NOX形成机理,如何控制NOX浓度

NOX 形成机理, 如何控制NOX 浓度

1、NOx 的危害:

氮氧化物(NOx )是重要的空气污染物质,其产生的途径为燃烧火焰在高温下氮气与氧气的化合,以及燃料中的氮成分在燃烧时氧化而成。氮氧化物的环境危害有二种,在阳光的催化作用下,氮氧化物易与碳氢化物光化反应,造成光雾及臭氧之二次空气污染; 此外氮氧化物也易与水气结合成为含有硝酸成分的酸雨。

2、NOx 生成机理和特点

2.1 NOx生成机理

在NOx 中,一氧化氮约占90%以上,二氧化氮占5%~10%,产生机理一般分为如下3种:

(1)热力型NOx ,燃烧时,空气中氮在高温下氧化产生,其中的生成过程是一个不分支连锁反应。其生成机理可用捷里多维奇(ZELDOVICH)反应式表示,即

O 2+N→2O+N, O+N2→NO+N, N+O2→NO+O

在高温下总生成式为

N 2+O2→2NO, NO+0.5O2→NO 2

随着反应温度T 的升高,其反应速率按指数规律增加。当T1 500 ℃时,T 每增加100 ℃, 反应速率增大6~7倍。

(2)快速型NOx ,快速型NOx 是1971年FENIMORE 通过实验发现的。在碳氢化合物燃料燃烧在燃料过浓时,在反应区附近会快速生成NOx ,由于燃料挥发物中碳氢化合物高温分解生成的CH 自由基可以和空气中氮气反应生成HCN 和N ,再进一步与氧气作用以极快的速度生成NOx ,其形成时间只需要60 ms,所生成的NOx 与炉膛压力的0.5次方成正比, 与温度的关系不大。

1

(3)燃料型NOx ,指燃料中含氮化合物, 在燃烧过程中进行热分解, 继而进一步氧化而生成NOx 。由于燃料中氮的热分解温度低于煤粉燃烧温度,在600~800 ℃时就会生成燃料型NOx 。在生成燃料型NOx 过程中,首先是含有氮的有机化合物热裂解产生N ,CN ,HCN 等中间产物基团,然后再氧化成NOx 。由于煤的燃烧过程由挥发份燃烧和焦炭燃烧两个阶段组成,故燃料型NOx 的形成也由气相氮的氧化和焦炭中剩余氮的氧化两部分组成。

2.2 NOx生成特点

在这3种途径中, 快速型NOx 所占的比例不到5%,在温度低于1300℃时, 几乎没有热力型NOx 。对常规燃煤锅炉而言,NOx 主要通过燃料型生成途径而产生。由NOx 的生成机理可以看出,NOx 的生成及破坏与以下因素有关:⑴煤的燃烧方式、燃烧工况, 其生成量依赖于燃烧温度水平;⑵煤种特性,如煤的含氮量,挥发份含量等;⑶炉膛内反应区烟气的气氛,即烟气内氧气,氮气,NO 和CHi 的含量;⑷燃料及燃烧产物在火焰高温区和炉膛内的停留时间。

3、降低NOx 的主要控制技术

降低NOx 排放措施分为一级脱氮技术和二级脱氮技术。一级脱氮技术主要是采用低NOx 燃烧器以及通过燃烧优化调整,有效控制NOx 的产生,从源头上减少NOx 生成量;二级脱氮技术则是利用各种措施, 尽可能减少已生成NOx 的排放,属于烟气脱硝范畴,目前主要有两种成熟技术选择性催化还原法(SCR )和选择性非催化还原法(SNCR )。

3.1、级脱氮技术

3.1.1、气分级

3.1.1.1、根据NOx 的生成机理,燃烧区的氧浓度对各种类型的NOx 生成都有很大影响。当过量空气系数α

2 [6]

度,也降低了燃烧区的温度水平。因此,第一级燃烧区的主要作用就是抑制NOx 的生成,推迟燃烧过程,并将已生成的NOx 分解还原,使燃料型NOx 减少;由于此时火焰温度降低,使得热力型NOx 的生成量也减少。燃烧所需的其余空气则通过燃烧器上面的燃烬风喷口送入炉膛与第一级所产生的烟气混合,使燃料燃烧完全,成为燃烬区,从而完成整个燃烧过程。

