性能都较差。

选自:中国锂电材料信息导报

电源门户网版权及免责声明:

1、凡本网注明“来源:电源门户网”的所有作品,版权均属于电源门户网,未经本网授权,任何单位及个人不得转载、摘编或以其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明“来源:电源门户网”。违反上述声明者,本网将追究其相关法律责任。

2、凡本网注明“来源:XXX(非电源门户网)”的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。

3、如因作品内容、版权和其它问题需要同本网联系的,请于转载之日起30日内进行。


相关内容

  • 全固态锂电池技术的研究现状与展望
  • 第2卷 第4期 2013年7 月 储 能 科 学 与 技 术 Energy Storage Science and Technology V ol.2 No.4Jul. 2013 特约评述 全固态锂电池技术的研究现状与展望 许晓雄,邱志军,官亦标,黄 祯,金 翼 (1中国科学院宁波材料技术与工程研究 ...

  • 锂电池行业分析报告
  • 锂离子电池行业分析报告 一.电池的发展历程----------------------------.1 1.电池的发展历程-----------------------------1 2.锂离子电池的发展历程--------------------------2 3. 未来电池的发展趋势------ ...

  • 影响锂离子电池循环性能的几个因素
  • 循环性能对锂离子电池的重要程度无需赘言:另外就宏观来讲,更长的循环寿命意味着更少的资源消耗.因而,影响锂离子电池循环性能的因素,是每一个与锂电行业相关的人员都不得不考虑的问题.以下文武列举几个可能影响到电池循环性能因素,供大家参考. 材料种类:材料的选择是影响锂离子电池性能的第一要素.选择了循环性能 ...

  • 锂离子电池全解析--原理.结构.工艺篇
  • 小贴士: 锂系电池分为锂电池和锂离子电池. 锂电池即锂金属电池,一般是指使用二氧化锰为正极材料.金属锂或其合金金属为负极材料.使用非水电解质溶液的电池.放电反应为:Li+MnO2=LiMnO2.然而,通常金属态的锂非常活泼,会与电解质产生不良反应,导致电解质过热,甚至导致燃烧.由于金属锂的安全问题尚 ...

  • 行业分析报告
  • 证券投资行业分析报告 新能源汽车锂电池行业分析 前言:21世纪的进入,新能源的发展备受关注.新能源汽车的发展将会成为世界汽车业发展的主流.能源危机和日益严重的环境污染是汽车技术正经历着燃料多元化.动力电气化等重大技术变革.具有高效节能.低排放或零排放优势的新能源电动汽车重新获得生机,并受到世界各国的 ...

  • 中国锂电池市场调研报告
  • 中国市场调研在线 行业市场研究属于企业战略研究范畴,作为当前应用最为广泛的咨询服务,其研究成果以报告形式呈现,通常包含以下内容: 一份专业的行业研究报告,注重指导企业或投资者了解该行业整体发展态势及经济运行状况,旨在为企业或投资者提供方向性的思路和参考. 一份有价值的行业研究报告,可以完成对行业系统 ...

  • 锂电池的原理与应用实践
  • 锂电池的原理与应用 栗宇深 汤敏贤 刘炤元 黄庆泉 摘 要:锂电池已广泛用于各种电子产品中,在未来的电动汽车也有着很好的应用前景,必将对未来人们的生活产生深刻的影响.本文将分别从发展过程.正负极及电解质材料的原理.应用及最新发展状况对锂电池进行综述. 关键词:锂离子电池 聚合物锂电池 阳极材料 阴极 ...

  • 电池正极材料磷酸铁锂生产项目可研报告
  • 电池正极材料磷酸铁锂生产项目 可研报告 一.总论 1.1 项目名称 电池正极材料磷酸铁锂生产项目 1.2 建设内容及规模 建设内容为一条年产200吨磷酸铁锂材料的生产线,及其配套土地.建筑. 本技术包含多条工艺路径.本建议书所选择的为投资额最大的且成本最高的路径,因此各种测算均采用最保守条件下数据. ...

  • 锂离子电池隔膜的研究进展
  • 综述 锂离子电池隔膜的研究进展 莫名月1,2,3,陈红雨*1,2,3 (1.华南师范大学化学与环境学院,广东广州510006:2. 广东高校储能与动力电池产学研结合示范基地,广东广州 510006:3. 电化学储能材料与技术教育部工程研究中心,广东广州510006) 摘要:隔膜是锂离子电池的重要组成 ...