影响分解炉出口NO2含量的主要因素有:分解炉初始燃烧部位的温度; 煤质及其挥发分和氮的含量; 进分解炉前热风中NO 二的含量; 氧含量的富余情况(尤其是初始燃烧时) 。在低 NO x 段,煤粉燃料带人的氮,在气相中以N,,HC N,NH 。和少量NO 的形式存在,其它的氮仍包含在焦炭中,除含氮化合物外,气相中还存在有H25,H2 ,CO ,CH ,和CA 等。在生料和焦炭的催化作用下,NO 在初始阶段与CH 反应还原生成HCN ,反应式为:

CH +N O -HCN (i=1,2,3) (1)

CO +N O- NZ+CO2 (2 )

Hz+ NO -- NZ+HZO ( 3)

HZ+ N O- NH3+Hz0 (4 )

反应 ( 1)需 要高温环境促进,并需要少量的氧来不断形成CHI 。反应(2),(3),(4)一方面受生料催化,另一方面受氧的阻碍,如果氧相对CO 达到一定的富余量,反应(2)将完全受阻。为了 有 效 控制NOx 的排放量,操作上要做到:严格控制窑尾烟气中的氧含量,以降低窑头燃烧生成的NOx 量和提高NOx 的还原程度。另外,通过在氧化带和还原带之间正确分配生料,在不造成窑尾上升和还原带结皮的情况下,尽量提高还原带的温度,可有利于反应(1)的效率,提高NO 二的还原程度。

3.1.2、燃料分级

已生成的NOx 在遇到烃根和未完全燃烧产物时,会发生NOx 的还原反应。利用这一原理,将80%~85%的燃料送入一级燃烧区,

3

在α>1条件下燃烧生成,送入一级燃烧区的燃料称为一级燃料;其余15%~20%则在主燃烧器上部送入二级燃烧区,在α

3.1.3、烟气再循环

该技术通常的做法是从省煤器出口抽出烟气,加入二次风或一次风中。加入二次风时,火焰中心不受影响,唯一作用是降低火焰温度和助燃空气的氧浓度。此方法对热力型NOx 所占份额较大的液态排渣炉、燃油和燃气锅炉有效,对于热力型NOx 所占份额不大的干态排渣炉作用有限。利用烟气再循环,燃气、燃油锅炉NOx 减少量可达50%,燃煤锅炉NOx 减少量可达20%。烟气再循环法的脱NOx 效果不仅与燃料种类有关,而且与再循环烟气量有关,当烟气再循环倍率增加时,NOx 减少,但进一步增大循环倍率,NOx 的排放将趋于一个定值,该值随燃料含氮量增加而增大,但若循环倍率过大,炉温降低太多,会导致燃烧损失增加。因此,烟气再循环率一般不超过30%,大型锅炉控制在10%~20%。当燃用难着火煤种时,由于受炉温和燃烧稳定性降低的限制,烟气再循环法不适用。

3.1.4、低NOx 燃烧器

3.1.4.1、从NOx 的生成机理看,占NOx 绝大部分的燃料型NOx 是在煤粉着火阶段生成的。因此,通过特殊设计的燃烧器结构(LNB )及改变通过燃烧器的风煤比例,以达到在燃烧器着火区空气分级、燃烧分级或烟气再循环法的效果。在保证煤粉着火燃烧的同时,有效地抑制NOx 的生成。如三菱重工研制开发的PM 型浓淡燃烧器,它是利用含粉气流在弯曲管道内流动时,煤粉受离心力作用向弯管的外侧集聚,把浓度较高的含粉气流从弯管出口的一端引出;靠弯管内侧则为稀相含粉气流,从弯管出口的另一端引出。这样就可以借

4 [7]

结构简单的惯性型煤粉浓缩装臵把气粉混合物分成浓、淡二股气流输入炉膛。这种结构可以使炉膛内的火炬形成富氧和低氧两种状态的燃烧。占主体的浓相煤粉浓度高,所需着火热量少,利于着火和稳燃,由淡相补充后期所需的空气,利于煤粉的燃尽,同时浓淡燃烧均偏离了NOx 生成量高的化学当量燃烧区,大大降低了NOx 生成

3.1.4.2、水泥窑头用燃烧器

该燃 烧 器 的中心是油枪和点火气枪的保护套管,保护套管外依次是中心风管,煤风管,径向风管和轴向风管。中心风管外部安装有耐磨层以减缓煤粉对它的磨损,入口处连接有金属软管,用以输送来自一次风机的冷却风,在出口装有冷却孔板。煤风管通过导向支撑固定在中心管外,煤人口处内表面安装有耐磨层,耐磨层从人口处一直伸人到前端,煤风管与径向风管通过膨胀节连接。径向风管的出口臵于轴向风管的锥形喷嘴内,其内侧有旋流器。一次风出口设有锥形喷嘴,煤风管可以前后移动以改变一次风的喷口面积。从燃烧器喷出的一次风仅占燃烧空气量的7%-10%,最大风速达200-210 m/s。由于一次风的风速比煤风大得多,所以,喷出煤粉被加速,同时吸人大量的高温二次风,保证了煤粉的充分混合和快速燃烧。为了有效控制NO 二的排放量,操作上要做到以下几点:

(1) 在不 同负荷运行时,要及时前后移动煤风管,改变一次风的喷口面积,调节一次风的喷出速度,保证较高的燃料空气当量比,降低NO2的生成。

(2) 在燃煤品质改变,工况发生变化时,及时通过调节内外风管上的调节阀开度,调节径向风与轴向风的比例,从而调节综合旋流强度,改善气流的混合情况; 控制火焰形状饱满有力,在满足烧成的情况下,降低燃烧强度,减少NOx 的生成。

(3) 合理调节中心冷却风用量,形成低氧燃烧工况,控制火焰在合理的温度范围,最大限度地减少NO 二的生成。

5 量。与传统的切向燃烧器相比,NOx 生成量可显著降低。

4.2 二级脱氮技术

4.2.1 选择性催化还原法(SCR )

国外大多数燃煤电厂,采用以氨气为还原剂的选择性催化还原法(SCR )进行烟气脱氮。其基本过程是:还原剂NH 3均匀分布到320~400 ℃的烟气中并与烟气一道通过一个由催化剂填充的脱氮反应器,反应器中的催化剂分上下多层有序放臵。在催化剂作用下,NOx 和NH 3发生如下反应:

4NO +4NH 3+O 2→4N 2+6H 2O , 6NO2+8NH 3→7N 2+12H 2O

反应产物N 2和H 2O 对大气没有多大影响。经过最后一层催化剂后,烟气中的NOx 控制在排放限值以下。由于该反应没有产生副产物,并且装臵结构简单,适合于处理大量的烟气。根据SCR 反应器在锅炉之后的不同位臵,SCR 系统大致有3种工艺流程。高粉尘SCR(High Dust SCR) ,低粉尘SCR (Low Dust SCR) 和尾部SCR(Tail End SCR) 。HD-SCR 反应器布臵在锅炉省煤器后,空气预热器前。锅炉尾部烟气温度足以满足催化剂的运行,烟气不需要再加热。因此,这种布臵投资低,但这里烟尘大(High Dust) ,催化剂必须选择防堵的材料。同时还受到场地的限制,适合于新建电厂。与HD -SCR 相比,TE -SCR 反应器布臵在静电除尘器和FGD 后。由于催化剂在“干净”的环境中运行,材料容易选择,催化剂的寿命长。这种布臵适合对旧厂改造。但是烟气要加热到一定温度以满足催化剂的运行,投资和运行成本较HD-SCR 布臵大。而LD-SCR 虽然催化剂是在较“干净”的条件下工作,但静电除尘器在290~450 ℃的温度下效率很低,无法正常工作,所以一般不采用。

选择性催化还原脱氮法在实际运行中,下列因素特别值得重视:

(1)脱氮催化剂容易逐渐老化,必须要定时检测每层催化剂前后烟气中NOx 的浓度和氨氮比(NH3/NOx),确定各层催化剂的活性与老化程度,以确保脱氮装臵的正常运行。

(2)合理控制反应温度,选择性催化还原脱氮的反应温度应控

6

制在320~400 ℃。当反应温度低于300 ℃,在催化剂上将产生无益的副反应。脱氮催化剂不允许烟气温度高于450℃,只能短时间高于410 ℃运行。对脱氮催化剂的结构检测发现,高温下催化剂的结构会发生变化,导致催化剂通道与微孔的减少。当操作温度高于450 ℃,催化剂损坏失活,且温度越高催化剂失活速度越快。

(3)保证较低的氨的流出量,由于烟气中的NOx 绝大多数为NO ,从选择性催化还原脱氮的反应式来看,NH 3和NOx 应等量反应。但在实际运行中,等量NH3的输入虽然使NOx 的排放水平较低,但脱氮装臵出口的烟气中总有较高的NH 3流出量。因而,NH 3的输入量必须既能保证NOx 排放浓度达标,又能保证较低的氨流出量。

由此看出, 保证催化剂活性,控制适宜的操作温度,以及适当的氨气输入量是脱氮装臵有效运行的保证。

4.2.2 选择性非催化还原法(SNCR )

这种技术同样是利用NH 3作为还原剂,将NOx 转化为N 2和H 2O 。反应的化学方程式为:

4NO +4NH 3+O 2→4N 2+6H 2O

本法不采用催化剂, 而是将操作温度900-1050℃作为反应条件。NH 3由喷嘴喷入燃烧室,根据锅炉的操作负荷,要不断调整NH 3的喷入量和喷入位臵,以保证在最佳温度下喷入NH 3。因而对该法而言,运行经验是很重要的。

SNCR 脱硝的关键是使还原剂与烟气又好又快地混合,具有充分的反应时间以及在900-1 050 ℃的温度区喷入还原剂。SNCR 法的脱硝效率不太高,在50%左右,最高可以达到80%,但是该方法不用催化剂,设备运行费用省,具有一定的优势

目前,使用该工艺存在以下问题:

(1)由于温度随锅炉负荷和运行周期在变化,以及锅炉中NOx 浓度的不规律性,使该工艺应用时变得较复杂。因此,在很大区域内、在锅炉不同高度装有大量的入气口。甚至将每段高度再分成几

7 [10]。

小段,每小段分别装有入气口和NH 3测量仪。这增加了测量和控制NH 3的难度。因此,该工艺的脱氮效率不高。

(2)在吹入氨气量较多、温度降至最佳值以下、吹气均匀度较低、吹气量较少导致温度和氮氧化物含量不对称时,未反应的氨气比例将增加,会产生氨气的逸出。当氨气逸出时,它与烟道内的剩余物反应产生堵塞,如堵塞空气预热器。因为NH 3与SO 3和烟气中的水分析出,会在较冷部件中形成硫化氢氨,形成粘性沉积物,增加了飞灰的堵塞、腐蚀和频繁冲洗空气预热器。NH 3向飞灰逸出的增加也会降低飞灰的可综合利用性,使飞灰处臵更复杂;NH 3逸出还可导致脱硫装臵后面的冲洗水中氨含量高。

(3)目前,SNCR 工艺设定的脱氮效率越高,随着脱氮效率的增加,单位NH 3消耗也越高,该工艺的NH 3耗量高于SCR 工艺。

目前,正在改进SNCR 工艺,如试验将燃用过的空气送入降解介质中,进入锅炉;还有使用尿素溶液作为降解介质来替代NH 3;有时用额外的添加剂来增加降解温度等。

5、结 论

我国电力工业正处于高速发展时期,燃煤机组装机容量逐年增加。为了保护环境,降低燃煤电厂NOx 污染迫在眉睫。一级脱氮技术成本低,但脱除效果一般

8

NOX 形成机理, 如何控制NOX 浓度

1、NOx 的危害:

氮氧化物(NOx )是重要的空气污染物质,其产生的途径为燃烧火焰在高温下氮气与氧气的化合,以及燃料中的氮成分在燃烧时氧化而成。氮氧化物的环境危害有二种,在阳光的催化作用下,氮氧化物易与碳氢化物光化反应,造成光雾及臭氧之二次空气污染; 此外氮氧化物也易与水气结合成为含有硝酸成分的酸雨。

2、NOx 生成机理和特点

2.1 NOx生成机理

在NOx 中,一氧化氮约占90%以上,二氧化氮占5%~10%,产生机理一般分为如下3种:

(1)热力型NOx ,燃烧时,空气中氮在高温下氧化产生,其中的生成过程是一个不分支连锁反应。其生成机理可用捷里多维奇(ZELDOVICH)反应式表示,即

O 2+N→2O+N, O+N2→NO+N, N+O2→NO+O

在高温下总生成式为

N 2+O2→2NO, NO+0.5O2→NO 2

随着反应温度T 的升高,其反应速率按指数规律增加。当T1 500 ℃时,T 每增加100 ℃, 反应速率增大6~7倍。

(2)快速型NOx ,快速型NOx 是1971年FENIMORE 通过实验发现的。在碳氢化合物燃料燃烧在燃料过浓时,在反应区附近会快速生成NOx ,由于燃料挥发物中碳氢化合物高温分解生成的CH 自由基可以和空气中氮气反应生成HCN 和N ,再进一步与氧气作用以极快的速度生成NOx ,其形成时间只需要60 ms,所生成的NOx 与炉膛压力的0.5次方成正比, 与温度的关系不大。

1

(3)燃料型NOx ,指燃料中含氮化合物, 在燃烧过程中进行热分解, 继而进一步氧化而生成NOx 。由于燃料中氮的热分解温度低于煤粉燃烧温度,在600~800 ℃时就会生成燃料型NOx 。在生成燃料型NOx 过程中,首先是含有氮的有机化合物热裂解产生N ,CN ,HCN 等中间产物基团,然后再氧化成NOx 。由于煤的燃烧过程由挥发份燃烧和焦炭燃烧两个阶段组成,故燃料型NOx 的形成也由气相氮的氧化和焦炭中剩余氮的氧化两部分组成。

2.2 NOx生成特点

在这3种途径中, 快速型NOx 所占的比例不到5%,在温度低于1300℃时, 几乎没有热力型NOx 。对常规燃煤锅炉而言,NOx 主要通过燃料型生成途径而产生。由NOx 的生成机理可以看出,NOx 的生成及破坏与以下因素有关:⑴煤的燃烧方式、燃烧工况, 其生成量依赖于燃烧温度水平;⑵煤种特性,如煤的含氮量,挥发份含量等;⑶炉膛内反应区烟气的气氛,即烟气内氧气,氮气,NO 和CHi 的含量;⑷燃料及燃烧产物在火焰高温区和炉膛内的停留时间。

3、降低NOx 的主要控制技术

降低NOx 排放措施分为一级脱氮技术和二级脱氮技术。一级脱氮技术主要是采用低NOx 燃烧器以及通过燃烧优化调整,有效控制NOx 的产生,从源头上减少NOx 生成量;二级脱氮技术则是利用各种措施, 尽可能减少已生成NOx 的排放,属于烟气脱硝范畴,目前主要有两种成熟技术选择性催化还原法(SCR )和选择性非催化还原法(SNCR )。

3.1、级脱氮技术

3.1.1、气分级

3.1.1.1、根据NOx 的生成机理,燃烧区的氧浓度对各种类型的NOx 生成都有很大影响。当过量空气系数α

2 [6]

度,也降低了燃烧区的温度水平。因此,第一级燃烧区的主要作用就是抑制NOx 的生成,推迟燃烧过程,并将已生成的NOx 分解还原,使燃料型NOx 减少;由于此时火焰温度降低,使得热力型NOx 的生成量也减少。燃烧所需的其余空气则通过燃烧器上面的燃烬风喷口送入炉膛与第一级所产生的烟气混合,使燃料燃烧完全,成为燃烬区,从而完成整个燃烧过程。

影响分解炉出口NO2含量的主要因素有:分解炉初始燃烧部位的温度; 煤质及其挥发分和氮的含量; 进分解炉前热风中NO 二的含量; 氧含量的富余情况(尤其是初始燃烧时) 。在低 NO x 段,煤粉燃料带人的氮,在气相中以N,,HC N,NH 。和少量NO 的形式存在,其它的氮仍包含在焦炭中,除含氮化合物外,气相中还存在有H25,H2 ,CO ,CH ,和CA 等。在生料和焦炭的催化作用下,NO 在初始阶段与CH 反应还原生成HCN ,反应式为:

CH +N O -HCN (i=1,2,3) (1)

CO +N O- NZ+CO2 (2 )

Hz+ NO -- NZ+HZO ( 3)

HZ+ N O- NH3+Hz0 (4 )

反应 ( 1)需 要高温环境促进,并需要少量的氧来不断形成CHI 。反应(2),(3),(4)一方面受生料催化,另一方面受氧的阻碍,如果氧相对CO 达到一定的富余量,反应(2)将完全受阻。为了 有 效 控制NOx 的排放量,操作上要做到:严格控制窑尾烟气中的氧含量,以降低窑头燃烧生成的NOx 量和提高NOx 的还原程度。另外,通过在氧化带和还原带之间正确分配生料,在不造成窑尾上升和还原带结皮的情况下,尽量提高还原带的温度,可有利于反应(1)的效率,提高NO 二的还原程度。

3.1.2、燃料分级

已生成的NOx 在遇到烃根和未完全燃烧产物时,会发生NOx 的还原反应。利用这一原理,将80%~85%的燃料送入一级燃烧区,

3

在α>1条件下燃烧生成,送入一级燃烧区的燃料称为一级燃料;其余15%~20%则在主燃烧器上部送入二级燃烧区,在α

3.1.3、烟气再循环

该技术通常的做法是从省煤器出口抽出烟气,加入二次风或一次风中。加入二次风时,火焰中心不受影响,唯一作用是降低火焰温度和助燃空气的氧浓度。此方法对热力型NOx 所占份额较大的液态排渣炉、燃油和燃气锅炉有效,对于热力型NOx 所占份额不大的干态排渣炉作用有限。利用烟气再循环,燃气、燃油锅炉NOx 减少量可达50%,燃煤锅炉NOx 减少量可达20%。烟气再循环法的脱NOx 效果不仅与燃料种类有关,而且与再循环烟气量有关,当烟气再循环倍率增加时,NOx 减少,但进一步增大循环倍率,NOx 的排放将趋于一个定值,该值随燃料含氮量增加而增大,但若循环倍率过大,炉温降低太多,会导致燃烧损失增加。因此,烟气再循环率一般不超过30%,大型锅炉控制在10%~20%。当燃用难着火煤种时,由于受炉温和燃烧稳定性降低的限制,烟气再循环法不适用。

3.1.4、低NOx 燃烧器

3.1.4.1、从NOx 的生成机理看,占NOx 绝大部分的燃料型NOx 是在煤粉着火阶段生成的。因此,通过特殊设计的燃烧器结构(LNB )及改变通过燃烧器的风煤比例,以达到在燃烧器着火区空气分级、燃烧分级或烟气再循环法的效果。在保证煤粉着火燃烧的同时,有效地抑制NOx 的生成。如三菱重工研制开发的PM 型浓淡燃烧器,它是利用含粉气流在弯曲管道内流动时,煤粉受离心力作用向弯管的外侧集聚,把浓度较高的含粉气流从弯管出口的一端引出;靠弯管内侧则为稀相含粉气流,从弯管出口的另一端引出。这样就可以借

4 [7]

结构简单的惯性型煤粉浓缩装臵把气粉混合物分成浓、淡二股气流输入炉膛。这种结构可以使炉膛内的火炬形成富氧和低氧两种状态的燃烧。占主体的浓相煤粉浓度高,所需着火热量少,利于着火和稳燃,由淡相补充后期所需的空气,利于煤粉的燃尽,同时浓淡燃烧均偏离了NOx 生成量高的化学当量燃烧区,大大降低了NOx 生成

3.1.4.2、水泥窑头用燃烧器

该燃 烧 器 的中心是油枪和点火气枪的保护套管,保护套管外依次是中心风管,煤风管,径向风管和轴向风管。中心风管外部安装有耐磨层以减缓煤粉对它的磨损,入口处连接有金属软管,用以输送来自一次风机的冷却风,在出口装有冷却孔板。煤风管通过导向支撑固定在中心管外,煤人口处内表面安装有耐磨层,耐磨层从人口处一直伸人到前端,煤风管与径向风管通过膨胀节连接。径向风管的出口臵于轴向风管的锥形喷嘴内,其内侧有旋流器。一次风出口设有锥形喷嘴,煤风管可以前后移动以改变一次风的喷口面积。从燃烧器喷出的一次风仅占燃烧空气量的7%-10%,最大风速达200-210 m/s。由于一次风的风速比煤风大得多,所以,喷出煤粉被加速,同时吸人大量的高温二次风,保证了煤粉的充分混合和快速燃烧。为了有效控制NO 二的排放量,操作上要做到以下几点:

(1) 在不 同负荷运行时,要及时前后移动煤风管,改变一次风的喷口面积,调节一次风的喷出速度,保证较高的燃料空气当量比,降低NO2的生成。

(2) 在燃煤品质改变,工况发生变化时,及时通过调节内外风管上的调节阀开度,调节径向风与轴向风的比例,从而调节综合旋流强度,改善气流的混合情况; 控制火焰形状饱满有力,在满足烧成的情况下,降低燃烧强度,减少NOx 的生成。

(3) 合理调节中心冷却风用量,形成低氧燃烧工况,控制火焰在合理的温度范围,最大限度地减少NO 二的生成。

5 量。与传统的切向燃烧器相比,NOx 生成量可显著降低。

4.2 二级脱氮技术

4.2.1 选择性催化还原法(SCR )

国外大多数燃煤电厂,采用以氨气为还原剂的选择性催化还原法(SCR )进行烟气脱氮。其基本过程是:还原剂NH 3均匀分布到320~400 ℃的烟气中并与烟气一道通过一个由催化剂填充的脱氮反应器,反应器中的催化剂分上下多层有序放臵。在催化剂作用下,NOx 和NH 3发生如下反应:

4NO +4NH 3+O 2→4N 2+6H 2O , 6NO2+8NH 3→7N 2+12H 2O

反应产物N 2和H 2O 对大气没有多大影响。经过最后一层催化剂后,烟气中的NOx 控制在排放限值以下。由于该反应没有产生副产物,并且装臵结构简单,适合于处理大量的烟气。根据SCR 反应器在锅炉之后的不同位臵,SCR 系统大致有3种工艺流程。高粉尘SCR(High Dust SCR) ,低粉尘SCR (Low Dust SCR) 和尾部SCR(Tail End SCR) 。HD-SCR 反应器布臵在锅炉省煤器后,空气预热器前。锅炉尾部烟气温度足以满足催化剂的运行,烟气不需要再加热。因此,这种布臵投资低,但这里烟尘大(High Dust) ,催化剂必须选择防堵的材料。同时还受到场地的限制,适合于新建电厂。与HD -SCR 相比,TE -SCR 反应器布臵在静电除尘器和FGD 后。由于催化剂在“干净”的环境中运行,材料容易选择,催化剂的寿命长。这种布臵适合对旧厂改造。但是烟气要加热到一定温度以满足催化剂的运行,投资和运行成本较HD-SCR 布臵大。而LD-SCR 虽然催化剂是在较“干净”的条件下工作,但静电除尘器在290~450 ℃的温度下效率很低,无法正常工作,所以一般不采用。

选择性催化还原脱氮法在实际运行中,下列因素特别值得重视:

(1)脱氮催化剂容易逐渐老化,必须要定时检测每层催化剂前后烟气中NOx 的浓度和氨氮比(NH3/NOx),确定各层催化剂的活性与老化程度,以确保脱氮装臵的正常运行。

(2)合理控制反应温度,选择性催化还原脱氮的反应温度应控

6

制在320~400 ℃。当反应温度低于300 ℃,在催化剂上将产生无益的副反应。脱氮催化剂不允许烟气温度高于450℃,只能短时间高于410 ℃运行。对脱氮催化剂的结构检测发现,高温下催化剂的结构会发生变化,导致催化剂通道与微孔的减少。当操作温度高于450 ℃,催化剂损坏失活,且温度越高催化剂失活速度越快。

(3)保证较低的氨的流出量,由于烟气中的NOx 绝大多数为NO ,从选择性催化还原脱氮的反应式来看,NH 3和NOx 应等量反应。但在实际运行中,等量NH3的输入虽然使NOx 的排放水平较低,但脱氮装臵出口的烟气中总有较高的NH 3流出量。因而,NH 3的输入量必须既能保证NOx 排放浓度达标,又能保证较低的氨流出量。

由此看出, 保证催化剂活性,控制适宜的操作温度,以及适当的氨气输入量是脱氮装臵有效运行的保证。

4.2.2 选择性非催化还原法(SNCR )

这种技术同样是利用NH 3作为还原剂,将NOx 转化为N 2和H 2O 。反应的化学方程式为:

4NO +4NH 3+O 2→4N 2+6H 2O

本法不采用催化剂, 而是将操作温度900-1050℃作为反应条件。NH 3由喷嘴喷入燃烧室,根据锅炉的操作负荷,要不断调整NH 3的喷入量和喷入位臵,以保证在最佳温度下喷入NH 3。因而对该法而言,运行经验是很重要的。

SNCR 脱硝的关键是使还原剂与烟气又好又快地混合,具有充分的反应时间以及在900-1 050 ℃的温度区喷入还原剂。SNCR 法的脱硝效率不太高,在50%左右,最高可以达到80%,但是该方法不用催化剂,设备运行费用省,具有一定的优势

目前,使用该工艺存在以下问题:

(1)由于温度随锅炉负荷和运行周期在变化,以及锅炉中NOx 浓度的不规律性,使该工艺应用时变得较复杂。因此,在很大区域内、在锅炉不同高度装有大量的入气口。甚至将每段高度再分成几

7 [10]。

小段,每小段分别装有入气口和NH 3测量仪。这增加了测量和控制NH 3的难度。因此,该工艺的脱氮效率不高。

(2)在吹入氨气量较多、温度降至最佳值以下、吹气均匀度较低、吹气量较少导致温度和氮氧化物含量不对称时,未反应的氨气比例将增加,会产生氨气的逸出。当氨气逸出时,它与烟道内的剩余物反应产生堵塞,如堵塞空气预热器。因为NH 3与SO 3和烟气中的水分析出,会在较冷部件中形成硫化氢氨,形成粘性沉积物,增加了飞灰的堵塞、腐蚀和频繁冲洗空气预热器。NH 3向飞灰逸出的增加也会降低飞灰的可综合利用性,使飞灰处臵更复杂;NH 3逸出还可导致脱硫装臵后面的冲洗水中氨含量高。

(3)目前,SNCR 工艺设定的脱氮效率越高,随着脱氮效率的增加,单位NH 3消耗也越高,该工艺的NH 3耗量高于SCR 工艺。

目前,正在改进SNCR 工艺,如试验将燃用过的空气送入降解介质中,进入锅炉;还有使用尿素溶液作为降解介质来替代NH 3;有时用额外的添加剂来增加降解温度等。

5、结 论

我国电力工业正处于高速发展时期,燃煤机组装机容量逐年增加。为了保护环境,降低燃煤电厂NOx 污染迫在眉睫。一级脱氮技术成本低,但脱除效果一般

8


相关内容

  • 600MW燃煤锅炉低NOx的燃烧技术
  • 600 MW燃煤锅炉低NOx的燃烧技术 on CombustionTechnique 600 DecreasingNOxfor MW CoalFiredBoffer 黄思林,谭玲 '台山发电厂,广东台山 529290) 摘要:阐述了燃煤锅炉NOx的生成机理及控制原则,介绍几家国际著名锅炉制造厂应用于 ...

  • 低NOx燃烧技术
  • 燃煤锅炉的低NOx燃烧技术 NOx是对N2O.NO2.NO.N2O5以及PAN等氮氧化物的统称.在煤的燃烧过程中,NOx生成物主要是NO和NO2,其中尤以NO是最为重要.实验表明,常规燃煤锅炉中NO生成量占NOx总量的90%以上,NO2只是在高温烟气在急速冷却时由部分NO转化生成的.N2O之所以引起 ...

  • 汽车排放超标的原因
  • 分析汽车排放超标的原因及如何修复 一.点燃式发动机类 点燃式发动机一般使用汽油.液化石油气(LPG).压缩天然气(CNG).液化天然气(LNG)等不同类型的燃料,这些燃料的主要成分都是HC 化合物,与空气混合并发生燃烧时,主要与空气中的O2进行化学反应,这种化学反应的条件与状态不同,所产生的废气成分 ...

  • 内燃机原理课后习题与答案
  • 第一章 发动机的性能 1. 简述发动机的实际工作循环过程. 1)进气过程:为了使发动机连续运转,必须不断吸入新鲜工质,即是进气过程.此时进气门开启,排气门关闭,活塞由上止点向下止点移动.2)压缩过程:此时进排气门关闭,活塞由下止点向上止点移动,缸内工质受到压缩.温度.压力不断上升,工质受压缩的程度用 ...

  • sncr脱硝原理以及影响其效率的因素详解
  • SNCR 脱硝原理 选择性非催化还原(SNCR)脱硝技术,是把含有氨基的还原剂(主要是尿素或氨水)喷入水泥窑分解炉温度范围为850-1150℃的区域,在特定的温度.氧存在的条件下,选择性的把烟气中的NOx 还原为N2和H2O,是烟气中NOx 的末端处理技术. 采用氨水作为还原剂的主要化学反应为: 4 ...

  • 煤的先进燃烧技术
  • 煤的先进燃烧技术 化艺1101 苗蓓 目前,在我国的能源消费结构中,煤炭是第一能源,以煤.石油.和天然气为主的化石燃料的使用也随之带来一系列的环境问题.煤是最重要的固体燃料,它是一种不均匀的有机燃料,主要由植物的部分分解和变质形成的,所以其形成要经历一段很长的时期,常常是处于高压覆盖层以及较高的温度 ...

  • 北京城市大气环境污染机理与调控原理_徐祥德
  • 第17卷6期Vol.17,No.6应用气象学报 2006年12月JOURNALOFAPPLIEDMETEOROLOGICALSCIENCEDecember2006 北京城市大气环境污染机理与调控原理 徐祥德 丁国安 卞林根 (中国气象科学研究院,北京100081) 摘 要 该文主要介绍了科技部国家重 ...

  • 4-4大气污染控制工程第二版试题
  • <大气污染控制工程>试题(四)标准答案与评分标准 供 环境工程 专业 班使用 一.名词术语解释(每小题3分共 18 分) 1.气溶胶:系指沉降速度可以忽略的小固体粒子.液体粒子或固液混合体在气体介质中的悬浮体系. 2.理论空气量:单位量燃料按燃烧反应方程式完全燃烧所需要的空气量. 3.有 ...

  • 活性炭材料在火电厂烟气脱硫脱硝中的应用
  • 更新时间:2010-10-20 11:50 来源:电力环境保护 作者: 孙晶,徐铮 阅读:780 网友评论0条 摘要:概述了传统活性炭和活性炭纤维材料独特的吸附性,介绍了活性炭材料在烟气脱硫脱硝中的应用原理,同时建议今后应在表面改性.脱硫脱硝反应机理等方面进行深入研究. 关键词:活性炭,纤维材料,脱 ...